Search results for: glucose measurement
102 Application of Laser-Induced Breakdown Spectroscopy for the Evaluation of Concrete on the Construction Site and in the Laboratory
Authors: Gerd Wilsch, Tobias Guenther, Tobias Voelker
Abstract:
In view of the ageing of vital infrastructure facilities, a reliable condition assessment of concrete structures is becoming of increasing interest for asset owners to plan timely and appropriate maintenance and repair interventions. For concrete structures, reinforcement corrosion induced by penetrating chlorides is the dominant deterioration mechanism affecting the serviceability and, eventually, structural performance. The determination of the quantitative chloride ingress is required not only to provide valuable information on the present condition of a structure, but the data obtained can also be used for the prediction of its future development and associated risks. At present, wet chemical analysis of ground concrete samples by a laboratory is the most common test procedure for the determination of the chloride content. As the chloride content is expressed by the mass of the binder, the analysis should involve determination of both the amount of binder and the amount of chloride contained in a concrete sample. This procedure is laborious, time-consuming, and costly. The chloride profile obtained is based on depth intervals of 10 mm. LIBS is an economically viable alternative providing chloride contents at depth intervals of 1 mm or less. It provides two-dimensional maps of quantitative element distributions and can locate spots of higher concentrations like in a crack. The results are correlated directly to the mass of the binder, and it can be applied on-site to deliver instantaneous results for the evaluation of the structure. Examples for the application of the method in the laboratory for the investigation of diffusion and migration of chlorides, sulfates, and alkalis are presented. An example for the visualization of the Li transport in concrete is also shown. These examples show the potential of the method for a fast, reliable, and automated two-dimensional investigation of transport processes. Due to the better spatial resolution, more accurate input parameters for model calculations are determined. By the simultaneous detection of elements such as carbon, chlorine, sodium, and potassium, the mutual influence of the different processes can be determined in only one measurement. Furthermore, the application of a mobile LIBS system in a parking garage is demonstrated. It uses a diode-pumped low energy laser (3 mJ, 1.5 ns, 100 Hz) and a compact NIR spectrometer. A portable scanner allows a two-dimensional quantitative element mapping. Results show the quantitative chloride analysis on wall and floor surfaces. To determine the 2-D distribution of harmful elements (Cl, C), concrete cores were drilled, split, and analyzed directly on-site. Results obtained were compared and verified with laboratory measurements. The results presented show that the LIBS method is a valuable addition to the standard procedures - the wet chemical analysis of ground concrete samples. Currently, work is underway to develop a technical code of practice for the application of the method for the determination of chloride concentration in concrete.Keywords: chemical analysis, concrete, LIBS, spectroscopy
Procedia PDF Downloads 105101 Estimating Multidimensional Water Poverty Index in India: The Alkire Foster Approach
Authors: Rida Wanbha Nongbri, Sabuj Kumar Mandal
Abstract:
The Sustainable Development Goals (SDGs) for 2016-2030 were adopted in response to Millennium Development Goals (MDGs) which focused on access to sustainable water and sanitations. For over a decade, water has been a significant subject that is explored in various facets of life. Our day-to-day life is significantly impacted by water poverty at the socio-economic level. Reducing water poverty is an important policy challenge, particularly in emerging economies like India, owing to its population growth, huge variation in topology and climatic factors. To design appropriate water policies and its effectiveness, a proper measurement of water poverty is essential. In this backdrop, this study uses the Alkire Foster (AF) methodology to estimate a multidimensional water poverty index for India at the household level. The methodology captures several attributes to understand the complex issues related to households’ water deprivation. The study employs two rounds of Indian Human Development Survey data (IHDS 2005 and 2012) which focuses on 4 dimensions of water poverty including water access, water quantity, water quality, and water capacity, and seven indicators capturing these four dimensions. In order to quantify water deprivation at the household level, an AF dual cut-off counting method is applied and Multidimensional Water Poverty Index (MWPI) is calculated as the product of Headcount Ratio (Incidence) and average share of weighted dimension (Intensity). The results identify deprivation across all dimensions at the country level and show that a large proportion of household in India is deprived of quality water and suffers from water access in both 2005 and 2012 survey rounds. The comparison between the rural and urban households shows that higher ratio of the rural households are multidimensionally water poor as compared to their urban counterparts. Among the four dimensions of water poverty, water quality is found to be the most significant one for both rural and urban households. In 2005 round, almost 99.3% of households are water poor for at least one of the four dimensions, and among the water poor households, the intensity of water poverty is 54.7%. These values do not change significantly in 2012 round, but we could observe significance differences across the dimensions. States like Bihar, Tamil Nadu, and Andhra Pradesh are ranked the most in terms of MWPI, whereas Sikkim, Arunachal Pradesh and Chandigarh are ranked the lowest in 2005 round. Similarly, in 2012 round, Bihar, Uttar Pradesh and Orissa rank the highest in terms of MWPI, whereas Goa, Nagaland and Arunachal Pradesh rank the lowest. The policy implications of this study can be multifaceted. It can urge the policy makers to focus either on the impoverished households with lower intensity levels of water poverty to minimize total number of water poor households or can focus on those household with high intensity of water poverty to achieve an overall reduction in MWPI.Keywords: .alkire-foster (AF) methodology, deprivation, dual cut-off, multidimensional water poverty index (MWPI)
Procedia PDF Downloads 70100 Photonic Dual-Microcomb Ranging with Extreme Speed Resolution
Authors: R. R. Galiev, I. I. Lykov, A. E. Shitikov, I. A. Bilenko
Abstract:
Dual-comb interferometry is based on the mixing of two optical frequency combs with slightly different lines spacing which results in the mapping of the optical spectrum into the radio-frequency domain for future digitizing and numerical processing. The dual-comb approach enables diverse applications, including metrology, fast high-precision spectroscopy, and distance range. Ordinary frequency-modulated continuous-wave (FMCW) laser-based Light Identification Detection and Ranging systems (LIDARs) suffer from two main disadvantages: slow and unreliable mechanical, spatial scan and a rather wide linewidth of conventional lasers, which limits speed measurement resolution. Dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds, along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for an in-flight sampling of gun projectiles moving at 150 meters per second, was previously demonstrated. Nevertheless, pump lasers with EDFA amplifiers made the device bulky and expensive. An alternative approach is a direct coupling of the laser to a reference microring cavity. Backscattering can tune the laser to the eigenfrequency of the cavity via the so-called self-injection locked (SIL) effect. Moreover, the nonlinearity of the cavity allows a solitonic frequency comb generation in the very same cavity. In this work, we developed a fully integrated, power-efficient, electrically driven dual-micro comb source based on the semiconductor lasers SIL to high-quality integrated Si3N4 microresonators. We managed to obtain robust 1400-1700 nm combs generation with a 150 GHz or 1 THz lines spacing and measure less than a 1 kHz Lorentzian withs of stable, MHz spaced beat notes in a GHz band using two separated chips, each pumped by its own, self-injection locked laser. A deep investigation of the SIL dynamic allows us to find out the turn-key operation regime even for affordable Fabry-Perot multifrequency lasers used as a pump. It is important that such lasers are usually more powerful than DFB ones, which were also tested in our experiments. In order to test the advantages of the proposed techniques, we experimentally measured a minimum detectable speed of a reflective object. It has been shown that the narrow line of the laser locked to the microresonator provides markedly better velocity accuracy, showing velocity resolution down to 16 nm/s, while the no-SIL diode laser only allowed 160 nm/s with good accuracy. The results obtained are in agreement with the estimations and open up ways to develop LIDARs based on compact and cheap lasers. Our implementation uses affordable components, including semiconductor laser diodes and commercially available silicon nitride photonic circuits with microresonators.Keywords: dual-comb spectroscopy, LIDAR, optical microresonator, self-injection locking
Procedia PDF Downloads 7399 Physical Activity Based on Daily Step-Count in Inpatient Setting in Stroke and Traumatic Brain Injury Patients in Subacute Stage Follow Up: A Cross-Sectional Observational Study
Authors: Brigitte Mischler, Marget Hund, Hilfiker Roger, Clare Maguire
Abstract:
Background: Brain injury is one of the main causes of permanent physical disability, and improving walking ability is one of the most important goals for patients. After inpatient rehabilitation, most do not receive long-term rehabilitation services. Physical activity is important for the health prevention of the musculoskeletal system, circulatory system and the psyche. Objective: This follow-up study measured physical activity in subacute patients after traumatic brain injury and stroke. The difference in the number of steps in the inpatient setting was compared to the number of steps 1 year after the event in the outpatient setting. Methods: This follow-up study is a cross-sectional observational study with 29 participants. The measurement of daily step count over a seven-day period one year after the event was evaluated with the StepWatch™ ankle sensor. The number of steps taken one year after the event in the outpatient setting was compared with the number of steps taken during the inpatient stay and evaluated if they reached the recommended target value. Correlations between steps-count and exit domain, FAC level, walking speed, light touch, joint position sense, cognition, and fear of falling were calculated. Results: The median (IQR) daily step count of all patients was 2512 (568.5, 4070.5). During follow-up, the number of steps improved to 3656(1710,5900). The average difference was 1159(-2825, 6840) steps per day. Participants who were unable to walk independently (FAC 1) improved from 336(5-705) to 1808(92, 5354) steps per day. Participants able to walk with assistance (FAC 2-3) walked 700(31-3080) and at follow-up 3528(243,6871). Independent walkers (FAC 4-5) walked 4093(2327-5868) and achieved 3878(777,7418) daily steps at follow-up. This value is significantly below the recommended guideline. Step-count at follow-up showed moderate to high and statistically significant correlations: positive for FAC score, positive for FIM total score, positive for walking speed, and negative for fear of falling. Conclusions: Only 17% of all participants achieved the recommended daily step count one year after the event. We need better inpatient and outpatient strategies to improve physical activity. In everyday clinical practice, pedometers and diaries with objectives should be used. A concrete weekly schedule should be drawn up together with the patient, relatives, or nursing staff after discharge. This should include daily self-training, which was instructed during the inpatient stay. A good connection to social life (professional connection or a daily task/activity) can be an important part of improving daily activity. Further research should evaluate strategies to increase daily step counts in inpatient settings as well as in outpatient settings.Keywords: neurorehabilitation, stroke, traumatic brain injury, steps, stepcount
Procedia PDF Downloads 1598 Comparison of Artificial Neural Networks and Statistical Classifiers in Olive Sorting Using Near-Infrared Spectroscopy
Authors: İsmail Kavdır, M. Burak Büyükcan, Ferhat Kurtulmuş
Abstract:
Table olive is a valuable product especially in Mediterranean countries. It is usually consumed after some fermentation process. Defects happened naturally or as a result of an impact while olives are still fresh may become more distinct after processing period. Defected olives are not desired both in table olive and olive oil industries as it will affect the final product quality and reduce market prices considerably. Therefore it is critical to sort table olives before processing or even after processing according to their quality and surface defects. However, doing manual sorting has many drawbacks such as high expenses, subjectivity, tediousness and inconsistency. Quality criterions for green olives were accepted as color and free of mechanical defects, wrinkling, surface blemishes and rotting. In this study, it was aimed to classify fresh table olives using different classifiers and NIR spectroscopy readings and also to compare the classifiers. For this purpose, green (Ayvalik variety) olives were classified based on their surface feature properties such as defect-free, with bruised defect and with fly defect using FT-NIR spectroscopy and classification algorithms such as artificial neural networks, ident and cluster. Bruker multi-purpose analyzer (MPA) FT-NIR spectrometer (Bruker Optik, GmbH, Ettlingen Germany) was used for spectral measurements. The spectrometer was equipped with InGaAs detectors (TE-InGaAs internal for reflectance and RT-InGaAs external for transmittance) and a 20-watt high intensity tungsten–halogen NIR light source. Reflectance measurements were performed with a fiber optic probe (type IN 261) which covered the wavelengths between 780–2500 nm, while transmittance measurements were performed between 800 and 1725 nm. Thirty-two scans were acquired for each reflectance spectrum in about 15.32 s while 128 scans were obtained for transmittance in about 62 s. Resolution was 8 cm⁻¹ for both spectral measurement modes. Instrument control was done using OPUS software (Bruker Optik, GmbH, Ettlingen Germany). Classification applications were performed using three classifiers; Backpropagation Neural Networks, ident and cluster classification algorithms. For these classification applications, Neural Network tool box in Matlab, ident and cluster modules in OPUS software were used. Classifications were performed considering different scenarios; two quality conditions at once (good vs bruised, good vs fly defect) and three quality conditions at once (good, bruised and fly defect). Two spectrometer readings were used in classification applications; reflectance and transmittance. Classification results obtained using artificial neural networks algorithm in discriminating good olives from bruised olives, from olives with fly defect and from the olive group including both bruised and fly defected olives with success rates respectively changing between 97 and 99%, 61 and 94% and between 58.67 and 92%. On the other hand, classification results obtained for discriminating good olives from bruised ones and also for discriminating good olives from fly defected olives using the ident method ranged between 75-97.5% and 32.5-57.5%, respectfully; results obtained for the same classification applications using the cluster method ranged between 52.5-97.5% and between 22.5-57.5%.Keywords: artificial neural networks, statistical classifiers, NIR spectroscopy, reflectance, transmittance
Procedia PDF Downloads 24697 The Effect of Online Analyzer Malfunction on the Performance of Sulfur Recovery Unit and Providing a Temporary Solution to Reduce the Emission Rate
Authors: Hamid Reza Mahdipoor, Mehdi Bahrami, Mohammad Bodaghi, Seyed Ali Akbar Mansoori
Abstract:
Nowadays, with stricter limitations to reduce emissions, considerable penalties are imposed if pollution limits are exceeded. Therefore, refineries, along with focusing on improving the quality of their products, are also focused on producing products with the least environmental impact. The duty of the sulfur recovery unit (SRU) is to convert H₂S gas coming from the upstream units to elemental sulfur and minimize the burning of sulfur compounds to SO₂. The Claus process is a common process for converting H₂S to sulfur, including a reaction furnace followed by catalytic reactors and sulfur condensers. In addition to a Claus section, SRUs usually consist of a tail gas treatment (TGT) section to decrease the concentration of SO₂ in the flue gas below the emission limits. To operate an SRU properly, the flow rate of combustion air to the reaction furnace must be adjusted so that the Claus reaction is performed according to stoichiometry. Accurate control of the air demand leads to an optimum recovery of sulfur during the flow and composition fluctuations in the acid gas feed. Therefore, the major control system in the SRU is the air demand control loop, which includes a feed-forward control system based on predetermined feed flow rates and a feed-back control system based on the signal from the tail gas online analyzer. The use of online analyzers requires compliance with the installation and operation instructions. Unfortunately, most of these analyzers in Iran are out of service for different reasons, like the low importance of environmental issues and a lack of access to after-sales services due to sanctions. In this paper, an SRU in Iran was simulated and calibrated using industrial experimental data. Afterward, the effect of the malfunction of the online analyzer on the performance of SRU was investigated using the calibrated simulation. The results showed that an increase in the SO₂ concentration in the tail gas led to an increase in the temperature of the reduction reactor in the TGT section. This increase in temperature caused the failure of TGT and increased the concentration of SO₂ from 750 ppm to 35,000 ppm. In addition, the lack of a control system for the adjustment of the combustion air caused further increases in SO₂ emissions. In some processes, the major variable cannot be controlled directly due to difficulty in measurement or a long delay in the sampling system. In these cases, a secondary variable, which can be measured more easily, is considered to be controlled. With the correct selection of this variable, the main variable is also controlled along with the secondary variable. This strategy for controlling a process system is referred to as inferential control" and is considered in this paper. Therefore, a sensitivity analysis was performed to investigate the sensitivity of other measurable parameters to input disturbances. The results revealed that the output temperature of the first Claus reactor could be used for inferential control of the combustion air. Applying this method to the operation led to maximizing the sulfur recovery in the Claus section.Keywords: sulfur recovery, online analyzer, inferential control, SO₂ emission
Procedia PDF Downloads 7596 Alternative Energy and Carbon Source for Biosurfactant Production
Authors: Akram Abi, Mohammad Hossein Sarrafzadeh
Abstract:
Because of their several advantages over chemical surfactants, biosurfactants have given rise to a growing interest in the past decades. Advantages such as lower toxicity, higher biodegradability, higher selectivity and applicable at extreme temperature and pH which enables them to be used in a variety of applications such as: enhanced oil recovery, environmental and pharmaceutical applications, etc. Bacillus subtilis produces a cyclic lipopeptide, called surfactin, which is one of the most powerful biosurfactants with ability to decrease surface tension of water from 72 mN/m to 27 mN/m. In addition to its biosurfactant character, surfactin exhibits interesting biological activities such as: inhibition of fibrin clot formation, lyses of erythrocytes and several bacterial spheroplasts, antiviral, anti-tumoral and antibacterial properties. Surfactin is an antibiotic substance and has been shown recently to possess anti-HIV activity. However, application of biosurfactants is limited by their high production cost. The cost can be reduced by optimizing biosurfactant production using cheap feed stock. Utilization of inexpensive substrates and unconventional carbon sources like urban or agro-industrial wastes is a promising strategy to decrease the production cost of biosurfactants. With suitable engineering optimization and microbiological modifications, these wastes can be used as substrates for large-scale production of biosurfactants. As an effort to fulfill this purpose, in this work we have tried to utilize olive oil as second carbon source and also yeast extract as second nitrogen source to investigate the effect on both biomass and biosurfactant production improvement in Bacillus subtilis cultures. Since the turbidity of the culture was affected by presence of the oil, optical density was compromised and no longer could be used as an index of growth and biomass concentration. Therefore, cell Dry Weight measurements with applying necessary tactics for removing oil drops to prevent interference with biomass weight were carried out to monitor biomass concentration during the growth of the bacterium. The surface tension and critical micelle dilutions (CMD-1, CMD-2) were considered as an indirect measurement of biosurfactant production. Distinctive and promising results were obtained in the cultures containing olive oil compared to cultures without it: more than two fold increase in biomass production (from 2 g/l to 5 g/l) and considerable reduction in surface tension, down to 40 mN/m at surprisingly early hours of culture time (only 5hr after inoculation). This early onset of biosurfactant production in this culture is specially interesting when compared to the conventional cultures at which this reduction in surface tension is not obtained until 30 hour of culture time. Reducing the production time is a very prominent result to be considered for large scale process development. Furthermore, these results can be used to develop strategies for utilization of agro-industrial wastes (such as olive oil mill residue, molasses, etc.) as cheap and easily accessible feed stocks to decrease the high costs of biosurfactant production.Keywords: agro-industrial waste, bacillus subtilis, biosurfactant, fermentation, second carbon and nitrogen source, surfactin
Procedia PDF Downloads 30195 Modern Architecture and the Scientific World Conception
Authors: Sean Griffiths
Abstract:
Introduction: This paper examines the expression of ‘objectivity’ in architecture in the context of the post-war rejection of this concept. It aims to re-examine the question in light of the assault on truth characterizing contemporary culture and of the unassailable truth of the climate emergency. The paper analyses the search for objective truth as it was prosecuted in the Modern Movement in the early 20th century, looking at the extent to which this quest was successful in contributing to the development of a radically new, politically-informed architecture and the extent to which its particular interpretation of objectivity, limited that development. The paper studies the influence of the Vienna Circle philosophers Rudolph Carnap and Otto Neurath on the pedagogy of the Bauhaus and the architecture of the Neue Sachlichkeit in Germany. Their logical positivism sought to determine objective truths through empirical analysis, expressed in an austere formal language as part of a ‘scientific world conception’ which would overcome metaphysics and unverifiable mystification. These ideas, and the concurrent prioritizing of measurement as the determinant of environmental quality, became key influences in the socially-driven architecture constructed in the 1920s and 30s by Bauhaus architects in numerous German Cities. Methodology: The paper reviews the history of the early Modern Movement and summarizes accounts of the relationship between the Vienna Circle and the Bauhaus. It looks at key differences in the approaches Neurath and Carnap took to the achievement of their shared philosophical and political aims. It analyses how the adoption of Carnap’s foundationalism influenced the architectural language of modern architecture and compares, through a close reading of the structure of Neurath’s ‘protocol sentences,’ the latter’s alternative approach, speculating on the possibility that its adoption offered a different direction of travel for Modern Architecture. Findings: The paper finds that the adoption of Carnap’s foundationalism, while helping Modern Architecture forge a new visual language, ultimately limited its development and is implicated in its failure to escape the very metaphysics against which it had set itself. It speculates that Neurath’s relational language-based approach to the issue of establishing objectivity has its architectural corollary in the process of revision and renovation that offers new ways an ‘objective’ language of architecture might be developed in a manner that is more responsive to our present-day crisis. Conclusion: The philosophical principles of the Vienna Circle and the architects of the Modern Movement had much in common. Both contributed to radical historical departures which sought to instantiate a world scientific conception in their respective fields, which would attempt to banish mystification and metaphysics and would align itself with socialism. However, in adopting Carnap’s foundationalism as the theoretical basis for the new architecture, Modern Architecture not only failed to escape metaphysics but arguably closed off new avenues of development to itself. The adoption of Neurath’s more open-ended and interactive approach to objectivity offers possibilities for new conceptions of the expression of objectivity in architecture that might be more tailored to the multiple crises we face today.Keywords: Bauhaus, logical positivism, Neue Sachlichkeit, rationalism, Vienna Circle
Procedia PDF Downloads 8794 Hybrid Data-Driven Drilling Rate of Penetration Optimization Scheme Guided by Geological Formation and Historical Data
Authors: Ammar Alali, Mahmoud Abughaban, William Contreras Otalvora
Abstract:
Optimizing the drilling process for cost and efficiency requires the optimization of the rate of penetration (ROP). ROP is the measurement of the speed at which the wellbore is created, in units of feet per hour. It is the primary indicator of measuring drilling efficiency. Maximization of the ROP can indicate fast and cost-efficient drilling operations; however, high ROPs may induce unintended events, which may lead to nonproductive time (NPT) and higher net costs. The proposed ROP optimization solution is a hybrid, data-driven system that aims to improve the drilling process, maximize the ROP, and minimize NPT. The system consists of two phases: (1) utilizing existing geological and drilling data to train the model prior, and (2) real-time adjustments of the controllable dynamic drilling parameters [weight on bit (WOB), rotary speed (RPM), and pump flow rate (GPM)] that direct influence on the ROP. During the first phase of the system, geological and historical drilling data are aggregated. After, the top-rated wells, as a function of high instance ROP, are distinguished. Those wells are filtered based on NPT incidents, and a cross-plot is generated for the controllable dynamic drilling parameters per ROP value. Subsequently, the parameter values (WOB, GPM, RPM) are calculated as a conditioned mean based on physical distance, following Inverse Distance Weighting (IDW) interpolation methodology. The first phase is concluded by producing a model of drilling best practices from the offset wells, prioritizing the optimum ROP value. This phase is performed before the commencing of drilling. Starting with the model produced in phase one, the second phase runs an automated drill-off test, delivering live adjustments in real-time. Those adjustments are made by directing the driller to deviate two of the controllable parameters (WOB and RPM) by a small percentage (0-5%), following the Constrained Random Search (CRS) methodology. These minor incremental variations will reveal new drilling conditions, not explored before through offset wells. The data is then consolidated into a heat-map, as a function of ROP. A more optimum ROP performance is identified through the heat-map and amended in the model. The validation process involved the selection of a planned well in an onshore oil field with hundreds of offset wells. The first phase model was built by utilizing the data points from the top-performing historical wells (20 wells). The model allows drillers to enhance decision-making by leveraging existing data and blending it with live data in real-time. An empirical relationship between controllable dynamic parameters and ROP was derived using Artificial Neural Networks (ANN). The adjustments resulted in improved ROP efficiency by over 20%, translating to at least 10% saving in drilling costs. The novelty of the proposed system lays is its ability to integrate historical data, calibrate based geological formations, and run real-time global optimization through CRS. Those factors position the system to work for any newly drilled well in a developing field event.Keywords: drilling optimization, geological formations, machine learning, rate of penetration
Procedia PDF Downloads 13193 Measurement and Modelling of HIV Epidemic among High Risk Groups and Migrants in Two Districts of Maharashtra, India: An Application of Forecasting Software-Spectrum
Authors: Sukhvinder Kaur, Ashok Agarwal
Abstract:
Background: For the first time in 2009, India was able to generate estimates of HIV incidence (the number of new HIV infections per year). Analysis of epidemic projections helped in revealing that the number of new annual HIV infections in India had declined by more than 50% during the last decade (GOI Ministry of Health and Family Welfare, 2010). Then, National AIDS Control Organisation (NACO) planned to scale up its efforts in generating projections through epidemiological analysis and modelling by taking recent available sources of evidence such as HIV Sentinel Surveillance (HSS), India Census data and other critical data sets. Recently, NACO generated current round of HIV estimates-2012 through globally recommended tool “Spectrum Software” and came out with the estimates for adult HIV prevalence, annual new infections, number of people living with HIV, AIDS-related deaths and treatment needs. State level prevalence and incidence projections produced were used to project consequences of the epidemic in spectrum. In presence of HIV estimates generated at state level in India by NACO, USIAD funded PIPPSE project under the leadership of NACO undertook the estimations and projections to district level using same Spectrum software. In 2011, adult HIV prevalence in one of the high prevalent States, Maharashtra was 0.42% ahead of the national average of 0.27%. Considering the heterogeneity of HIV epidemic between districts, two districts of Maharashtra – Thane and Mumbai were selected to estimate and project the number of People-Living-with-HIV/AIDS (PLHIV), HIV-prevalence among adults and annual new HIV infections till 2017. Methodology: Inputs in spectrum included demographic data from Census of India since 1980 and sample registration system, programmatic data on ‘Alive and on ART (adult and children)’,‘Mother-Baby pairs under PPTCT’ and ‘High Risk Group (HRG)-size mapping estimates’, surveillance data from various rounds of HSS, National Family Health Survey–III, Integrated Biological and Behavioural Assessment and Behavioural Sentinel Surveillance. Major Findings: Assuming current programmatic interventions in these districts, an estimated decrease of 12% points in Thane and 31% points in Mumbai among new infections in HRGs and migrants is observed from 2011 by 2017. Conclusions: Project also validated decrease in HIV new infection among one of the high risk groups-FSWs using program cohort data since 2012 to 2016. Though there is a decrease in HIV prevalence and new infections in Thane and Mumbai, further decrease is possible if appropriate programme response, strategies and interventions are envisaged for specific target groups based on this evidence. Moreover, evidence need to be validated by other estimation/modelling techniques; and evidence can be generated for other districts of the state, where HIV prevalence is high and reliable data sources are available, to understand the epidemic within the local context.Keywords: HIV sentinel surveillance, high risk groups, projections, new infections
Procedia PDF Downloads 21192 Contribution to the Understanding of the Hydrodynamic Behaviour of Aquifers of the Taoudéni Sedimentary Basin (South-eastern Part, Burkina Faso)
Authors: Kutangila Malundama Succes, Koita Mahamadou
Abstract:
In the context of climate change and demographic pressure, groundwater has emerged as an essential and strategic resource whose sustainability relies on good management. The accuracy and relevance of decisions made in managing these resources depend on the availability and quality of scientific information they must rely on. It is, therefore, more urgent to improve the state of knowledge on groundwater to ensure sustainable management. This study is conducted for the particular case of the aquifers of the transboundary sedimentary basin of Taoudéni in its Burkinabe part. Indeed, Burkina Faso (and the Sahel region in general), marked by low rainfall, has experienced episodes of severe drought, which have justified the use of groundwater as the primary source of water supply. This study aims to improve knowledge of the hydrogeology of this area to achieve sustainable management of transboundary groundwater resources. The methodological approach first described lithological units regarding the extension and succession of different layers. Secondly, the hydrodynamic behavior of these units was studied through the analysis of spatio-temporal variations of piezometric. The data consists of 692 static level measurement points and 8 observation wells located in the usual manner in the area and capturing five of the identified geological formations. Monthly piezometric level chronicles are available for each observation and cover the period from 1989 to 2020. The temporal analysis of piezometric, carried out in comparison with rainfall chronicles, revealed a general upward trend in piezometric levels throughout the basin. The reaction of the groundwater generally occurs with a delay of 1 to 2 months relative to the flow of the rainy season. Indeed, the peaks of the piezometric level generally occur between September and October in reaction to the rainfall peaks between July and August. Low groundwater levels are observed between May and July. This relatively slow reaction of the aquifer is observed in all wells. The influence of the geological nature through the structure and hydrodynamic properties of the layers was deduced. The spatial analysis reveals that piezometric contours vary between 166 and 633 m with a trend indicating flow that generally goes from southwest to northeast, with the feeding areas located towards the southwest and northwest. There is a quasi-concordance between the hydrogeological basins and the overlying hydrological basins, as well as a bimodal flow with a component following the topography and another significant component deeper, controlled by the regional gradient SW-NE. This latter component may present flows directed from the high reliefs towards the sources of Nasso. In the source area (Kou basin), the maximum average stock variation, calculated by the Water Table Fluctuation (WTF) method, varies between 35 and 48.70 mm per year for 2012-2014.Keywords: hydrodynamic behaviour, taoudeni basin, piezometry, water table fluctuation
Procedia PDF Downloads 6591 Symbiotic Functioning, Photosynthetic Induction and Characterisation of Rhizobia Associated with Groundnut, Jack Bean and Soybean from Eswatini
Authors: Zanele D. Ngwenya, Mustapha Mohammed, Felix D. Dakora
Abstract:
Legumes are a major source of biological nitrogen, and therefore play a crucial role in maintaining soil productivity in smallholder agriculture in southern Africa. Through their ability to fix atmospheric nitrogen in root nodules, legumes are a better option for sustainable nitrogen supply in cropping systems than chemical fertilisers. For decades, farmers have been highly receptive to the use of rhizobial inoculants as a source of nitrogen due mainly to the availability of elite rhizobial strains at a much lower compared to chemical fertilisers. To improve the efficiency of the legume-rhizobia symbiosis in African soils would require the use of highly effective rhizobia capable of nodulating a wide range of host plants. This study assessed the morphogenetic diversity, photosynthetic functioning and relative symbiotic effectiveness (RSE) of groundnut, jack bean and soybean microsymbionts in Eswatini soils as a first step to identifying superior isolates for inoculant production. According to the manufacturer's instructions, rhizobial isolates were cultured in yeast-mannitol (YM) broth until the late log phase and the bacterial genomic DNA was extracted using GenElute bacterial genomic DNA kit. The extracted DNA was subjected to enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) and a dendrogram constructed from the band patterns to assess rhizobial diversity. To assess the N2-fixing efficiency of the authenticated rhizobia, photosynthetic rates (A), stomatal conductance (gs), and transpiration rates (E) were measured at flowering for plants inoculated with the test isolates. The plants were then harvested for nodulation assessment and measurement of plant growth as shoot biomass. The results of ERIC-PCR fingerprinting revealed the presence of high genetic diversity among the microsymbionts nodulating each of the three test legumes, with many of them showing less than 70% ERIC-PCR relatedness. The dendrogram generated from ERIC-PCR profiles grouped the groundnut isolates into 5 major clusters, while the jack bean and soybean isolates were grouped into 6 and 7 major clusters, respectively. Furthermore, the isolates also elicited variable nodule number per plant, nodule dry matter, shoot biomass and photosynthetic rates in their respective host plants under glasshouse conditions. Of the groundnut isolates tested, 38% recorded high relative symbiotic effectiveness (RSE >80), while 55% of the jack bean isolates and 93% of the soybean isolates recorded high RSE (>80) compared to the commercial Bradyrhizobium strains. About 13%, 27% and 83% of the top N₂-fixing groundnut, jack bean and soybean isolates, respectively, elicited much higher relative symbiotic efficiency (RSE) than the commercial strain, suggesting their potential for use in inoculant production after field testing. There was a tendency for both low and high N₂-fixing isolates to group together in the dendrogram from ERIC-PCR profiles, which suggests that RSE can differ significantly among closely related microsymbionts.Keywords: genetic diversity, relative symbiotic effectiveness, inoculant, N₂-fixing
Procedia PDF Downloads 22190 Methodology to Achieve Non-Cooperative Target Identification Using High Resolution Range Profiles
Authors: Olga Hernán-Vega, Patricia López-Rodríguez, David Escot-Bocanegra, Raúl Fernández-Recio, Ignacio Bravo
Abstract:
Non-Cooperative Target Identification has become a key research domain in the Defense industry since it provides the ability to recognize targets at long distance and under any weather condition. High Resolution Range Profiles, one-dimensional radar images where the reflectivity of a target is projected onto the radar line of sight, are widely used for identification of flying targets. According to that, to face this problem, an approach to Non-Cooperative Target Identification based on the exploitation of Singular Value Decomposition to a matrix of range profiles is presented. Target Identification based on one-dimensional radar images compares a collection of profiles of a given target, namely test set, with the profiles included in a pre-loaded database, namely training set. The classification is improved by using Singular Value Decomposition since it allows to model each aircraft as a subspace and to accomplish recognition in a transformed domain where the main features are easier to extract hence, reducing unwanted information such as noise. Singular Value Decomposition permits to define a signal subspace which contain the highest percentage of the energy, and a noise subspace which will be discarded. This way, only the valuable information of each target is used in the recognition process. The identification algorithm is based on finding the target that minimizes the angle between subspaces and takes place in a transformed domain. Two metrics, F1 and F2, based on Singular Value Decomposition are accomplished in the identification process. In the case of F2, the angle is weighted, since the top vectors set the importance in the contribution to the formation of a target signal, on the contrary F1 simply shows the evolution of the unweighted angle. In order to have a wide database or radar signatures and evaluate the performance, range profiles are obtained through numerical simulation of seven civil aircraft at defined trajectories taken from an actual measurement. Taking into account the nature of the datasets, the main drawback of using simulated profiles instead of actual measured profiles is that the former implies an ideal identification scenario, since measured profiles suffer from noise, clutter and other unwanted information and simulated profiles don't. In this case, the test and training samples have similar nature and usually a similar high signal-to-noise ratio, so as to assess the feasibility of the approach, the addition of noise has been considered before the creation of the test set. The identification results applying the unweighted and weighted metrics are analysed for demonstrating which algorithm provides the best robustness against noise in an actual possible scenario. So as to confirm the validity of the methodology, identification experiments of profiles coming from electromagnetic simulations are conducted, revealing promising results. Considering the dissimilarities between the test and training sets when noise is added, the recognition performance has been improved when weighting is applied. Future experiments with larger sets are expected to be conducted with the aim of finally using actual profiles as test sets in a real hostile situation.Keywords: HRRP, NCTI, simulated/synthetic database, SVD
Procedia PDF Downloads 35489 Ethnic Identity as an Asset: Linking Ethnic Identity, Perceived Social Support, and Mental Health among Indigenous Adults in Taiwan
Authors: A.H.Y. Lai, C. Teyra
Abstract:
In Taiwan, there are 16 official indigenous groups, accounting for 2.3% of the total population. Like other indigenous populations worldwide, indigenous peoples in Taiwan have poorer mental health because of their history of oppression and colonisation. Amid the negative narratives, the ethnic identity of cultural minorities is their unique psychological and cultural asset. Moreover, positive socialisation is found to be related to strong ethnic identity. Based on Phinney’s theory on ethnic identity development and social support theory, this study adopted a strength-based approach conceptualising ethnic identity as the central organising principle that linked perceived social support and mental health among indigenous adults in Taiwan. Aims. Overall aim is to examine the effect of ethnic identity and social support on mental health. Specific aims were to examine : (1) the association between ethnic identity and mental health; (2) the association between perceived social support and mental health ; (3) the indirect effect of ethnic identity linking perceived social support and mental health. Methods. Participants were indigenous adults in Taiwan (n=200; mean age=29.51; Female=31%, Male=61%, Others=8%). A cross-sectional quantitative design was implemented using data collected in the year 2020. Respondent-driven sampling was used. Standardised measurements were: Ethnic Identity Scale(6-item); Social Support Questionnaire-SF(6 items); Patient Health Questionnaire(9-item); and Generalised Anxiety Disorder(7-item). Covariates were age, gender and economic satisfaction. A four-stage structural equation modelling (SEM) with robust maximin likelihood estimation was employed using Mplus8.0. Step 1: A measurement model was built and tested using confirmatory factor analysis (CFA). Step 2: Factor covariates were re-specified as direct effects in the SEM. Covariates were added. The direct effects of (1) ethnic identity and social support on depression and anxiety and (2) social support on ethnic identity were tested. The indirect effect of ethnic identity was examined with the bootstrapping technique. Results. The CFA model showed satisfactory fit statistics: x^2(df)=869.69(608), p<.05; Comparative ft index (CFI)/ Tucker-Lewis fit index (TLI)=0.95/0.94; root mean square error of approximation (RMSEA)=0.05; Standardized Root Mean Squared Residual (SRMR)=0.05. Ethnic identity is represented by two latent factors: ethnic identity-commitment and ethnic identity-exploration. Depression, anxiety and social support are single-factor latent variables. For the SEM, model fit statistics were: x^2(df)=779.26(527), p<.05; CFI/TLI=0.94/0.93; RMSEA=0.05; SRMR=0.05. Ethnic identity-commitment (b=-0.30) and social support (b=-0.33) had direct negative effects on depression, but ethnic identity-exploration did not. Ethnic identity-commitment (b=-0.43) and social support (b=-0.31) had direct negative effects on anxiety, while identity-exploration (b=0.24) demonstrated a positive effect. Social support had direct positive effects on ethnic identity-exploration (b=0.26) and ethnic identity-commitment (b=0.31). Mediation analysis demonstrated the indirect effect of ethnic identity-commitment linking social support and depression (b=0.22). Implications: Results underscore the role of social support in preventing depression via ethnic identity commitment among indigenous adults in Taiwan. Adopting the strength-based approach, mental health practitioners can mobilise indigenous peoples’ commitment to their group to promote their well-being.Keywords: ethnic identity, indigenous population, mental health, perceived social support
Procedia PDF Downloads 10388 Valuing Social Sustainability in Agriculture: An Approach Based on Social Outputs’ Shadow Prices
Authors: Amer Ait Sidhoum
Abstract:
Interest in sustainability has gained ground among practitioners, academics and policy-makers due to growing stakeholders’ awareness of environmental and social concerns. This is particularly true for agriculture. However, relatively little research has been conducted on the quantification of social sustainability and the contribution of social issues to the agricultural production efficiency. This research's main objective is to propose a method for evaluating prices of social outputs, more precisely shadow prices, by allowing for the stochastic nature of agricultural production that is to say for production uncertainty. In this article, the assessment of social outputs’ shadow prices is conducted within the methodological framework of nonparametric Data Envelopment Analysis (DEA). An output-oriented directional distance function (DDF) is implemented to represent the technology of a sample of Catalan arable crop farms and derive the efficiency scores the overall production technology of our sample is assumed to be the intersection of two different sub-technologies. The first sub-technology models the production of random desirable agricultural outputs, while the second sub-technology reflects the social outcomes from agricultural activities. Once a nonparametric production technology has been represented, the DDF primal approach can be used for efficiency measurement, while shadow prices are drawn from the dual representation of the DDF. Computing shadow prices is a method to assign an economic value to non-marketed social outcomes. Our research uses cross sectional, farm-level data collected in 2015 from a sample of 180 Catalan arable crop farms specialized in the production of cereals, oilseeds and protein (COP) crops. Our results suggest that our sample farms show high performance scores, from 85% for the bad state of nature to 88% for the normal and ideal crop growing conditions. This suggests that farm performance is increasing with an improvement in crop growth conditions. Results also show that average shadow prices of desirable state-contingent output and social outcomes for efficient and inefficient farms are positive, suggesting that the production of desirable marketable outputs and of non-marketable outputs makes a positive contribution to the farm production efficiency. Results also indicate that social outputs’ shadow prices are contingent upon the growing conditions. The shadow prices follow an upward trend as crop-growing conditions improve. This finding suggests that these efficient farms prefer to allocate more resources in the production of desirable outputs than of social outcomes. To our knowledge, this study represents the first attempt to compute shadow prices of social outcomes while accounting for the stochastic nature of the production technology. Our findings suggest that the decision-making process of the efficient farms in dealing with social issues are stochastic and strongly dependent on the growth conditions. This implies that policy-makers should adjust their instruments according to the stochastic environmental conditions. An optimal redistribution of rural development support, by increasing the public payment with the improvement in crop growth conditions, would likely enhance the effectiveness of public policies.Keywords: data envelopment analysis, shadow prices, social sustainability, sustainable farming
Procedia PDF Downloads 12687 Chiral Molecule Detection via Optical Rectification in Spin-Momentum Locking
Authors: Jessie Rapoza, Petr Moroshkin, Jimmy Xu
Abstract:
Chirality is omnipresent, in nature, in life, and in the field of physics. One intriguing example is the homochirality that has remained a great secret of life. Another is the pairs of mirror-image molecules – enantiomers. They are identical in atomic composition and therefore indistinguishable in the scalar physical properties. Yet, they can be either therapeutic or toxic, depending on their chirality. Recent studies suggest a potential link between abnormal levels of certain D-amino acids and some serious health impairments, including schizophrenia, amyotrophic lateral sclerosis, and potentially cancer. Although indistinguishable in their scalar properties, the chirality of a molecule reveals itself in interaction with the surrounding of a certain chirality, or more generally, a broken mirror-symmetry. In this work, we report on a system for chiral molecule detection, in which the mirror-symmetry is doubly broken, first by asymmetric structuring a nanopatterned plasmonic surface than by the incidence of circularly polarized light (CPL). In this system, the incident circularly-polarized light induces a surface plasmon polariton (SPP) wave, propagating along the asymmetric plasmonic surface. This SPP field itself is chiral, evanescently bound to a near-field zone on the surface (~10nm thick), but with an amplitude greatly intensified (by up to 104) over that of the incident light. It hence probes just the molecules on the surface instead of those in the volume. In coupling to molecules along its path on the surface, the chiral SPP wave favors one chirality over the other, allowing for chirality detection via the change in an optical rectification current measured at the edges of the sample. The asymmetrically structured surface converts the high-frequency electron plasmonic-oscillations in the SPP wave into a net DC drift current that can be measured at the edge of the sample via the mechanism of optical rectification. The measured results validate these design concepts and principles. The observed optical rectification current exhibits a clear differentiation between a pair of enantiomers. Experiments were performed by focusing a 1064nm CW laser light at the sample - a gold grating microchip submerged in an approximately 1.82M solution of either L-arabinose or D-arabinose and water. A measurement of the current output was then recorded under both rights and left circularly polarized lights. Measurements were recorded at various angles of incidence to optimize the coupling between the spin-momentums of the incident light and that of the SPP, that is, spin-momentum locking. In order to suppress the background, the values of the photocurrent for the right CPL are subtracted from those for the left CPL. Comparison between the two arabinose enantiomers reveals a preferential signal response of one enantiomer to left CPL and the other enantiomer to right CPL. In sum, this work reports on the first experimental evidence of the feasibility of chiral molecule detection via optical rectification in a metal meta-grating. This nanoscale interfaced electrical detection technology is advantageous over other detection methods due to its size, cost, ease of use, and integration ability with read-out electronic circuits for data processing and interpretation.Keywords: Chirality, detection, molecule, spin
Procedia PDF Downloads 9286 The Role of Two Macrophyte Species in Mineral Nutrient Cycling in Human-Impacted Water Reservoirs
Authors: Ludmila Polechonska, Agnieszka Klink
Abstract:
The biogeochemical studies of macrophytes shed light on elements bioavailability, transfer through the food webs and their possible effects on the biota, and provide a basis for their practical application in aquatic monitoring and remediation. Measuring the accumulation of elements in plants can provide time-integrated information about the presence of chemicals in aquatic ecosystems. The aim of the study was to determine and compare the contents of micro- and macroelements in two cosmopolitan macrophytes, submerged Ceratophyllum demersum (hornworth) and free-floating Hydrocharis morsus-ranae (European frog-bit), in order to assess their bioaccumulation potential, elements stock accumulated in each plant and their role in nutrients cycling in small water reservoirs. Sampling sites were designated in 25 oxbow lakes in urban areas in Lower Silesia (SW Poland). In each sampling site, fresh whole plants of C. demersum and H. morsus-ranae were collected from squares of 1x1 meters each where the species coexisted. European frog-bit was separated into leaves, stems and roots. For biomass measurement all plants growing on 1 square meter were collected, dried and weighed. At the same time, water samples were collected from each reservoir and their pH and EC were determined. Water samples were filtered and acidified and plant samples were digested in concentrated nitric acid. Next, the content of Ca, Cu, Fe, K, Mg, Mn, Ni and Zn was determined using atomic absorption method (AAS). Statistical analysis showed that C. demersum and organs of H. morsus-ranae differed significantly in respect of metals content (Kruskal-Wallis Anova, p<0.05). Contents of Cu, Mn, Ni and Zn were higher in hornwort, while European frog-bit contained more Ca, Fe, K, Mg. Bioaccumulation Factors (BCF=content in plant/concentration in water) showed similar pattern of metal bioaccumulation – microelements were more intensively accumulated by hornwort and macroelements by frog-bit. Based on BCF values both species may be positively evaluated as good accumulators of Cu, Fe, Mn, Ni and Zn. However, the distribution of metals in H. morsus-ranae was uneven – the majority of studied elements were retained in roots, which may indicate to existence of physiological barriers developed for dealing with toxicity. Some percent of Ca and K was actively transported to stems, but to leaves Mg only. Although the biomass of C. demersum was two times greater than biomass of H. morsus-ranae, the element off-take was greater only for Cu, Mn, Ni and Zn. Nevertheless, it can be stated that despite a relatively small biomass, compared to other macrophytes, both species may have an influence on the removal of trace elements from aquatic ecosystems and, as they serve as food for some animals, also on the incorporation of toxic elements into food chains. There was a significant positive correlation between content of Mn and Fe in water and roots of H. morus-ranae (R=0.51 and R=0.60, respectively) as well as between Cu concentration in water and in C. demersum (R=0.41) (Spearman rank correlation, p<0.05). High bioaccumulation rates and correlation between plants and water elements concentrations point to their possible use as passive biomonitors of aquatic pollution.Keywords: aquatic plants, bioaccumulation, biomonitoring, macroelements, phytoremediation, trace metals
Procedia PDF Downloads 18985 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments
Authors: David X. Dong, Qingming Zhang, Meng Lu
Abstract:
Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.Keywords: optical sensor, regression model, nitrites, water quality
Procedia PDF Downloads 7284 Expanding Entrepreneurial Capabilities through Business Incubators: A Case Study of Idea Hub Nigeria
Authors: Kenechukwu Ikebuaku
Abstract:
Entrepreneurship has long been offered as the panacea for poor economic growth and high rate of unemployment. Business incubation is considered an effective means for enhancing entrepreneurial actitivities while engendering socio-economic development. Information Technology Developers Entrepreneurship Accelerator (iDEA), is a software business incubation programme established by the Nigerian government as a means of boosting digital entrepreneurship activities and reducing unemployment in the country. This study assessed the contribution of iDEA Nigeria’s entrepreneurship programmes towards enhancing the capabilities of its tenants. Using the capability approach and the sustainable livelihoods approach, the study analysed iDEA programmes’ contribution towards the expansion of participants’ entrepreneurial capabilities. Apart from identifying a set of entrepreneurial capabilities from both the literature and empirical analysis, the study went further to ascertain how iDEA incubation has helped to enhance those capabilities for its tenants. It also examined digital entrepreneurship as a valued functioning and as an intermediate functioning leading to other valuable functioning. Furthermore, the study examined gender as a conversion factor in digital entrepreneurship. Both qualitative and quantitative research methods were used for the study, and measurement of key variables was made. While the entire population was utilised to collect data for the quantitative research, purposive sampling was used to select respondents for semi-structured interviews in the qualitative research. However, only 40 beneficiaries agreed to take part in the survey while 10 respondents were interviewed for the study. Responses collected from questionnaires administered were subjected to statistical analysis using SPSS. The study developed indexes to measure the perception of the respondents, on how iDEA programmes have enhanced their entrepreneurial capabilities. The Capabilities Enhancement Perception Index (CEPI) computed indicated that the respondents believed that iDEA programmes enhanced their entrepreneurial capabilities. While access to power supply and reliable internet have the highest positive deviations around mean, negotiation skills and access to customers/clients have the highest negative deviation. These were well supported by the findings of the qualitative analysis in which the participants unequivocally narrated how the resources provided by iDEA aid them in their entrepreneurial endeavours. It was also found that iDEA programmes have a significant effect on the tenants’ access to networking opportunities, both with other emerging entrepreneurs and established entrepreneurs. While assessing gender as a conversion factor, it was discovered that there was very low female participation within the digital entrepreneurship ecosystem. The root cause of this gender disparity was found in unquestioned cultural beliefs and social norms which relegate women to a subservient position and household duties. The findings also showed that many of the entrepreneurs could be considered opportunity-based entrepreneurs rather than necessity entrepreneurs, and that digital entrepreneurship is a valued functioning for iDEA tenants. With regards to challenges facing digital entrepreneurship in Nigeria, infrastructural/institutional inadequacies, lack of funding opportunities, and unfavourable government policies, were considered inimical to entrepreneurial capabilities in the country.Keywords: entrepreneurial capabilities, unemployment, business incubators, development
Procedia PDF Downloads 23683 The Reliability Analysis of Concrete Chimneys Due to Random Vortex Shedding
Authors: Saba Rahman, Arvind K. Jain, S. D. Bharti, T. K. Datta
Abstract:
Chimneys are generally tall and slender structures with circular cross-sections, due to which they are highly prone to wind forces. Wind exerts pressure on the wall of the chimneys, which produces unwanted forces. Vortex-induced oscillation is one of such excitations which can lead to the failure of the chimneys. Therefore, vortex-induced oscillation of chimneys is of great concern to researchers and practitioners since many failures of chimneys due to vortex shedding have occurred in the past. As a consequence, extensive research has taken place on the subject over decades. Many laboratory experiments have been performed to verify the theoretical models proposed to predict vortex-induced forces, including aero-elastic effects. Comparatively, very few proto-type measurement data have been recorded to verify the proposed theoretical models. Because of this reason, the theoretical models developed with the help of experimental laboratory data are utilized for analyzing the chimneys for vortex-induced forces. This calls for reliability analysis of the predictions of the responses of the chimneys produced due to vortex shedding phenomena. Although several works of literature exist on the vortex-induced oscillation of chimneys, including code provisions, the reliability analysis of chimneys against failure caused due to vortex shedding is scanty. In the present study, the reliability analysis of chimneys against vortex shedding failure is presented, assuming the uncertainty in vortex shedding phenomena to be significantly more than other uncertainties, and hence, the latter is ignored. The vortex shedding is modeled as a stationary random process and is represented by a power spectral density function (PSDF). It is assumed that the vortex shedding forces are perfectly correlated and act over the top one-third height of the chimney. The PSDF of the tip displacement of the chimney is obtained by performing a frequency domain spectral analysis using a matrix approach. For this purpose, both chimney and random wind forces are discretized over a number of points along with the height of the chimney. The method of analysis duly accounts for the aero-elastic effects. The double barrier threshold crossing level, as proposed by Vanmarcke, is used for determining the probability of crossing different threshold levels of the tip displacement of the chimney. Assuming the annual distribution of the mean wind velocity to be a Gumbel type-I distribution, the fragility curve denoting the variation of the annual probability of threshold crossing against different threshold levels of the tip displacement of the chimney is determined. The reliability estimate is derived from the fragility curve. A 210m tall concrete chimney with a base diameter of 35m, top diameter as 21m, and thickness as 0.3m has been taken as an illustrative example. The terrain condition is assumed to be that corresponding to the city center. The expression for the PSDF of the vortex shedding force is taken to be used by Vickery and Basu. The results of the study show that the threshold crossing reliability of the tip displacement of the chimney is significantly influenced by the assumed structural damping and the Gumbel distribution parameters. Further, the aero-elastic effect influences the reliability estimate to a great extent for small structural damping.Keywords: chimney, fragility curve, reliability analysis, vortex-induced vibration
Procedia PDF Downloads 16082 Systematic Review of Dietary Fiber Characteristics Relevant to Appetite and Energy Intake Outcomes in Clinical Intervention Trials of Healthy Humans
Authors: K. S. Poutanen, P. Dussort, A. Erkner, S. Fiszman, K. Karnik, M. Kristensen, C. F. M. Marsaux, S. Miquel-Kergoat, S. Pentikäinen, P. Putz, R. E. Steinert, J. Slavin, D. J. Mela
Abstract:
Dietary fiber (DF) intake has been associated with lower body weight or less weight gain. These effects are generally attributed to putative effects of DF on appetite. Many intervention studies have tested the effect of DFs on appetite-related measures, with inconsistent results. However, DF includes a wide category of different compounds with diverse chemical and physical characteristics, and correspondingly diverse effects in human digestion. Thus, inconsistent results between DF consumption and appetite are not surprising. The specific contribution of different compounds with varying physico-chemical properties to appetite control and the mediating mechanisms are not well characterized. This systematic review aimed to assess the influence of specific DF characteristics, including viscosity, gel forming capacity, fermentability, and molecular weight, on appetite-related outcomes in healthy humans. Medline and FSTA databases were searched for controlled human intervention trials, testing the effects of well-characterized DFs on subjective satiety/appetite or energy intake outcomes. Studies were included only if they reported: 1) fiber name and origin, and 2) data on viscosity, gelling properties, fermentability, or molecular weight of the DF materials tested. The search generated 3001 unique records, 322 of which were selected for further consideration from title and abstract screening. Of these, 149 were excluded due to insufficient fiber characterization and 124 for other reasons (not original article, not randomized controlled trial, or no appetite related outcome), leaving 49 papers meeting all the inclusion criteria, most of which reported results from acute testing (<1 day). The eligible 49 papers described 90 comparisons of DFs in foods, beverages or supplements. DF-containing material of interest was efficacious for at least one appetite-related outcome in 51/90 comparisons. Gel-forming DF sources were most consistently efficacious but there were no clear associations between viscosity, MW or fermentability and appetite-related outcomes. A considerable number of papers had to be excluded from the review due to shortcomings in fiber characterization. To build understanding about the impact of DF on satiety/appetite specifically there should be clear hypotheses about the mechanisms behind the proposed beneficial effect of DF material on appetite, and sufficient data about the DF properties relevant for the hypothesized mechanisms to justify clinical testing. The hypothesized mechanisms should also guide the decision about relevant duration of exposure in studies, i.e. are the effects expected to occur during acute time frame (related to stomach emptying, digestion rate, etc.) or develop from sustained exposure (gut fermentation mediated mechanisms). More consistent measurement methods and reporting of fiber specifications and characterization are needed to establish reliable structure-function relationships for DF and health outcomes.Keywords: appetite, dietary fiber, physico-chemical properties, satiety
Procedia PDF Downloads 23581 The System-Dynamic Model of Sustainable Development Based on the Energy Flow Analysis Approach
Authors: Inese Trusina, Elita Jermolajeva, Viktors Gopejenko, Viktor Abramov
Abstract:
Global challenges require a transition from the existing linear economic model to a model that will consider nature as a life support system for the development of the way to social well-being in the frame of the ecological economics paradigm. The objective of the article is to present the results of the analysis of socio-economic systems in the context of sustainable development using the systems power (energy flows) changes analyzing method and structural Kaldor's model of GDP. In accordance with the principles of life's development and the ecological concept was formalized the tasks of sustainable development of the open, non-equilibrium, stable socio-economic systems were formalized using the energy flows analysis method. The methodology of monitoring sustainable development and level of life were considered during the research of interactions in the system ‘human - society - nature’ and using the theory of a unified system of space-time measurements. Based on the results of the analysis, the time series consumption energy and economic structural model were formulated for the level, degree and tendencies of sustainable development of the system and formalized the conditions of growth, degrowth and stationarity. In order to design the future state of socio-economic systems, a concept was formulated, and the first models of energy flows in systems were created using the tools of system dynamics. During the research, the authors calculated and used a system of universal indicators of sustainable development in the invariant coordinate system in energy units. In order to design the future state of socio-economic systems, a concept was formulated, and the first models of energy flows in systems were created using the tools of system dynamics. In the context of the proposed approach and methods, universal sustainable development indicators were calculated as models of development for the USA and China. The calculations used data from the World Bank database for the period from 1960 to 2019. Main results: 1) In accordance with the proposed approach, the heterogeneous energy resources of countries were reduced to universal power units, summarized and expressed as a unified number. 2) The values of universal indicators of the life’s level were obtained and compared with generally accepted similar indicators.3) The system of indicators in accordance with the requirements of sustainable development can be considered as a basis for monitoring development trends. This work can make a significant contribution to overcoming the difficulties of forming socio-economic policy, which is largely due to the lack of information that allows one to have an idea of the course and trends of socio-economic processes. The existing methods for the monitoring of the change do not fully meet this requirement since indicators have different units of measurement from different areas and, as a rule, are the reaction of socio-economic systems to actions already taken and, moreover, with a time shift. Currently, the inconsistency or inconsistency of measures of heterogeneous social, economic, environmental, and other systems is the reason that social systems are managed in isolation from the general laws of living systems, which can ultimately lead to a systemic crisis.Keywords: sustainability, system dynamic, power, energy flows, development
Procedia PDF Downloads 5880 Strategies for the Optimization of Ground Resistance in Large Scale Foundations for Optimum Lightning Protection
Authors: Oibar Martinez, Clara Oliver, Jose Miguel Miranda
Abstract:
In this paper, we discuss the standard improvements which can be made to reduce the earth resistance in difficult terrains for optimum lightning protection, what are the practical limitations, and how the modeling can be refined for accurate diagnostics and ground resistance minimization. Ground resistance minimization can be made via three different approaches: burying vertical electrodes connected in parallel, burying horizontal conductive plates or meshes, or modifying the own terrain, either by changing the entire terrain material in a large volume or by adding earth-enhancing compounds. The use of vertical electrodes connected in parallel pose several practical limitations. In order to prevent loss of effectiveness, it is necessary to keep a minimum distance between each electrode, which is typically around five times larger than the electrode length. Otherwise, the overlapping of the local equipotential lines around each electrode reduces the efficiency of the configuration. The addition of parallel electrodes reduces the resistance and facilitates the measurement, but the basic parallel resistor formula of circuit theory will always underestimate the final resistance. Numerical simulation of equipotential lines around the electrodes overcomes this limitation. The resistance of a single electrode will always be proportional to the soil resistivity. The electrodes are usually installed with a backfilling material of high conductivity, which increases the effective diameter. However, the improvement is marginal, since the electrode diameter counts in the estimation of the ground resistance via a logarithmic function. Substances that are used for efficient chemical treatment must be environmentally friendly and must feature stability, high hygroscopicity, low corrosivity, and high electrical conductivity. A number of earth enhancement materials are commercially available. Many are comprised of carbon-based materials or clays like bentonite. These materials can also be used as backfilling materials to reduce the resistance of an electrode. Chemical treatment of soil has environmental issues. Some products contain copper sulfate or other copper-based compounds, which may not be environmentally friendly. Carbon-based compounds are relatively inexpensive and they do have very low resistivities, but they also feature corrosion issues. Typically, the carbon can corrode and destroy a copper electrode in around five years. These compounds also have potential environmental concerns. Some earthing enhancement materials contain cement, which, after installation acquire properties that are very close to concrete. This prevents the earthing enhancement material from leaching into the soil. After analyzing different configurations, we conclude that a buried conductive ring with vertical electrodes connected periodically should be the optimum baseline solution for the grounding of a large size structure installed on a large resistivity terrain. In order to show this, a practical example is explained here where we simulate the ground resistance of a conductive ring buried in a terrain with a resistivity in the range of 1 kOhm·m.Keywords: grounding improvements, large scale scientific instrument, lightning risk assessment, lightning standards
Procedia PDF Downloads 13979 The Effect of Photochemical Smog on Respiratory Health Patients in Abuja Nigeria
Authors: Christabel Ihedike, John Mooney, Monica Price
Abstract:
Summary: This study aims to critically evaluate effect of photochemical smog on respiratory health in Nigeria. Cohort of chronic obstructive pulmonary disease (COPD) patients was recruited from two large hospitals in Abuja Nigeria. Respiratory health questionnaires, daily diaries, dyspnoea scale and lung function measurement were used to obtain health data and investigate the relationship with air quality data (principally ozone, NOx and particulate pollution). Concentrations of air pollutants were higher than WHO and Nigerian air quality standard. The result suggests a correlation between measured air quality and exacerbation of respiratory illness. Introduction: Photochemical smog is a significant health challenge in most cities and its effect on respiratory health is well acknowledged. This type of pollution is most harmful to the elderly, children and those with underlying respiratory disease. This study aims to investigate impact of increasing temperature and photo-chemically generated secondary air pollutants on respiratory health in Abuja Nigeria. Method and Result: Health data was collected using spirometry to measure lung function on routine attendance at the clinic, daily diaries kept by patients and information obtained using respiratory questionnaire. Questionnaire responses (obtained using an adapted and internally validated version of St George’s Hospital Respiratory Questionnaire), shows that ‘time of wheeze’ showed an association with participants activities: 30% had worse wheeze in the morning: 10% cannot shop, 15% take long-time to get washed, 25% walk slower, 15% if hurry have to stop and 5% cannot take-bath. There was also a decrease in Forced expiratory volume in the first second and Forced Vital Capacity, and daily change in the afternoon–morning may be associated with the concentration level of pollutants. Also, dyspnoea symptoms recorded that 60% of patients were on grade 3, 25% grade 2 and 15% grade 1. Daily frequency of the number of patients in the cohort that cough /brought sputum is 78%. Air pollution in the city is higher than Nigerian and WHO standards with NOx and PM10 concentrations of 693.59ug/m-3 and 748ugm-3 being measured respectively. The result shows that air pollution may increase occurrence and exacerbation of respiratory disease. Conclusion: High temperature and local climatic conditions in urban Nigeria encourages formation of Ozone, the major constituent of photochemical smog, resulting also in the formation of secondary air pollutants associated with health challenges. In this study we confirm the likely potency of the pattern of secondary air pollution in exacerbating COPD symptoms in vulnerable patient group in urban Nigeria. There is need for better regulation and measures to reduce ozone, particularly when local climatic conditions favour development of photochemical smog in such settings. Climate change and likely increasing temperatures add impetus and urgency for better air quality standards and measures (traffic-restrictions and emissions standards) in developing world settings such as Nigeria.Keywords: Abuja-Nigeria, effect, photochemical smog, respiratory health
Procedia PDF Downloads 22478 Inhabitants’ Adaptation to the Climate's Evolutions in Cities: a Survey of City Dwellers’ Climatic Experiences’ Construction
Authors: Geraldine Molina, Malou Allagnat
Abstract:
Entry through meteorological and climatic phenomena, technical knowledge and engineering sciences has long been favored by the research and local public action to analyze the urban climate, develop strategies to reduce its changes and adapt their spaces. However, in their daily practices and sensitive experiences, city dwellers are confronted with the climate and constantly deal with its fluctuations. In this way, these actors develop knowledge, skills and tactics to regulate their comfort and adapt to climatic variations. Therefore, the empirical observation and analysis of these living experiences represent major scientific and social challenges. This contribution proposes to question these relationships of the inhabitants to urban climate. It tackles the construction of inhabitants’ climatic experiences to answer a central question: how do city dwellers’ deal with the urban climate and adapt to its different variations? Indeed, the city raises the question of how populations adapt to different spatial and temporal climatic variations. Local impacts of global climate change are combined with the urban heat island phenomenon and other microclimatic effects, as well as seasonal, daytime and night-time fluctuations. To provide answers, the presentation will be focused on the results of a CNRS research project (Géraldine Molina), part of which is linked to the European project Nature For Cities (H2020, Marjorie Musy, Scientific Director). From a theoretical point of view, the contribution is based on a renewed definition of adaptation centered on the capacity of individuals and social groups, a recently opened entry from a theoretical point of view by social scientists. The research adopts a "radical interdisciplinary" approach to shed light on the links between social dynamics of climate (inhabitants’ perceptions, representations and practices) and physical processes that characterize urban climate. To do so, it relied on a methodological combination of different survey techniques borrowed from the social sciences (geography, anthropology, sociology) and linked to the work, methodologies and results of the engineering sciences. From 2016 to 2019, a survey was carried out in two districts of Lyon whose morphological, micro-climatic and social characteristics differ greatly, namely the 6th arrondissement and the Guillotière district. To explore the construction of climate experiences over the long term by putting it into perspective with the life trajectories of individuals, 70 semi-directive interviews were conducted with inhabitants. In order to also punctually survey the climate experiments as they unfold in a given time and moment, observation and measurement campaigns of physical phenomena and questionnaires have been conducted in public spaces by an interdisciplinary research team1. The contribution at the ICUC 2020 will mainly focus on the presentation of the presentation of the qualitative survey conducted thanks to the inhabitants’ interviews.Keywords: sensitive experiences, ways of life, thermal comfort, radical interdisciplinarity
Procedia PDF Downloads 11877 Measuring Urban Sprawl in the Western Cape Province, South Africa: An Urban Sprawl Index for Comparative Purposes
Authors: Anele Horn, Amanda Van Eeden
Abstract:
The emphasis on the challenges posed by continued urbanisation, especially in developing countries has resulted in urban sprawl often researched and analysed in metropolitan urban areas, but rarely in small and medium towns. Consequently, there exists no comparative instrument between the proportional extent of urban sprawl in metropolitan areas measured against that of small and medium towns. This research proposes an Urban Sprawl Index as a possible tool to comparatively analyse the extent of urban sprawl between cities and towns of different sizes. The index can also be used over the longer term by authorities developing spatial policy to track the success or failure of specific tools intended to curb urban sprawl. In South Africa, as elsewhere in the world, the last two decades witnessed a proliferation of legislation and spatial policies to limit urban sprawl and contain the physical expansion and development of urban areas, but the measurement of the successes or failures of these instruments intending to curb expansive land development has remained a largely unattainable goal, largely as a result of the absence of an appropriate measure of proportionate comparison. As a result of the spatial political history of Apartheid, urban areas acquired a spatial form that contributed to the formation of single-core cities with far reaching and wide-spreading peripheral development, either in the form of affluent suburbs or as a result of post-Apartheid programmes such as the Reconstruction and Development Programme (1995) which, in an attempt to assist the immediate housing shortage, favoured the establishment of single dwelling residential units for low income communities on single plots on affordable land at the urban periphery. This invariably contributed to urban sprawl and even though this programme has since been abandoned, the trend towards low density residential development continues. The research area is the Western Cape Province in South Africa, which in all aspects exhibit the spatial challenges described above. In academia and popular media the City of Cape Town (the only Metropolitan authority in the province) has received the lion’s share of focus in terms of critique on urban development and spatial planning, however, the smaller towns and cities in the Western Cape arguably received much less public attention and were spared the naming and shaming of being unsustainable urban areas in terms of land consumption and physical expansion. The Urban Sprawl Index for the Western Cape (USIWC) put forward by this research enables local authorities in the Western Cape Province to measure the extent of urban sprawl proportionately and comparatively to other cities in the province, thereby acquiring a means of measuring the success of the spatial instruments employed to limit urban expansion and inefficient land consumption. In development of the USIWC the research made use of satellite data for reference years 2001 and 2011 and population growth data extracted from the national census, also for base years 2001 and 2011.Keywords: urban sprawl, index, Western Cape, South Africa
Procedia PDF Downloads 32976 Transdisciplinary Methodological Innovation: Connecting Natural and Social Sciences Research through a Training Toolbox
Authors: Jessica M. Black
Abstract:
Although much of natural and social science research aims to enhance human flourishing and address social problems, the training within the two fields is significantly different across theory, methodology, and implementation of results. Social scientists are trained in social, psychological, and to the extent that it is relevant to their discipline, spiritual development, theory, and accompanying methodologies. They tend not to receive training or learn about accompanying methodology related to interrogating human development and social problems from a biological perspective. On the other hand, those in the natural sciences, and for the purpose of this work, human biological sciences specifically – biology, neuroscience, genetics, epigenetics, and physiology – are often trained first to consider cellular development and related methodologies, and may not have opportunity to receive formal training in many of the foundational principles that guide human development, such as systems theory or person-in-environment framework, methodology related to tapping both proximal and distal psycho-social-spiritual influences on human development, and foundational principles of equity, justice and inclusion in research design. There is a need for disciplines heretofore siloed to know one another, to receive streamlined, easy to access training in theory and methods from one another and to learn how to build interdisciplinary teams that can speak and act upon a shared research language. Team science is more essential than ever, as are transdisciplinary approaches to training and research design. This study explores the use of a methodological toolbox that natural and social scientists can use by employing a decision-making tree regarding project aims, costs, and participants, among other important study variables. The decision tree begins with a decision about whether the researcher wants to learn more about social sciences approaches or biological approaches to study design. The toolbox and platform are flexible, such that users could also choose among modules, for instance, reviewing epigenetics or community-based participatory research even if those are aspects already a part of their home field. To start, both natural and social scientists would receive training on systems science, team science, transdisciplinary approaches, and translational science. Next, social scientists would receive training on grounding biological theory and the following methodological approaches and tools: physiology, (epi)genetics, non-invasive neuroimaging, invasive neuroimaging, endocrinology, and the gut-brain connection. Natural scientists would receive training on grounding social science theory, and measurement including variables, assessment and surveys on human development as related to the developing person (e.g., temperament and identity), microsystems (e.g., systems that directly interact with the person such as family and peers), mesosystems (e.g., systems that interact with one another but do not directly interact with the individual person, such as parent and teacher relationships with one another), exosystems (e.g., spaces and settings that may come back to affect the individual person, such as a parent’s work environment, but within which the individual does not directly interact, macrosystems (e.g., wider culture and policy), and the chronosystem (e.g., historical time, such as the generational impact of trauma). Participants will be able to engage with the toolbox and one another to foster increased transdisciplinary workKeywords: methodology, natural science, social science, transdisciplinary
Procedia PDF Downloads 11575 The Analgesic Effect of Electroacupuncture in a Murine Fibromyalgia Model
Authors: Bernice Jeanne Lottering, Yi-Wen Lin
Abstract:
Introduction: Chronic pain has a definitive lack of objective parameters in the measurement and treatment efficacy of diseases such as Fibromyalgia (FM). Persistent widespread pain and generalized tenderness are the characteristic symptoms affecting a large majority of the global population, particularly females. This disease has indicated a refractory tendency to conventional treatment ventures, largely resultant from a lack of etiological and pathogenic understanding of the disease development. Emerging evidence indicates that the central nervous system (CNS) plays a critical role in the amplification of pain signals and the neurotransmitters associated therewith. Various stimuli have been found to activate the channels existent on nociceptor terminals, thereby actuating nociceptive impulses along the pain pathways. The transient receptor potential vanalloid 1 (TRPV1) channel functions as a molecular integrator for numerous sensory inputs, such as nociception, and was explored in the current study. Current intervention approaches face a multitude challenges, ranging from effective therapeutic interventions to the limitation of pathognomonic criteria resultant from incomplete understanding and partial evidence on the mechanisms of action of FM. It remains unclear whether electroacupuncture (EA) plays an integral role in the functioning of the TRPV1 pathway, and whether or not it can reduce the chronic pain induced by FM. Aims: The aim of this study was to explore the mechanisms underlying the activation and modulation of the TRPV1 channel pathway in a cold stress model of FM applied to a murine model. Furthermore, the effect of EA in the treatment of mechanical and thermal pain, as expressed in FM was also to be investigated. Methods: 18 C57BL/6 wild type and 6 TRPV1 knockout (KO) mice, aged 8-12 weeks, were exposed to an intermittent cold stress-induced fibromyalgia-like pain model, with or without EA treatment at ZusanLi ST36 (2Hz/20min) on day 3 to 5. Von Frey and Hargreaves behaviour tests were implemented in order to analyze the mechanical and thermal pain thresholds on day 0, 3 and 5 in control group (C), FM group (FM), FM mice with EA treated group (FM + EA) and FM in KO group. Results: An increase in mechanical and thermal hyperalgesia was observed in the FM, EA and KO groups when compared to the control group. This initial increase was reduced in the EA group, which directs focus at the treatment efficacy of EA in nociceptive sensitization, and the analgesic effect EA has attenuating FM associated pain. Discussion: An increase in the nociceptive sensitization was observed through higher withdrawal thresholds in the von Frey mechanical test and the Hargreaves thermal test. TRPV1 function in mice has been scientifically associated with these nociceptive conduits, and the increased behaviour test results suggest that TRPV1 upregulation is central to the FM induced hyperalgesia. This data was supported by the decrease in sensitivity observed in results of the TRPV1 KO group. Moreover, the treatment of EA showed a decrease in this FM induced nociceptive sensitization, suggesting TRPV1 upregulation and overexpression can be attenuated by EA at bilateral ST36. This evidence compellingly implies that the analgesic effect of EA is associated with TRPV1 downregulation.Keywords: fibromyalgia, electroacupuncture, TRPV1, nociception
Procedia PDF Downloads 13974 Educational Impact of Participatory Theatre Based Intervention on Gender Equality Attitudes, Youth in Serbia
Authors: Jasna Milošević Đorđević, Jelisaveta Blagojević, Jovana Timotijević, Alison Mckinley
Abstract:
Young people in Serbia, have grown up in turbulent times during the Balkan wars, in a cultural and economic isolation without adequate education on (ethnic, gender, social,..) equality. They often have very strong patriarchal gender stereotypes. The perception of gender in Serbia is still heavily influenced by traditional worldview and young people have little opportunity in traditional educational system to challenge it, receiving no formal sex education. Educational policies have addressed achieving gender equality as one of the goals, supporting all young people to gain better educational opportunities, but there are obvious shortcomings of the official education system in implementation of those goals. Therefore new approaches should be implemented. We evaluate the impact of non traditional approach, such as participatory theatre performance with strong transformative potential, especially in relation to gender issues. Theatre based intervention (TBI) was created to provoke the young people to become aware of their gender constructs. Engaging young people in modern form of education such as transformative gender intervention through participatory theatre could have positive impact on their sex knowledge and understanding gender roles. The transformative process in TBI happens on two levels – the affective and the cognitive. The founding agency of the project and evaluation is IPPF. The most important aim of this survey is evaluation of the transformative TBI, as a new educational approach related to better understanding gender as social construct. To reach this goal, we have measured attitude change in three indicators: a) gender identity/ perception of feminine identity, perception of masculine identity, importance of gender for personal identity, b) gender roles on the labor market, c) Gender equality in partnership & sexual behavior. Our main hypothesis is that participatory theatre-based intervention can have a transformational potential in challenging traditional gender knowledge and attitudes among youth in Serbia. To evaluate the impact of TB intervention, we implement: online baseline and end-line survey with nonparticipants of the TBI on the representative sample in targeted towns (control group). Additionally we conducted testing the experimental group twice: pretest at the beginning of each TBI and post testing of participants after the play. A sample of 500 respondents aged 18-30 years, from 9 towns in Serbia responded to online questionnaire in September 2017, in a baseline research. Pre and post measurement of all tested variables among participants in nine towns would be performed. End-line survey with 500 respondents would be conducted at the end of the project (early year 2018). After the first TBI (60 participants) no impact was detected on measured indicators: perception of desirable characteristics of man F(1,59)= 1.291, p=.260; perception of desirable characteristics of women F(1,55)=1.386, p= .244; gender identity importance F(1,63)= .050, p=.824; sex related behavior F(1,61)=1,145, p=.289; gender equality on labor market F(1,63)=.076, p=.783; gender equality in partnership F(1,61)=.201, p=.656; However, we hope that following intervention would bring more data showing that participatory theatre intervention explaining gender as a social construct could have additional positive impact in traditional educational system.Keywords: educational impact, gender identity, gender role, participatory theatre based intervention
Procedia PDF Downloads 18373 Phospholipid Cationic and Zwitterionic Compounds as Potential Non-Toxic Antifouling Agents: A Study of Biofilm Formation Assessed by Micro-titer Assays with Marine Bacteria and Eco-toxicological Effect on Marine Microalgae
Authors: D. Malouch, M. Berchel, C. Dreanno, S. Stachowski-Haberkorn, P-A. Jaffres
Abstract:
Biofouling is a complex natural phenomenon that involves biological, physical and chemical properties related to the environment, the submerged surface and the living organisms involved. Bio-colonization of artificial structures can cause various economic and environmental impacts. The increase in costs associated with the over-consumption of fuel from biocolonized vessels has been widely studied. Measurement drifts from submerged sensors, as well as obstructions in heat exchangers, and deterioration of offshore structures are major difficulties that industries are dealing with. Therefore, surfaces that inhibit biocolonization are required in different areas (water treatment, marine paints, etc.) and many efforts have been devoted to produce efficient and eco-compatible antifouling agents. The different steps of surface fouling are widely described in literature. Studying the biofilm and its stages provides a better understanding of how to elaborate more efficient antifouling strategies. Several approaches are currently applied, such as the use of biocide anti-fouling paint (mainly with copper derivatives) and super-hydrophobic coatings. While these two processes are proving to be the most effective, they are not entirely satisfactory, especially in a context of a changing legislation. Nowadays, the challenge is to prevent biofouling with non-biocide compounds, offering a cost effective solution, but with no toxic effects on marine organisms. Since the micro-fouling phase plays an important role in the regulation of the following steps of biofilm formation, it is desired to reduce or delate biofouling of a given surface by inhibiting the micro-fouling at its early stages. In our recent works, we reported that some amphiphilic compounds exhibited bacteriostatic or bactericidal properties at a concentration that did not affect mammalian eukaryotic cells. These remarkable properties invited us to assess this type of bio-inspired phospholipids to prevent the colonization of surfaces by marine bacteria. Of note, other studies reported that amphiphilic compounds interacted with bacteria leading to a reduction of their development. An amphiphilic compound is a molecule consisting of a hydrophobic domain and a polar head (ionic or non-ionic). These compounds appear to have interesting antifouling properties: some ionic compounds have shown antimicrobial activity, and zwitterions can reduce nonspecific adsorption of proteins. Herein, we investigate the potential of amphiphilic compounds as inhibitors of bacterial growth and marine biofilm formation. The aim of this study is to compare the efficacy of four synthetic phospholipids that features a cationic charge or a zwitterionic polar-head group to prevent microfouling with marine bacteria. Toxicity of these compounds was also studied in order to identify the most promising compounds that inhibit biofilm development and show low cytotoxicity on two links representative of coastal marine food webs: phytoplankton and oyster larvae.Keywords: amphiphilic phospholipids, biofilm, marine fouling, non-toxique assays
Procedia PDF Downloads 134