Search results for: verbal learning
4292 Analysis to the Characterization of Self-Esteem of Students in Eulogio 'Amang' Rodriguez Institute of Science and Technology: A Foundation of Conceptualizing Substantial Plan of Action
Authors: Eriberto R. Astorga Jr., Herbert D. Vertucio, Evelyn M. Polison
Abstract:
This study was conducted in order to determine the analysis with regards to the Characterization of Self-Esteem of EARIST Students according to their origin of self-esteem and low self-esteem as well as its causes. The respondents of this study are three thousand three hundred twenty three (3,323) randomly selected students from eight colleges of EARIST such as Arts and Sciences, Education, Public Administration and Criminology, Business Administration, Hospitality Management, Architecture and Fine Arts, Engineering, and Industrial Technology. A survey was conducted by using a validated questionnaire for information gathering about respondents profile and different factors relating to self-esteem of students such as self-origin, familial and social relationship, financial situation and education. Frequency, percentage, ranking and standards deviation, standard t-test and ANOVA were applied to investigate the differences of the answers of the respondents to the origin of their self-esteem and the reasons for low self-esteem. The results revealed that there are no significant differences in the origin of their self-esteem and the reasons of low esteem as to the eight group of respondent’s. Moreover, most causes of low esteem are caused by hearing a comment or experiencing an incident that has a negative impact student mentally and emotionally, poor health, being bullied, lack of support from family, friends, and job loss, experiencing verbal and sexual abuse and are in a violent relationship, feelings of isolation, divorce, dysfunctional family, death and lack of achievement at work and at school, trying to conform to stereotypes and prove our independence from our parents.Keywords: characterization, plan of action, profile, self-esteem
Procedia PDF Downloads 1764291 Foundation Phase Teachers' Experiences of School Based Support Teams: A Case of Selected Schools in Johannesburg
Authors: Ambeck Celyne Tebid, Harry S. Rampa
Abstract:
The South African Education system recognises the need for all learners including those experiencing learning difficulties, to have access to a single unified system of education. For teachers to be pedagogically responsive to an increasingly diverse learner population without appropriate support has been proven to be unrealistic. As such, this has considerably hampered interest amongst teachers, especially those at the foundation phase to work within an Inclusive Education (IE) and training system. This qualitative study aimed at investigating foundation phase teachers’ experiences of school-based support teams (SBSTs) in two Full-Service (inclusive schools) and one Mainstream public primary school in the Gauteng province of South Africa; with particular emphasis on finding ways to supporting them, since teachers claimed they were not empowered in their initial training to teach learners experiencing learning difficulties. Hence, SBSTs were created at school levels to fill this gap thereby, supporting teaching and learning by identifying and addressing learners’, teachers’ and schools’ needs. With the notion that IE may be failing because of systemic reasons, this study uses Bronfenbrenner’s (1979) ecosystemic as well as Piaget’s (1980) maturational theory to examine the nature of support and experiences amongst teachers taking individual and systemic factors into consideration. Data was collected using in-depth, face-to-face interviews, document analysis and observation with 6 foundation phase teachers drawn from 3 different schools, 3 SBST coordinators, and 3 school principals. Data was analysed using the phenomenological data analysis method. Amongst the findings of the study is that South African full- service and mainstream schools have functional SBSTs which render formal and informal support to the teachers; this support varies in quality depending on the socio-economic status of the relevant community where the schools are situated. This paper, however, argues that what foundation phase teachers settled for as ‘support’ is flawed; as well as how they perceive the SBST and its role is problematic. The paper conclude by recommending that, the SBST should consider other approaches at foundation phase teacher support such as, empowering teachers with continuous practical experiences on how to deal with real classroom scenarios, as well as ensuring that all support, be it on academic or non-academic issues should be provided within a learning community framework where the teacher, family, SBST and where necessary, community organisations should harness their skills towards a common goal.Keywords: foundation phase, full- service schools, inclusive education, learning difficulties, school-based support teams, teacher support
Procedia PDF Downloads 2384290 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning
Authors: Joseph George, Anne Kotteswara Roa
Abstract:
Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.Keywords: skin cancer, deep learning, performance measures, accuracy, datasets
Procedia PDF Downloads 1344289 A Model for Adaptive Online Quiz: QCitra
Authors: Rosilah Hassan, Karam Dhafer Mayoof, Norngainy Mohd Tawil, Shamshubaridah Ramlee
Abstract:
Application of adaptive online quiz system and a design are performed in this paper. The purpose of adaptive quiz system is to establish different questions automatically for each student and measure their competence on a definite area of discipline. This model determines students competencies in cases like distant-learning which experience challenges frequently. Questions are specialized to allow clear deductions about student gains; they are able to identify student competencies more effectively. Also, negative effects of questions requiring higher knowledge than competency over student’s morale and self-confidence are dismissed. The advantage of the system in the quiz management requires less total time for measuring and is more flexible. Self sufficiency of the system in terms of repeating, planning and assessment of the measurement process allows itself to be used in the individual education sets. Adaptive quiz technique prevents students from distraction and motivation loss, which is led by the questions with quite lower hardness level than student’s competency.Keywords: e-learning, adaptive system, security, quiz database
Procedia PDF Downloads 4554288 Still Pictures for Learning Foreign Language Sounds
Authors: Kaoru Tomita
Abstract:
This study explores how visual information helps us to learn foreign language pronunciation. Visual assistance and its effect for learning foreign language have been discussed widely. For example, simplified illustrations in textbooks are used for telling learners which part of the articulation organs are used for pronouncing sounds. Vowels are put into a chart that depicts a vowel space. Consonants are put into a table that contains two axes of place and manner of articulation. When comparing a still picture and a moving picture for visualizing learners’ pronunciation, it becomes clear that the former works better than the latter. The visualization of vowels was applied to class activities in which native and non-native speakers’ English was compared and the learners’ feedback was collected: the positions of six vowels did not scatter as much as they were expected to do. Specifically, two vowels were not discriminated and were arranged very close in the vowel space. It was surprising for the author to find that learners liked analyzing their own pronunciation by linking formant ones and twos on a sheet of paper with a pencil. Even a simple method works well if it leads learners to think about their pronunciation analytically.Keywords: feedback, pronunciation, visualization, vowel
Procedia PDF Downloads 2554287 Change of Education Business in the Age of 5G
Authors: Heikki Ruohomaa, Vesa Salminen
Abstract:
Regions are facing huge competition to attract companies, businesses, inhabitants, students, etc. This way to improve living and business environment, which is rapidly changing due to digitalization. On the other hand, from the industry's point of view, the availability of a skilled labor force and an innovative environment are crucial factors. In this context, qualified staff has been seen to utilize the opportunities of digitalization and respond to the needs of future skills. World Manufacturing Forum has stated in the year 2019- report that in next five years, 40% of workers have to change their core competencies. Through digital transformation, new technologies like cloud, mobile, big data, 5G- infrastructure, platform- technology, data- analysis, and social networks with increasing intelligence and automation, enterprises can capitalize on new opportunities and optimize existing operations to achieve significant business improvement. Digitalization will be an important part of the everyday life of citizens and present in the working day of the average citizen and employee in the future. For that reason, the education system and education programs on all levels of education from diaper age to doctorate have been directed to fulfill this ecosystem strategy. Goal: The Fourth Industrial Revolution will bring unprecedented change to societies, education organizations and business environments. This article aims to identify how education, education content, the way education has proceeded, and overall whole the education business is changing. Most important is how we should respond to this inevitable co- evolution. Methodology: The study aims to verify how the learning process is boosted by new digital content, new learning software and tools, and customer-oriented learning environments. The change of education programs and individual education modules can be supported by applied research projects. You can use them in making proof- of- the concept of new technology, new ways to teach and train, and through the experiences gathered change education content, way to educate and finally education business as a whole. Major findings: Applied research projects can prove the concept- phases on real environment field labs to test technology opportunities and new tools for training purposes. Customer-oriented applied research projects are also excellent for students to make assignments and use new knowledge and content and teachers to test new tools and create new ways to educate. New content and problem-based learning are used in future education modules. This article introduces some case study experiences on customer-oriented digital transformation projects and how gathered knowledge on new digital content and a new way to educate has influenced education. The case study is related to experiences of research projects, customer-oriented field labs/learning environments and education programs of Häme University of Applied Sciences.Keywords: education process, digitalization content, digital tools for education, learning environments, transdisciplinary co-operation
Procedia PDF Downloads 1784286 Intrusion Detection in Cloud Computing Using Machine Learning
Authors: Faiza Babur Khan, Sohail Asghar
Abstract:
With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.Keywords: cloud security, threats, machine learning, random forest, classification
Procedia PDF Downloads 3224285 A Qualitative Study of the Efficacy of Teaching for Conceptual Understanding to Enhance Confidence and Engagement in Early Mathematics
Authors: Nigel P. Coutts, Stellina Z. Sim
Abstract:
Research suggests that the pedagogy we utilize when teaching mathematics contributes to a negative attitude towards the discipline. Worried by this, we have explored teaching mathematics for understanding, fluency, and confidence. We investigated strategies to engage students with the beauty of mathematics, moving them beyond mimicry and memorization. The result is an integrated pedagogy and curriculum arrangement which combines concept-based mathematics with Number Talks, Visible Thinking Routines, and Teaching for Understanding. Our qualitative research shows that students self-report greater self-confidence and heightened engagement with mathematical thinking. Teacher reflections on student learning echo this finding. As a result of this, we advocate for teacher training in the implementation of a concept-based curriculum supplemented with Number Talk strategies.Keywords: mathematical thinking, teaching for understanding, student confidence, concept-based learning, engagement
Procedia PDF Downloads 1564284 Short-Term Forecast of Wind Turbine Production with Machine Learning Methods: Direct Approach and Indirect Approach
Authors: Mamadou Dione, Eric Matzner-lober, Philippe Alexandre
Abstract:
The Energy Transition Act defined by the French State has precise implications on Renewable Energies, in particular on its remuneration mechanism. Until then, a purchase obligation contract permitted the sale of wind-generated electricity at a fixed rate. Tomorrow, it will be necessary to sell this electricity on the Market (at variable rates) before obtaining additional compensation intended to reduce the risk. This sale on the market requires to announce in advance (about 48 hours before) the production that will be delivered on the network, so to be able to predict (in the short term) this production. The fundamental problem remains the variability of the Wind accentuated by the geographical situation. The objective of the project is to provide, every day, short-term forecasts (48-hour horizon) of wind production using weather data. The predictions of the GFS model and those of the ECMWF model are used as explanatory variables. The variable to be predicted is the production of a wind farm. We do two approaches: a direct approach that predicts wind generation directly from weather data, and an integrated approach that estimâtes wind from weather data and converts it into wind power by power curves. We used machine learning techniques to predict this production. The models tested are random forests, CART + Bagging, CART + Boosting, SVM (Support Vector Machine). The application is made on a wind farm of 22MW (11 wind turbines) of the Compagnie du Vent (that became Engie Green France). Our results are very conclusive compared to the literature.Keywords: forecast aggregation, machine learning, spatio-temporal dynamics modeling, wind power forcast
Procedia PDF Downloads 2204283 Current Global Education Trends: Issues and Challenges of Physical and Health Education Teaching and Learning in Nigerian Schools
Authors: Bichi Muktar Sani
Abstract:
The philosophy of Physical and Health Education is to develop academic and professional competency which will enable individuals earn a living and render unique services to the society and also provide good basis of knowledge and experience that characterize an educated and fully developed person through physical activities. With the increase of sedentary activities such as watching television, playing videogames, increased computer technology, automation and reduction of high school Physical and Health Education schedules, young people are most likely to become overweight, and less fit. Physical Education is a systematic instruction in sports, training, practice, gymnastics, exercises, and hygiene given as part of a school or college program. Physical and Health Education is the study, practice, and appreciation of the art and science of human movement. Physical and Health Education is course in the curricula that utilizes the learning in the cognitive, affective, and psychomotor domains in a lay or movement exploration setting. The paper made some recommendations on the way forward.Keywords: issues, challenges, physical education, school
Procedia PDF Downloads 444282 Thermal Transport Properties of Common Transition Single Metal Atom Catalysts
Authors: Yuxi Zhu, Zhenqian Chen
Abstract:
It is of great interest to investigate the thermal properties of non-precious metal catalysts for Proton exchange membrane fuel cell (PEMFC) based on the thermal management requirements. Due to the low symmetry of materials, to accurately obtain the thermal conductivity of materials, it is necessary to obtain the second and third order force constants by combining density functional theory and machine learning interatomic potential. To be specific, the interatomic force constants are obtained by moment tensor potential (MTP), which is trained by the computational trajectory of Ab initio molecular dynamics (AIMD) at 50, 300, 600, and 900 K for 1 ps each, with a time step of 1 fs in the AIMD computation. And then the thermal conductivity can be obtained by solving the Boltzmann transport equation. In this paper, the thermal transport properties of single metal atom catalysts are studied for the first time to our best knowledge by machine-learning interatomic potential (MLIP). Results show that the single metal atom catalysts exhibit anisotropic thermal conductivities and partially exhibit good thermal conductivity. The average lattice thermal conductivities of G-FeN₄, G-CoN₄ and G-NiN₄ at 300 K are 88.61 W/mK, 205.32 W/mK and 210.57 W/mK, respectively. While other single metal atom catalysts show low thermal conductivity due to their low phonon lifetime. The results also show that low-frequency phonons (0-10 THz) dominate thermal transport properties. The results provide theoretical insights into the application of single metal atom catalysts in thermal management.Keywords: proton exchange membrane fuel cell, single metal atom catalysts, density functional theory, thermal conductivity, machine-learning interatomic potential
Procedia PDF Downloads 294281 Using Wiki for Enhancing the Knowledge Transfer to Newcomers: An Experience Report
Authors: Hualter Oliveira Barbosa, Raquel Feitosa do Vale Cunha, Erika Muniz dos Santos, Fernanda Belmira Souza, Fabio Sousa, Luis Henrique Pascareli, Franciney de Oliveira Lima, Ana Cláudia Reis da Silva, Christiane Moreira de Almeida
Abstract:
Software development is intrinsic human-based knowledge-intensive. Due to globalization, software development has become a complex challenge and we usually face barriers related to knowledge management, team building, costly testing processes, especially in distributed settings. For this reason, several approaches have been proposed to minimize barriers caused by geographic distance. In this paper, we present as we use experimental studies to improve our knowledge management process using the Wiki system. According to the results, it was possible to identify learning preferences from our software projects leader team, organize and improve the learning experience of our Wiki and; facilitate collaboration by newcomers to improve Wiki with new contents available in the Wiki.Keywords: mobile product, knowledge transfer, knowledge management process, wiki, GSD
Procedia PDF Downloads 1804280 Making Use of Content and Language Integrated Learning for Teaching Entrepreneurship and Neuromarketing to Master Students: Case Study
Authors: Svetlana Polskaya
Abstract:
The study deals with the issue of using the Content and Language Integrated Learning (CLIL) concept when teaching Master Program students majoring in neuromarketing and entrepreneurship. Present-day employers expect young graduates to conduct professional communication with their English-speaking peers and demonstrate proper knowledge of the industry’s terminology and jargon. The idea of applying CLIL was the result of the above-mentioned students possessing high proficiency in English, thus, not requiring any further knowledge of the English language in terms of traditional grammar or lexis. Due to this situation, a CLIL-type program was devised, allowing learners to acquire new knowledge of entrepreneurship and neuromarketing spheres combined with simultaneous honing their English language practical usage. The case study analyzes CLIL application within this particular program as well as the experience accumulated in the process.Keywords: CLIL, entrepreneurship, neuromarketing, foreign language acquisition, proficiency level
Procedia PDF Downloads 944279 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons
Authors: Dachuan Shi, M. Hecht, Y. Ye
Abstract:
With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.Keywords: fault detection, wheel flat, convolutional neural network, machine learning
Procedia PDF Downloads 1334278 The Development of Digital Commerce in Community Enterprise Products to Promote the Distribution of Samut Songkhram Province
Authors: Natcha Wattanaprapa, Alongkorn Taengtong, Phachaya Chaiwchan
Abstract:
This study investigates and promotes the distribution of community enterprise products of Samut Songkhram province by using e-commerce web technology to help distribute the products. This study also aims to develop the information system to be able to operate on multiple platforms and promote the easy usability on smartphones to increase the efficiency and promote the distribution of community enterprise products of Samut Songkhram province in three areas including Baan Saraphi learning center, the learning center of Bang Noi Floating market as well as Bang Nang Li learning center. The main structure consists of spreading the knowledge regarding the tourist attraction in the area of community enterprise, e-commerce system of community enterprise products, and Chatbot. The researcher developed the system into an application form using the software package to create and manage the content on the internet. Connect management system (CMS) word press was used for managing web pages. Add-on CMS word press was used for creating the system of Chatbot, and the database of PHP My Admin was used as the database management system. The evaluation by the experts and users in 5 aspects, including the system efficiency, the accuracy in the operation of the system, the convenience and ease of use of the system, the design, and the promotion of product distribution in Samut Songkhram province by using questionnaires revealed that the result of evaluation in the promotion of product distribution in Samut Songkhram province was the highest with the mean of 4.20. When evaluating the efficiency of the developed system, it was found that the result of system efficiency was the highest level with a mean of 4.10.Keywords: community enterprise, digital commerce, promotion of product distribution, Samut Songkhram province
Procedia PDF Downloads 1514277 [Keynote Talk] The Practices and Issues of Career Education: Focusing on Career Development Course on Various Problems of Society
Authors: Azusa Katsumata
Abstract:
Several universities in Japan have introduced activities aimed at the mutual enlightenment of a diversity of people in career education. However, several programs emphasize on delivering results, and on practicing the prepared materials as planned. Few programs focus on unexpected failures and setbacks. This way of learning is important in career education so that classmates can help each other, overcome difficulties, draw out each other’s strengths, and learn from them. Seijo University in Tokyo offered excursion focusing Various Problems of Society, as second year career education course, Students will learn about contraception, infertility, homeless people, LGBT, and they will discuss based on the excursion. This paper aims to study the ‘learning platform’ created by a series of processes such as the excursion, the discussion, and the presentation. In this course, students looked back on their lives and imagined the future in concrete terms, performing tasks in groups. The students came across a range of values through lectures and conversations, thereby developing feelings of self-efficacy. We conducted a questionnaire to measure the development of career in class. From the results of the questionnaire, we can see, in the example of this class, that students respected diversity and understood the importance of uncertainty and discontinuity. Whereas the students developed career awareness, they actually did not come across that scene and would do so only in the future when it became necessary. In this class, students consciously considered social problems, but did not develop the practical skills necessary to deal with these. This is appropriate for one of project, but we need to consider how this can be incorporated into future courses. University constitutes only a single period in life-long career formation. Thus, further research may be indicated to determine whether the positive effects of career education at university continue to contribute to individual careers going forward.Keywords: career education of university, excursion, learning platform, problems of society
Procedia PDF Downloads 2634276 Project-Based Learning and Evidence Based Nursing as Tools for Developing Students' Integrative Critical Thinking Skills: Content Analysis of Final Students' Projects
Authors: E. Maoz
Abstract:
Background: As a teaching method, project-based learning is strongly linked to developing students’ critical thinking skills. It combines creative independent thinking, team work, and disciplinary subject-field integration. In the 'Introduction to Nursing Research Methods' course (year 3, Generic Track), project based learning is used to teach the topic of 'Evidence-Based Nursing'. This topic examines a clinical care issue encountered by students in the field. At the end of their project, students present proposals for managing the said issue. Proposals are the product of independent integrative thinking integrating a wide range of factors influencing the issue’s management. Method: Papers by 27 groups of students (165 students) were content analyzed to identify which themes emerged from the students' recommendations for managing the clinical issue. Findings: Five main themes emerged—current management approach; adapting procedures in line with current recent research recommendations; training for change (veteran nursing staff, beginner students, patients, significant others); analysis of 'economic benefit vs. patient benefit'; multidisciplinary team engagement in implementing change in practice. Two surprising themes also emerged: advertising and marketing using new technologies, which reflects how the new generation thinks. Summary and Recommendations: Among the main challenges in nursing education is training nursing graduates to think independently, integratively, and critically. Combining PBL with classical teaching methods stimulates students cognitively while opening new vistas with implications on all levels of the profession: management, research, education, and practice. Advanced students can successfully grasp and interpret the current state of clinical practice. They are competent and open to leading change and able to consider the diverse factors and interconnections that characterize the nurse's work.Keywords: evidence based nursing, critical thinking skills, project based learning, students education
Procedia PDF Downloads 924275 Students’ Perceptions on Educational Game for Learning Programming Subject: A Case Study
Authors: Roslina Ibrahim, Azizah Jaafar, Khalili Khalil
Abstract:
Educational games (EG) are regarded as a promising teaching and learning tool for the new generation. Growing number of studies and literatures can be found in EG studies. Both academic researchers and commercial developers come out with various educational games prototypes and titles. Despite that, acceptance of educational games still lacks among the students. It is important to understanding students’ perceptions of EG, since they are the main stakeholder of the technology. Thus, this study seeks to understand perceptions of undergraduates’ students using a framework originated from user acceptance theory. The framework consists of six constructs with twenty-eight items. Data collection was done on 180 undergraduate students of Universiti Teknologi Malaysia, Kuala Lumpur using self-developed online EG called ROBO-C. Data analysis was done using descriptive, factor analysis and correlations. Performance expectancy, effort expectancy, attitude, and enjoyment factors were found significantly correlated with the intention to use EG. This study provides more understanding towards the use of educational games among students.Keywords: educational games, perceptions, acceptance, UTAUT
Procedia PDF Downloads 4144274 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms
Authors: Bliss Singhal
Abstract:
Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression
Procedia PDF Downloads 854273 An Online Corpus-Based Bilingual Collocations Dictionary for Second/Foreign Language Learners
Authors: Adriane Orenha-Ottaiano
Abstract:
Collocations are conventionalized, recurrent and arbitrary lexical combinations. Due to the fact that they are highly specific for a particular language and may be contextually restricted, collocations pose a problem to EFL/ESL learners with regard to production or encoding. Taking that into account, the compilation of monolingual and bilingual collocations dictionaries for the referred audience is highly crucial and significant. Thus, the aim of this paper is to discuss the importance of the compilation of an Online Corpus-based Bilingual Collocations Dictionary, in the English-Portuguese and Portuguese-English directions. On a first phase, with the use of WordSmith Tools, the collocations were extracted from a Translation Learner Corpus (TLC), a parallel corpus made up of university students’ translations in the Portuguese-English direction, with approximately 100,000 words. In a second stage, based on the keywords analyzed from the TLC, more collocational patterns were extracted using the Sketch Engine. In order to include more collocations as well as to ensure dictionary users will have access to more frequent and recurrent collocations, we also use the frequency list from The Corpus of Contemporary American English, with the purpose of extracting more patterns. The dictionary focuses on all types of collocations (verbal, noun, adjectival and adverbial collocations), in order to help the referred audience use them more accurately and productively – so far the dictionary has more than 330 entries, and more than 3,500 collocations extracted. The idea of having the proposed dictionary in online format may allow to incorporate more qualitatively and quantitatively collocational information. Besides, more examples may be included, different from conventional printed collocations dictionaries. Being the first bilingual collocations dictionary in the aforementioned directions, it is hoped to achieve the challenge of meeting learners’ collocational needs as the collocations have been selected according to learners’ difficulties regarding the use of collocations.Keywords: Corpus-Based Collocations Dictionary, Collocations , Bilingual Collocations Dictionary, Collocational Patterns
Procedia PDF Downloads 3104272 The Impact of Neuroscience Knowledge on the Field of Education
Authors: Paula Andrea Segura Delgado, Martha Helena Ramírez-Bahena
Abstract:
Research on how the brain learns has a transcendental application in the educational context. It is crucial for teacher training to understand the nature of brain changes and their direct influence on learning processes. This communication is based on a literature review focused on neuroscience, neuroeducation, and the impact of digital technology on the human brain. Information was gathered from both English and Spanish language sources, using online journals, books and reports. The general objective was to analyze the role of neuroscience knowledge in enriching our understanding of the learning process. In fact, the authors have focused on the impact of digital technology on the human brain as well as its influence in the field of education..Neuroscience knowledge can contribute significantly to improving the training of educators and therefore educational practices. Education as an instrument of change and school as an agent of socialization, it is necessary to understand what it aims to transform: the human brain. Understanding the functioning of the human brain has important repercussions on education: this elucidates cognitive skills, psychological processes and elements that influence the learning process (memory, executive functions, emotions and the circadian cycle); helps identify psychological and neurological deficits that can impede learning processes (dyslexia, autism, hyperactivity); It allows creating environments that promote brain development and contribute to the advancement of brain capabilities in alignment with the stages of neurobiological development. The digital age presents diverse opportunities to every social environment. The frequent use of digital technology (DT) has had a significant and abrupt impact on both the cognitive abilities and physico-chemical properties of the brain, significantly influencing educational processes. Hence, educational community, with the insights from advances in neuroscience, aspire to identify the positive and negative effects of digital technology on the human brain. This knowledge helps ensure the alignment of teacher training and practices with these findings. The knowledge of neuroscience enables teachers to develop teaching methods that are aligned with the way the brain works. For example, neuroscience research has shown that digital technology is having a significant impact on the human brain (addition, anxiety, high levels of dopamine, circadian cycle disorder, decrease in attention, memory, concentration, problems with their social relationships). Therefore, it is important to understand the nature of these changes, their impact on the learning process, and how educators should effectively adapt their approaches based on these brain's changes.Keywords: digital technology, learn process, neuroscience knowledge, neuroeducation, training proffesors
Procedia PDF Downloads 654271 The Use of Artificial Intelligence in Diagnosis of Mastitis in Cows
Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdellatif, Rabah Siham
Abstract:
In the field of veterinary medicine, there is a growing application of artificial intelligence (AI) for diagnosing bovine mastitis, a prevalent inflammatory disease in dairy cattle. AI technologies, such as automated milking systems, have streamlined the assessment of key metrics crucial for managing cow health during milking and identifying prevalent diseases, including mastitis. These automated milking systems empower farmers to implement automatic mastitis detection by analyzing indicators like milk yield, electrical conductivity, fat, protein, lactose, blood content in the milk, and milk flow rate. Furthermore, reports highlight the integration of somatic cell count (SCC), thermal infrared thermography, and diverse systems utilizing statistical models and machine learning techniques, including artificial neural networks, to enhance the overall efficiency and accuracy of mastitis detection. According to a review of 15 publications, machine learning technology can predict the risk and detect mastitis in cattle with an accuracy ranging from 87.62% to 98.10% and sensitivity and specificity ranging from 84.62% to 99.4% and 81.25% to 98.8%, respectively. Additionally, machine learning algorithms and microarray meta-analysis are utilized to identify mastitis genes in dairy cattle, providing insights into the underlying functional modules of mastitis disease. Moreover, AI applications can assist in developing predictive models that anticipate the likelihood of mastitis outbreaks based on factors such as environmental conditions, herd management practices, and animal health history. This proactive approach supports farmers in implementing preventive measures and optimizing herd health. By harnessing the power of artificial intelligence, the diagnosis of bovine mastitis can be significantly improved, enabling more effective management strategies and ultimately enhancing the health and productivity of dairy cattle. The integration of artificial intelligence presents valuable opportunities for the precise and early detection of mastitis, providing substantial benefits to the dairy industry.Keywords: artificial insemination, automatic milking system, cattle, machine learning, mastitis
Procedia PDF Downloads 674270 Applying Multiple Intelligences to Teach Buddhist Doctrines in a Classroom
Authors: Phalaunnnaphat Siriwongs
Abstract:
The classroom of the 21st century is an ever changing forum for new and innovative thoughts and ideas. With increasing technology and opportunity, students have rapid access to information that only decades ago would have taken weeks to obtain. Unfortunately, new techniques and technology are not the cure for the fundamental problems that have plagued the classroom ever since education was established. Class size has been an issue long debated in academia. While it is difficult to pin point an exact number, it is clear that in this case more does not mean better. By looking into the success and pitfalls of classroom size the true advantages of smaller classes will become clear. Previously, one class was comprised of 50 students. Being seventeen and eighteen- year- old students, sometimes it was quite difficult for them to stay focused. To help them understand and gain much knowledge, a researcher introduced “The Theory of Multiple Intelligence” and this, in fact, enabled students to learn according to their own learning preferences no matter how they were being taught. In this lesson, the researcher designed a cycle of learning activities involving all intelligences so that everyone had equal opportunities to learn.Keywords: multiple intelligences, role play, performance assessment, formative assessment
Procedia PDF Downloads 2774269 Jointly Learning Python Programming and Analytic Geometry
Authors: Cristina-Maria Păcurar
Abstract:
The paper presents an original Python-based application that outlines the advantages of combining some elementary notions of mathematics with the study of a programming language. The application support refers to some of the first lessons of analytic geometry, meaning conics and quadrics and their reduction to a standard form, as well as some related notions. The chosen programming language is Python, not only for its closer to an everyday language syntax – and therefore, enhanced readability – but also for its highly reusable code, which is of utmost importance for a mathematician that is accustomed to exploit already known and used problems to solve new ones. The purpose of this paper is, on one hand, to support the idea that one of the most appropriate means to initiate one into programming is throughout mathematics, and reciprocal, one of the most facile and handy ways to assimilate some basic knowledge in the study of mathematics is to apply them in a personal project. On the other hand, besides being a mean of learning both programming and analytic geometry, the application subject to this paper is itself a useful tool for it can be seen as an independent original Python package for analytic geometry.Keywords: analytic geometry, conics, python, quadrics
Procedia PDF Downloads 2994268 Electrophysiological Correlates of Statistical Learning in Children with and without Developmental Language Disorder
Authors: Ana Paula Soares, Alexandrina Lages, Helena Oliveira, Francisco-Javier Gutiérrez-Domínguez, Marisa Lousada
Abstract:
From an early age, exposure to a spoken language allows us to implicitly capture the structure underlying the succession of the speech sounds in that language and to segment it into meaningful units (words). Statistical learning (SL), i.e., the ability to pick up patterns in the sensory environment even without intention or consciousness of doing it, is thus assumed to play a central role in the acquisition of the rule-governed aspects of language and possibly to lie behind the language difficulties exhibited by children with development language disorder (DLD). The research conducted so far has, however, led to inconsistent results, which might stem from the behavioral tasks used to test SL. In a classic SL experiment, participants are first exposed to a continuous stream (e.g., syllables) in which, unbeknownst to the participants, stimuli are grouped into triplets that always appear together in the stream (e.g., ‘tokibu’, ‘tipolu’), with no pauses between each other (e.g., ‘tokibutipolugopilatokibu’) and without any information regarding the task or the stimuli. Following exposure, SL is assessed by asking participants to discriminate between triplets previously presented (‘tokibu’) from new sequences never presented together during exposure (‘kipopi’), i.e., to perform a two-alternative-forced-choice (2-AFC) task. Despite the widespread use of the 2-AFC to test SL, it has come under increasing criticism as it is an offline post-learning task that only assesses the result of the learning that had occurred during the previous exposure phase and that might be affected by other factors beyond the computation of regularities embedded in the input, typically the likelihood two syllables occurring together, a statistic known as transitional probability (TP). One solution to overcome these limitations is to assess SL as exposure to the stream unfolds using online techniques such as event-related potentials (ERP) that is highly sensitive to the time-course of the learning in the brain. Here we collected ERPs to examine the neurofunctional correlates of SL in preschool children with DLD, and chronological-age typical language development (TLD) controls who were exposed to an auditory stream in which eight three-syllable nonsense words, four of which presenting high-TPs and the other four low-TPs, to further analyze whether the ability of DLD and TLD children to extract-word-like units from the steam was modulated by words’ predictability. Moreover, to ascertain if the previous knowledge of the to-be-learned-regularities affected the neural responses to high- and low-TP words, children performed the auditory SL task, firstly, under implicit, and, subsequently, under explicit conditions. Although behavioral evidence of SL was not obtained in either group, the neural responses elicited during the exposure phases of the SL tasks differentiated children with DLD from children with TLD. Specifically, the results indicated that only children from the TDL group showed neural evidence of SL, particularly in the SL task performed under explicit conditions, firstly, for the low-TP, and, subsequently, for the high-TP ‘words’. Taken together, these findings support the view that children with DLD showed deficits in the extraction of the regularities embedded in the auditory input which might underlie the language difficulties.Keywords: development language disorder, statistical learning, transitional probabilities, word segmentation
Procedia PDF Downloads 1894267 Online Faculty Professional Development: An Approach to the Design Process
Authors: Marie Bountrogianni, Leonora Zefi, Krystle Phirangee, Naza Djafarova
Abstract:
Faculty development is critical for any institution as it impacts students’ learning experiences and faculty performance with regards to course delivery. With that in mind, The Chang School at Ryerson University embarked on an initiative to develop a comprehensive, relevant faculty development program for online faculty and instructors. Teaching Adult Learners Online (TALO) is a professional development program designed to build capacity among online teaching faculty to enhance communication/facilitation skills for online instruction and establish a Community of Practice to allow for opportunities for online faculty to network and exchange ideas and experiences. TALO is comprised of four online modules and each module provides three hours of learning materials. The topics focus on online teaching and learning experience, principles and practices, opportunities and challenges in online assessments as well as course design and development. TALO offers a unique experience for online instructors who are placed in the role of a student and an instructor through interactivities involving discussions, hands-on assignments, peer mentoring while experimenting with technological tools available for their online teaching. Through exchanges and informal peer mentoring, a small interdisciplinary community of practice has started to take shape. Successful participants have to meet four requirements for completion: i) participate actively in online discussions and activities, ii) develop a communication plan for the course they are teaching, iii) design one learning activity/or media component, iv) design one online learning module. This study adopted a mixed methods exploratory sequential design. For the qualitative phase of this study, a thorough literature review was conducted on what constitutes effective faculty development programs. Based on that review, the design team identified desired competencies for online teaching/facilitation and course design. Once the competencies were identified, a focus group interview with The Chang School teaching community was conducted as a needs assessment and to validate the competencies. In the quantitative phase, questionnaires were distributed to instructors and faculty after the program was launched to continue ongoing evaluation and revisions, in hopes of further improving the program to meet the teaching community’s needs. Four faculty members participated in a one-hour focus group interview. Major findings from the focus group interview revealed that for the training program, faculty wanted i) to better engage students online, ii) to enhance their online teaching with specific strategies, iii) to explore different ways to assess students online. 91 faculty members completed the questionnaire in which findings indicated that: i) the majority of faculty stated that they gained the necessary skills to demonstrate instructor presence through communication and use of technological tools provided, ii) increased faculty confidence with course management strategies, iii) learning from peers is most effective – the Community of Practice is strengthened and valued even more as program alumni become facilitators. Although this professional development program is not mandatory for online instructors, since its launch in Fall 2014, over 152 online instructors have successfully completed the program. A Community of Practice emerged as a result of the program and participants continue to exchange thoughts and ideas about online teaching and learning.Keywords: community of practice, customized, faculty development, inclusive design
Procedia PDF Downloads 1774266 Multi-Sensor Target Tracking Using Ensemble Learning
Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana
Abstract:
Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfill requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.Keywords: single classifier, ensemble learning, multi-target tracking, multiple classifiers
Procedia PDF Downloads 2734265 Developing Oral Communication Competence in a Second Language: The Communicative Approach
Authors: Ikechi Gilbert
Abstract:
Oral communication is the transmission of ideas or messages through the speech process. Acquiring competence in this area which, by its volatile nature, is prone to errors and inaccuracies would require the adoption of a well-suited teaching methodology. Efficient oral communication facilitates exchange of ideas and easy accomplishment of day-to-day tasks, by means of a demonstrated mastery of oral expression and the making of fine presentations to audiences or individuals while recognizing verbal signals and body language of others and interpreting them correctly. In Anglophone states such as Nigeria, Ghana, etc., the French language, for instance, is studied as a foreign language, being used majorly in teaching learners who have their own mother tongue different from French. The same applies to Francophone states where English is studied as a foreign language by people whose official language or mother tongue is different from English. The ideal approach would be to teach these languages in these environments through a pedagogical approach that properly takes care of the oral perspective for effective understanding and application by the learners. In this article, we are examining the communicative approach as a methodology for teaching oral communication in a foreign language. This method is a direct response to the communicative needs of the learner involving the use of appropriate materials and teaching techniques that meet those needs. It is also a vivid improvement to the traditional grammatical and audio-visual adaptations. Our contribution will focus on the pedagogical component of oral communication improvement, highlighting its merits and also proposing diverse techniques including aspects of information and communication technology that would assist the second language learner communicate better orally.Keywords: communication, competence, methodology, pedagogical component
Procedia PDF Downloads 2674264 Impact of Self-Concept on Performance and Mental Wellbeing of Preservice Teachers
Authors: José María Agugusto-landa, Inmaculada García-Martínez, Lara Checa Domene, Óscar Gavín Chocano
Abstract:
Self-concept is the perception that a person has of himself, of his abilities, skills, traits, and values. Self-concept is composed of different dimensions, such as academic self-concept, physical self-concept, social self-concept, emotional self-concept, and family self-concept. The relationship between the dimensions of self-concept and mental health and academic performance among future teachers is a topic of interest for educational psychology. Some studies have found that: (i) There is a positive relationship between general self-concept, academic self-concept and academic performance, that is, students who have a more positive image of themselves tend to get better grades and be more motivated to learn. (ii) There is a positive relationship between emotional intelligence, physical self-concept and healthy habits, that is, students who regulate and understand their emotions better have a higher satisfaction with their physical appearance and follow a more balanced diet and a higher physical activity. As for gender differences in the dimensions of self-concept among future teachers, some studies have found that: (i) Girls tend to have a higher self-concept in the social, family and verbal dimensions, that is, they perceive themselves as more capable of relating to others, communicating effectively and receiving support from their family. (ii) Boys tend to have a higher self-concept in the physical, emotional and mathematical dimensions, that is, they perceive themselves as more capable of performing physical activities, controlling their emotions and solving mathematical problems. (iii) There are no significant differences between general self-concept and academic self-concept according to gender, that is, both girls and boys have a similar perception of their global worth and academic competence.Keywords: preservice teachers, self-concept, academic performance, mental wellbeing
Procedia PDF Downloads 834263 Assisting Dating of Greek Papyri Images with Deep Learning
Authors: Asimina Paparrigopoulou, John Pavlopoulos, Maria Konstantinidou
Abstract:
Dating papyri accurately is crucial not only to editing their texts but also for our understanding of palaeography and the history of writing, ancient scholarship, material culture, networks in antiquity, etc. Most ancient manuscripts offer little evidence regarding the time of their production, forcing papyrologists to date them on palaeographical grounds, a method often criticized for its subjectivity. By experimenting with data obtained from the Collaborative Database of Dateable Greek Bookhands and the PapPal online collections of objectively dated Greek papyri, this study shows that deep learning dating models, pre-trained on generic images, can achieve accurate chronological estimates for a test subset (67,97% accuracy for book hands and 55,25% for documents). To compare the estimates of these models with those of humans, experts were asked to complete a questionnaire with samples of literary and documentary hands that had to be sorted chronologically by century. The same samples were dated by the models in question. The results are presented and analysed.Keywords: image classification, papyri images, dating
Procedia PDF Downloads 79