Search results for: data exchange
23085 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus
Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo
Abstract:
The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.Keywords: anomaly detection, digital twin, generalised additive model, GAM, power consumption, supervised learning
Procedia PDF Downloads 15923084 Sentiment Analysis: An Enhancement of Ontological-Based Features Extraction Techniques and Word Equations
Authors: Mohd Ridzwan Yaakub, Muhammad Iqbal Abu Latiffi
Abstract:
Online business has become popular recently due to the massive amount of information and medium available on the Internet. This has resulted in the huge number of reviews where the consumers share their opinion, criticisms, and satisfaction on the products they have purchased on the websites or the social media such as Facebook and Twitter. However, to analyze customer’s behavior has become very important for organizations to find new market trends and insights. The reviews from the websites or the social media are in structured and unstructured data that need a sentiment analysis approach in analyzing customer’s review. In this article, techniques used in will be defined. Definition of the ontology and description of its possible usage in sentiment analysis will be defined. It will lead to empirical research that related to mobile phones used in research and the ontology used in the experiment. The researcher also will explore the role of preprocessing data and feature selection methodology. As the result, ontology-based approach in sentiment analysis can help in achieving high accuracy for the classification task.Keywords: feature selection, ontology, opinion, preprocessing data, sentiment analysis
Procedia PDF Downloads 20123083 Construction of the Large Scale Biological Networks from Microarrays
Authors: Fadhl Alakwaa
Abstract:
One of the sustainable goals of the system biology is understanding gene-gene interactions. Hence, gene regulatory networks (GRN) need to be constructed for understanding the disease ontology and to reduce the cost of drug development. To construct gene regulatory from gene expression we need to overcome many challenges such as data denoising and dimensionality. In this paper, we develop an integrated system to reduce data dimension and remove the noise. The generated network from our system was validated via available interaction databases and was compared to previous methods. The result revealed the performance of our proposed method.Keywords: gene regulatory network, biclustering, denoising, system biology
Procedia PDF Downloads 24223082 Soil Composition in Different Agricultural Crops under Application of Swine Wastewater
Authors: Ana Paula Almeida Castaldelli Maciel, Gabriela Medeiros, Amanda de Souza Machado, Maria Clara Pilatti, Ralpho Rinaldo dos Reis, Silvio Cesar Sampaio
Abstract:
Sustainable agricultural systems are crucial to ensuring global food security and the long-term production of nutritious food. Comprehensive soil and water management practices, including nutrient management, balanced fertilizer use, and appropriate waste management, are essential for sustainable agriculture. Swine wastewater (SWW) treatment has become a significant focus due to environmental concerns related to heavy metals, antibiotics, resistant pathogens, and nutrients. In South America, small farms use soil to dispose of animal waste, a practice that is expected to increase with global pork production. The potential of SWW as a nutrient source is promising, contributing to global food security, nutrient cycling, and mineral fertilizer reduction. Short- and long-term studies evaluated the effects of SWW on soil and plant parameters, such as nutrients, heavy metals, organic matter (OM), cation exchange capacity (CEC), and pH. Although promising results have been observed in short- and medium-term applications, long-term applications require more attention due to heavy metal concentrations. Organic soil amendment strategies, due to their economic and ecological benefits, are commonly used to reduce the bioavailability of heavy metals. However, the rate of degradation and initial levels of OM must be monitored to avoid changes in soil pH and release of metals. The study aimed to evaluate the long-term effects of SWW application on soil fertility parameters, focusing on calcium (Ca), magnesium (Mg), and potassium (K), in addition to CEC and OM. Experiments were conducted at the Universidade Estadual do Oeste do Paraná, Brazil, using 24 drainage lysimeters for nine years, with different application rates of SWW and mineral fertilization. Principal Component Analysis (PCA) was then conducted to summarize the composite variables, known as principal components (PC), and limit the dimensionality to be evaluated. The retained PCs were then correlated with the original variables to identify the level of association between each variable and each PC. Data were interpreted using Analysis of Variance - ANOVA for general linear models (GLM). As OM was not measured in the 2007 soybean experiment, it was assessed separately from PCA to avoid loss of information. PCA and ANOVA indicated that crop type, SWW, and mineral fertilization significantly influenced soil nutrient levels. Soybeans presented higher concentrations of Ca, Mg, and CEC. The application of SWW influenced K levels, with higher concentrations observed in SWW from biodigesters and higher doses of swine manure. Variability in nutrient concentrations in SWW due to factors such as animal age and feed composition makes standard recommendations challenging. OM levels increased in SWW-treated soils, improving soil fertility and structure. In conclusion, the application of SWW can increase soil fertility and crop productivity, reducing environmental risks. However, careful management and long-term monitoring are essential to optimize benefits and minimize adverse effects.Keywords: contamination, water research, biodigester, nutrients
Procedia PDF Downloads 6723081 Assessment of Soil Salinity through Remote Sensing Technique in the Coastal Region of Bangladesh
Abstract:
Soil salinity is a major problem for the coastal region of Bangladesh, which has been increasing for the last four decades. Determination of soil salinity is essential for proper land use planning for agricultural crop production. The aim of the research is to estimate and monitor the soil salinity in the study area. Remote sensing can be an effective tool for detecting soil salinity in data-scarce conditions. In the research, Landsat 8 is used, which required atmospheric and radiometric correction, and nine soil salinity indices are applied to develop a soil salinity map. Ground soil salinity data, i.e., EC value, is collected as a printed map which is then scanned and digitized to develop a point shapefile. Linear regression is made between satellite-based generated map and ground soil salinity data, i.e., EC value. The results show that maximum R² value is found for salinity index SI 7 = G*R/B representing 0.022. This minimal R² value refers that there is a negligible relationship between ground EC value and salinity index generated value. Hence, these indices are not appropriate to assess soil salinity though many studies used those soil salinity indices successfully. Therefore, further research is necessary to formulate a model for determining the soil salinity in the coastal of Bangladesh.Keywords: soil salinity, EC, Landsat 8, salinity indices, linear regression, remote sensing
Procedia PDF Downloads 35223080 Despiking of Turbulent Flow Data in Gravel Bed Stream
Authors: Ratul Das
Abstract:
The present experimental study insights the decontamination of instantaneous velocity fluctuations captured by Acoustic Doppler Velocimeter (ADV) in gravel-bed streams to ascertain near-bed turbulence for low Reynolds number. The interference between incidental and reflected pulses produce spikes in the ADV data especially in the near-bed flow zone and therefore filtering the data are very essential. Nortek’s Vectrino four-receiver ADV probe was used to capture the instantaneous three-dimensional velocity fluctuations over a non-cohesive bed. A spike removal algorithm based on the acceleration threshold method was applied to note the bed roughness and its influence on velocity fluctuations and velocity power spectra in the carrier fluid. The velocity power spectra of despiked signals with a best combination of velocity threshold (VT) and acceleration threshold (AT) are proposed which ascertained velocity power spectra a satisfactory fit with the Kolmogorov “–5/3 scaling-law” in the inertial sub-range. Also, velocity distributions below the roughness crest level fairly follows a third-degree polynomial series.Keywords: acoustic doppler velocimeter, gravel-bed, spike removal, reynolds shear stress, near-bed turbulence, velocity power spectra
Procedia PDF Downloads 30423079 Without the Labs, You’re Only Guessing: Why Laboratory Data Is a Baseline for Water and Wastewater Treatment
Authors: Sadikia Thomas Caldarazzo
Abstract:
Water municipalities are crucial to public and environmental health and safety. Historically, support labs have acted as a system of checks and balances for water and wastewater treatment plants. However, their contributions extend far beyond this role and often go unrecognized. The City of Baltimore Department of Public Works operates four labs: two for water treatment and two for wastewater treatment. Each lab supports its designated plant by employing subject matter experts (SMEs) in chemistry, biology, and quality control. These experts produce valid and precise data in a timely manner, reducing data uncertainty for both routine monitoring and special sampling. Beyond the plants, Baltimore City labs also analyze samples and produce data for several inter-agency divisions, including utility maintenance, solid waste, stormwater, the office of research management, sanitary pre-treatment, and special sampling requested by the Mayor, City Council, or consumers within the distribution area. Municipalities may not always fully appreciate the integral role labs play in urban water cycle management. As operations continually adjust their processes to maintain compliance, support labs must also adapt to these changes. High-ranking lab managers should be consulted for scientific advice in major utility changes or decisions, similar to consulting lawyers or other experts. Lab managers and scientific analysts are first responders in analyzing data trends and sample integrity. They provide analytical insights into biological and chemical changes in the processes, aiding in decision-making and problem-solving for operations. Engaging lab personnel at various levels to address impediments and discrepancies leads to effective solutions. Effective communication and consultation are imperative. Comprehensive sharing of pertinent information increases awareness and acts as a catalyst for optimal utility management. Fully utilizing lab management for scientific guidance and data analysis builds resilience across the utility's operations. The data produced by the labs, validated by their SMEs, forms the basis for regulatory reports that plant operations and other divisions submit to their regulators for permit purposes. Labs are on the front line, along with operations! This collaboration also helps personnel outside the labs understand outliers or trend changes in data without being forced to delve outside their areas of expertise.Keywords: water, wastewater, wastewater treatment, water treatment
Procedia PDF Downloads 723078 RS Based SCADA System for Longer Distance Powered Devices
Authors: Harkishen Singh, Gavin Mangeni
Abstract:
This project aims at building an efficient and automatic power monitoring SCADA system, which is capable of monitoring the electrical parameters of high voltage powered devices in real time for example RMS voltage and current, frequency, energy consumed, power factor etc. The system uses RS-485 serial communication interface to transfer data over longer distances. Embedded C programming is the platform used to develop two hardware modules namely: RTU and Master Station modules, which both use the CC2540 BLE 4.0 microcontroller configured in slave / master mode. The Si8900 galvanic ally isolated microchip is used to perform ADC externally. The hardware communicates via UART port and sends data to the user PC using the USB port. Labview software is used to design a user interface to display current state of the power loads being monitored as well as logs data to excel spreadsheet file. An understanding of the Si8900’s auto baud rate process is key to successful implementation of this project.Keywords: SCADA, RS485, CC2540, labview, Si8900
Procedia PDF Downloads 30623077 Creating Database and Building 3D Geological Models: A Case Study on Bac Ai Pumped Storage Hydropower Project
Authors: Nguyen Chi Quang, Nguyen Duong Tri Nguyen
Abstract:
This article is the first step to research and outline the structure of the geotechnical database in the geological survey of a power project; in the context of this report creating the database that has been carried out for the Bac Ai pumped storage hydropower project. For the purpose of providing a method of organizing and storing geological and topographic survey data and experimental results in a spatial database, the RockWorks software is used to bring optimal efficiency in the process of exploiting, using, and analyzing data in service of the design work in the power engineering consulting. Three-dimensional (3D) geotechnical models are created from the survey data: such as stratigraphy, lithology, porosity, etc. The results of the 3D geotechnical model in the case of Bac Ai pumped storage hydropower project include six closely stacked stratigraphic formations by Horizons method, whereas modeling of engineering geological parameters is performed by geostatistical methods. The accuracy and reliability assessments are tested through error statistics, empirical evaluation, and expert methods. The three-dimensional model analysis allows better visualization of volumetric calculations, excavation and backfilling of the lake area, tunneling of power pipelines, and calculation of on-site construction material reserves. In general, the application of engineering geological modeling makes the design work more intuitive and comprehensive, helping construction designers better identify and offer the most optimal design solutions for the project. The database always ensures the update and synchronization, as well as enables 3D modeling of geological and topographic data to integrate with the designed data according to the building information modeling. This is also the base platform for BIM & GIS integration.Keywords: database, engineering geology, 3D Model, RockWorks, Bac Ai pumped storage hydropower project
Procedia PDF Downloads 17423076 Blockchain Technology for Secure and Transparent Oil and Gas Supply Chain Management
Authors: Gaurav Kumar Sinha
Abstract:
The oil and gas industry, characterized by its complex and global supply chains, faces significant challenges in ensuring security, transparency, and efficiency. Blockchain technology, with its decentralized and immutable ledger, offers a transformative solution to these issues. This paper explores the application of blockchain technology in the oil and gas supply chain, highlighting its potential to enhance data security, improve transparency, and streamline operations. By leveraging smart contracts, blockchain can automate and secure transactions, reducing the risk of fraud and errors. Additionally, the integration of blockchain with IoT devices enables real-time tracking and monitoring of assets, ensuring data accuracy and integrity throughout the supply chain. Case studies and pilot projects within the industry demonstrate the practical benefits and challenges of implementing blockchain solutions. The findings suggest that blockchain technology can significantly improve trust and collaboration among supply chain participants, ultimately leading to more efficient and resilient operations. This study provides valuable insights for industry stakeholders considering the adoption of blockchain technology to address their supply chain management challenges.Keywords: blockchain technology, oil and gas supply chain, data security, transparency, smart contracts, IoT integration, real-time tracking, asset monitoring, fraud reduction, supply chain efficiency, data integrity, case studies, industry implementation, trust, collaboration.
Procedia PDF Downloads 3923075 Descriptive Analysis of the Relationship between State and Civil Society in Hegel's Political Thought
Authors: Garineh Keshishyan Siraki
Abstract:
Civil society is one of the most important concepts of the twentieth century and even so far. Modern and postmodern thinkers have provided different definitions of civil society. Of course, the concept of civil society has undergone many changes over time. The relationship between government and civil society is one of the relationships that attracted the attention of many contemporary thinkers. Hegel, the thinker we discussed in this article also explores the relationship between these concepts and emphasizing the dialectical method, he has drawn three lines between family, state, and civil society. In Hegel's view, the creation of civil society will lead to a reduction of social conflict and increased social cohesion. The importance of the issue is due to the study of social cohesion and the ways to increase it. The importance of the issue is due to the study of social cohesion and the ways to increase it. This paper, which uses a descriptive-analytic method to examine Hegel's dialectical theory of civil society, after examining the relationship between the family and the state and finding the concept of civil society as the interface and the interconnected circle of these two, investigates tripartite economic, legal, and pluralistic systems. In this article, after examining the concepts of the market, the right and duty, the individual interests and the development of the exchange economy, Hegel's view is to examine the concept of freedom and its relation with civil society. The results of this survey show that, in Hegel's thought, the separation between the political system and the social system is a natural and necessary thing. In Hegel's view, because of those who are in society, they have selfish features; the community is in tension and contradiction. Therefore, the social realms within which conflicts emerge must be identified and controlled by specific mechanisms. It can also be concluded that the government can act to reduce social conflicts by legislating, using force or forming trade unions. The bottom line is that Hegel wants to reconcile between the individual, the state and civil society and it is not possible to rely on ethics.Keywords: civil society, cohesion system, economic system, family, the legal system, state
Procedia PDF Downloads 20423074 Growth Performance Of fresh Water Microalgae Chlorella sp. Exposed to Carbon Dioxide
Authors: Titin Handayani, Adi Mulyanto, Fajar Eko Priyanto
Abstract:
It is generally recognized, that algae could be an interesting option for reducing CO₂ emissions. Based on light and CO₂, algae can be used for the production various economically interesting products. Current algae cultivation techniques, however, still present a number of limitations. Efficient feeding of CO₂, especially on a large scale, is one of them. Current methods for CO₂ feeding to algae cultures rely on the sparging pure CO₂ or directly from flue gas. The limiting factor in this system is the solubility of CO₂ in water, which demands a considerable amount of energy for an effective gas to liquid transfer and leads to losses to the atmosphere. Due to the current ineffective methods for CO₂ introduction into algae ponds very large surface areas would be required for enough ponds to capture a considerable amount of the CO₂. The purpose of this study is to assess technology to capture carbon dioxide (CO₂) emissions generated by industry by utilizing of microalgae Chlorella sp. The microalgae were cultivated in a bioreactor culture pond raceway type. The result is expected to be useful in mitigating the effects of greenhouse gases in reducing the CO₂ emissions. The research activities include: (1) Characterization of boiler flue gas, (2) Operation of culture pond, (3) Sampling and sample analysis. The results of this study showed that the initial assessment absorption of the flue gas by microalgae using 1000 L raceway pond completed by heat exchanger were quite promising. The transfer of CO₂ into the pond culture system was run well. This identified from the success of cooling the boiler flue gas from the temperature of about 200 °C to below ambient temperature. Except for the temperature, the gas bubbles into the culture media were quite fine. Therefore, the contact between the gas and the media was well performed. The efficiency of CO₂ absorption by Chlorella sp reached 6.68 % with an average CO₂ loading of 0.29 g/L/day.Keywords: Chlorella sp., CO2 emission, heat exchange, microalgae, milk industry, raceway pond
Procedia PDF Downloads 21923073 The Inequality Effects of Natural Disasters: Evidence from Thailand
Authors: Annop Jaewisorn
Abstract:
This study explores the relationship between natural disasters and inequalities -both income and expenditure inequality- at a micro-level of Thailand as the first study of this nature for this country. The analysis uses a unique panel and remote-sensing dataset constructed for the purpose of this research. It contains provincial inequality measures and other economic and social indicators based on the Thailand Household Survey during the period between 1992 and 2019. Meanwhile, the data on natural disasters, which are remote-sensing data, are received from several official geophysical or meteorological databases. Employing a panel fixed effects, the results show that natural disasters significantly reduce household income and expenditure inequality as measured by the Gini index, implying that rich people in Thailand bear a higher cost of natural disasters when compared to poor people. The effect on income inequality is mainly driven by droughts, while the effect on expenditure inequality is mainly driven by flood events. The results are robust across heterogeneity of the samples, lagged effects, outliers, and an alternative inequality measure.Keywords: inequality, natural disasters, remote-sensing data, Thailand
Procedia PDF Downloads 12923072 Non-Local Simultaneous Sparse Unmixing for Hyperspectral Data
Authors: Fanqiang Kong, Chending Bian
Abstract:
Sparse unmixing is a promising approach in a semisupervised fashion by assuming that the observed pixels of a hyperspectral image can be expressed in the form of linear combination of only a few pure spectral signatures (end members) in an available spectral library. However, the sparse unmixing problem still remains a great challenge at finding the optimal subset of endmembers for the observed data from a large standard spectral library, without considering the spatial information. Under such circumstances, a sparse unmixing algorithm termed as non-local simultaneous sparse unmixing (NLSSU) is presented. In NLSSU, the non-local simultaneous sparse representation method for endmember selection of sparse unmixing, is used to finding the optimal subset of endmembers for the similar image patch set in the hyperspectral image. And then, the non-local means method, as a regularizer for abundance estimation of sparse unmixing, is used to exploit the abundance image non-local self-similarity. Experimental results on both simulated and real data demonstrate that NLSSU outperforms the other algorithms, with a better spectral unmixing accuracy.Keywords: hyperspectral unmixing, simultaneous sparse representation, sparse regression, non-local means
Procedia PDF Downloads 25323071 Human Resource Management Practices, Person-Environment Fit and Financial Performance in Brazilian Publicly Traded Companies
Authors: Bruno Henrique Rocha Fernandes, Amir Rezaee, Jucelia Appio
Abstract:
The relation between Human Resource Management (HRM) practices and organizational performance remains the subject of substantial literature. Though many studies demonstrated positive relationship, still major influencing variables are not yet clear. This study considers the Person-Environment Fit (PE Fit) and its components, Person-Supervisor (PS), Person-Group (PG), Person-Organization (PO) and Person-Job (PJ) Fit, as possible explanatory variables. We analyzed PE Fit as a moderator between HRM practices and financial performance in the “best companies to work” in Brazil. Data from HRM practices were classified through the High Performance Working Systems (HPWS) construct and data on PE-Fit were obtained through surveys among employees. Financial data, consisting of return on invested capital (ROIC) and price earnings ratio (PER) were collected for publicly traded best companies to work. Findings show that PO Fit and PJ Fit play a significant moderator role for PER but not for ROIC.Keywords: financial performance, human resource management, high performance working systems, person-environment fit
Procedia PDF Downloads 16823070 Flow Duration Curves and Recession Curves Connection through a Mathematical Link
Authors: Elena Carcano, Mirzi Betasolo
Abstract:
This study helps Public Water Bureaus in giving reliable answers to water concession requests. Rapidly increasing water requests can be supported provided that further uses of a river course are not totally compromised, and environmental features are protected as well. Strictly speaking, a water concession can be considered a continuous drawing from the source and causes a mean annual streamflow reduction. Therefore, deciding if a water concession is appropriate or inappropriate seems to be easily solved by comparing the generic demand to the mean annual streamflow value at disposal. Still, the immediate shortcoming for such a comparison is that streamflow data are information available only for few catchments and, most often, limited to specific sites. Subsequently, comparing the generic water demand to mean daily discharge is indeed far from being completely satisfactory since the mean daily streamflow is greater than the water withdrawal for a long period of a year. Consequently, such a comparison appears to be of little significance in order to preserve the quality and the quantity of the river. In order to overcome such a limit, this study aims to complete the information provided by flow duration curves introducing a link between Flow Duration Curves (FDCs) and recession curves and aims to show the chronological sequence of flows with a particular focus on low flow data. The analysis is carried out on 25 catchments located in North-Eastern Italy for which daily data are provided. The results identify groups of catchments as hydrologically homogeneous, having the lower part of the FDCs (corresponding streamflow interval is streamflow Q between 300 and 335, namely: Q(300), Q(335)) smoothly reproduced by a common recession curve. In conclusion, the results are useful to provide more reliable answers to water request, especially for those catchments which show similar hydrological response and can be used for a focused regionalization approach on low flow data. A mathematical link between streamflow duration curves and recession curves is herein provided, thus furnishing streamflow duration curves information upon a temporal sequence of data. In such a way, by introducing assumptions on recession curves, the chronological sequence upon low flow data can also be attributed to FDCs, which are known to lack this information by nature.Keywords: chronological sequence of discharges, recession curves, streamflow duration curves, water concession
Procedia PDF Downloads 19623069 Alternating Expectation-Maximization Algorithm for a Bilinear Model in Isoform Quantification from RNA-Seq Data
Authors: Wenjiang Deng, Tian Mou, Yudi Pawitan, Trung Nghia Vu
Abstract:
Estimation of isoform-level gene expression from RNA-seq data depends on simplifying assumptions, such as uniform reads distribution, that are easily violated in real data. Such violations typically lead to biased estimates. Most existing methods provide a bias correction step(s), which is based on biological considerations, such as GC content–and applied in single samples separately. The main problem is that not all biases are known. For example, new technologies such as single-cell RNA-seq (scRNA-seq) may introduce new sources of bias not seen in bulk-cell data. This study introduces a method called XAEM based on a more flexible and robust statistical model. Existing methods are essentially based on a linear model Xβ, where the design matrix X is known and derived based on the simplifying assumptions. In contrast, XAEM considers Xβ as a bilinear model with both X and β unknown. Joint estimation of X and β is made possible by simultaneous analysis of multi-sample RNA-seq data. Compared to existing methods, XAEM automatically performs empirical correction of potentially unknown biases. XAEM implements an alternating expectation-maximization (AEM) algorithm, alternating between estimation of X and β. For speed XAEM utilizes quasi-mapping for read alignment, thus leading to a fast algorithm. Overall XAEM performs favorably compared to other recent advanced methods. For simulated datasets, XAEM obtains higher accuracy for multiple-isoform genes, particularly for paralogs. In a differential-expression analysis of a real scRNA-seq dataset, XAEM achieves substantially greater rediscovery rates in an independent validation set.Keywords: alternating EM algorithm, bias correction, bilinear model, gene expression, RNA-seq
Procedia PDF Downloads 14623068 A New Distribution and Application on the Lifetime Data
Authors: Gamze Ozel, Selen Cakmakyapan
Abstract:
We introduce a new model called the Marshall-Olkin Rayleigh distribution which extends the Rayleigh distribution using Marshall-Olkin transformation and has increasing and decreasing shapes for the hazard rate function. Various structural properties of the new distribution are derived including explicit expressions for the moments, generating and quantile function, some entropy measures, and order statistics are presented. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. The potentiality of the new model is illustrated by means of real life data set.Keywords: Marshall-Olkin distribution, Rayleigh distribution, estimation, maximum likelihood
Procedia PDF Downloads 50423067 Comparative Study between the Absorbed Dose of 67ga-Ecc and 68ga-Ecc
Authors: H. Yousefnia, S. Zolghadri, S. Shanesazzadeh, A.Lahooti, A. R. Jalilian
Abstract:
In this study, 68Ga-ECC and 67Ga-ECC were both prepared with the radiochemical purity of higher than 97% in less than 30 min. The biodistribution data for 68Ga-ECC showed the extraction of the most of the activity from the urinary tract. The absorbed dose was estimated based on biodistribution data in mice by the medical internal radiation dose (MIRD) method. Comparison between human absorbed dose estimation for these two agents indicated the values of approximately ten-fold higher after injection of 67Ga-ECC than 68Ga-ECC in the most organs. The results showed that 68Ga-ECC can be considered as a more potential agent for renal imaging compared to 67Ga-ECC.Keywords: effective absorbed dose, ethylenecysteamine cysteine, Ga-67, Ga-68
Procedia PDF Downloads 47123066 Privacy Label: An Alternative Approach to Present Privacy Policies from Online Services to the User
Authors: Diego Roberto Goncalves De Pontes, Sergio Donizetti Zorzo
Abstract:
Studies show that most users do not read privacy policies from the online services they use. Some authors claim that one of the main causes of this is that policies are long and usually hard to understand, which make users lose interest in reading them. In this scenario, users may agree with terms without knowing what kind of data is being collected and why. Given that, we aimed to develop a model that would present the privacy policies contents in an easy and graphical way for the user to understand. We call it the Privacy Label. Using information recovery techniques, we propose an architecture that is able to extract information about what kind of data is being collected and to what end in the policies and show it to the user in an automated way. To assess our model, we calculated the precision, recall and f-measure metrics on the information extracted by our technique. The results for each metric were 68.53%, 85.61% e 76,13%, respectively, making it possible for the final user to understand which data was being collected without reading the whole policy. Also, our proposal can facilitate the notice-and-choice by presenting privacy policy information in an alternative way for online users.Keywords: privacy, policies, user behavior, computer human interaction
Procedia PDF Downloads 30923065 Logistic Regression Model versus Additive Model for Recurrent Event Data
Authors: Entisar A. Elgmati
Abstract:
Recurrent infant diarrhea is studied using daily data collected in Salvador, Brazil over one year and three months. A logistic regression model is fitted instead of Aalen's additive model using the same covariates that were used in the analysis with the additive model. The model gives reasonably similar results to that using additive regression model. In addition, the problem with the estimated conditional probabilities not being constrained between zero and one in additive model is solved here. Also martingale residuals that have been used to judge the goodness of fit for the additive model are shown to be useful for judging the goodness of fit of the logistic model.Keywords: additive model, cumulative probabilities, infant diarrhoea, recurrent event
Procedia PDF Downloads 64023064 From Industry 4.0 to Agriculture 4.0: A Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability
Authors: Angelo Corallo, Maria Elena Latino, Marta Menegoli
Abstract:
Agri-food value chain involves various stakeholders with different roles. All of them abide by national and international rules and leverage marketing strategies to advance their products. Food products and related processing phases carry with it a big mole of data that are often not used to inform final customer. Some data, if fittingly identified and used, can enhance the single company, and/or the all supply chain creates a math between marketing techniques and voluntary traceability strategies. Moreover, as of late, the world has seen buying-models’ modification: customer is careful on wellbeing and food quality. Food citizenship and food democracy was born, leveraging on transparency, sustainability and food information needs. Internet of Things (IoT) and Analytics, some of the innovative technologies of Industry 4.0, have a significant impact on market and will act as a main thrust towards a genuine ‘4.0 change’ for agriculture. But, realizing a traceability system is not simple because of the complexity of agri-food supply chain, a lot of actors involved, different business models, environmental variations impacting products and/or processes, and extraordinary climate changes. In order to give support to the company involved in a traceability path, starting from business model analysis and related business process a Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability was conceived. Studying each process task and leveraging on modeling techniques lead to individuate information held by different actors during agri-food supply chain. IoT technologies for data collection and Analytics techniques for data processing supply information useful to increase the efficiency intra-company and competitiveness in the market. The whole information recovered can be shown through IT solutions and mobile application to made accessible to the company, the entire supply chain and the consumer with the view to guaranteeing transparency and quality.Keywords: agriculture 4.0, agri-food suppy chain, industry 4.0, voluntary traceability
Procedia PDF Downloads 14823063 Investigation of the Relationship between Personality Components and Tendency to Addiction to Domestic Violence
Authors: Mohamad Reza Khodabakhsh
Abstract:
Violence against women is a historical phenomenon; although its form and type are common in various societies and cultures, this type of violence occurs in terms of physical, psychological, financial, and sexual dimensions. This is the cause of many social deviations and endangers the center of the family as the most important institution. This research seeks to investigate the relationship between personality characteristics and the tendency to addiction to domestic violence. One hundred fifty women and one hundred fifty men were selected by the available sampling method. One hundred fifty men were admitted to drug addiction camps, and women included domestic violence cases. A questionnaire on addiction tendency, Five Personality Traits (NEO), and attitudes toward violence against women was used. Data were analyzed in descriptive and inferential statistics. The data were analyzed at the level of descriptive mean, mean, and standard deviation and analyzed using SPSS 20 software using correlation and analysis of variance at the level of inferential level. And the data were analyzed at the p≤0.05 significance level. The results showed that there is a significant relationship between personality traits and a tendency to addiction and domestic violence.Keywords: personality, addiction, domestic violence, family
Procedia PDF Downloads 10823062 Artificial Intelligence Assisted Sentiment Analysis of Hotel Reviews Using Topic Modeling
Authors: Sushma Ghogale
Abstract:
With a surge in user-generated content or feedback or reviews on the internet, it has become possible and important to know consumers' opinions about products and services. This data is important for both potential customers and businesses providing the services. Data from social media is attracting significant attention and has become the most prominent channel of expressing an unregulated opinion. Prospective customers look for reviews from experienced customers before deciding to buy a product or service. Several websites provide a platform for users to post their feedback for the provider and potential customers. However, the biggest challenge in analyzing such data is in extracting latent features and providing term-level analysis of the data. This paper proposes an approach to use topic modeling to classify the reviews into topics and conduct sentiment analysis to mine the opinions. This approach can analyse and classify latent topics mentioned by reviewers on business sites or review sites, or social media using topic modeling to identify the importance of each topic. It is followed by sentiment analysis to assess the satisfaction level of each topic. This approach provides a classification of hotel reviews using multiple machine learning techniques and comparing different classifiers to mine the opinions of user reviews through sentiment analysis. This experiment concludes that Multinomial Naïve Bayes classifier produces higher accuracy than other classifiers.Keywords: latent Dirichlet allocation, topic modeling, text classification, sentiment analysis
Procedia PDF Downloads 10423061 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand
Authors: Neeta Kumari, Gopal Pathak
Abstract:
Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination
Procedia PDF Downloads 55523060 Translanguaging In Preschools: New Evidence from Polish-English Bilingual Children
Authors: Judyta Pawliszko
Abstract:
The study draws on the theoretical framework of translanguaging. It investigates translanguaging patterns and how meaning-making processes among bilingual children in preschool are affected by using two different languages, 8 months of observation and 200 hours of vocal recordings of children (3-6 years old) provide data on bilingual children’s linguistic repertoire why children translanguage, and how they achieve understanding with the strategic use of the two languages. The data gathered point to translanguaging as a practice that maximizes meaning-making processes among preschool bilingual children.Keywords: translanguaging, bilingualism, preschool, polish-english bilingual children
Procedia PDF Downloads 11423059 Towards a Framework for Embedded Weight Comparison Algorithm with Business Intelligence in the Plantation Domain
Authors: M. Pushparani, A. Sagaya
Abstract:
Embedded systems have emerged as important elements in various domains with extensive applications in automotive, commercial, consumer, healthcare and transportation markets, as there is emphasis on intelligent devices. On the other hand, Business Intelligence (BI) has also been extensively used in a range of applications, especially in the agriculture domain which is the area of this research. The aim of this research is to create a framework for Embedded Weight Comparison Algorithm with Business Intelligence (EWCA-BI). The weight comparison algorithm will be embedded within the plantation management system and the weighbridge system. This algorithm will be used to estimate the weight at the site and will be compared with the actual weight at the plantation. The algorithm will be used to build the necessary alerts when there is a discrepancy in the weight, thus enabling better decision making. In the current practice, data are collected from various locations in various forms. It is a challenge to consolidate data to obtain timely and accurate information for effective decision making. Adding to this, the unstable network connection leads to difficulty in getting timely accurate information. To overcome the challenges embedding is done on a portable device that will have the embedded weight comparison algorithm to also assist in data capture and synchronize data at various locations overcoming the network short comings at collection points. The EWCA-BI will provide real-time information at any given point of time, thus enabling non-latent BI reports that will provide crucial information to enable efficient operational decision making. This research has a high potential in bringing embedded system into the agriculture industry. EWCA-BI will provide BI reports with accurate information with uncompromised data using an embedded system and provide alerts, therefore, enabling effective operation management decision-making at the site.Keywords: embedded business intelligence, weight comparison algorithm, oil palm plantation, embedded systems
Procedia PDF Downloads 29123058 R Statistical Software Applied in Reliability Analysis: Case Study of Diesel Generator Fans
Authors: Jelena Vucicevic
Abstract:
Reliability analysis represents a very important task in different areas of work. In any industry, this is crucial for maintenance, efficiency, safety and monetary costs. There are ways to calculate reliability, unreliability, failure density and failure rate. This paper will try to introduce another way of calculating reliability by using R statistical software. R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. The R programming environment is a widely used open source system for statistical analysis and statistical programming. It includes thousands of functions for the implementation of both standard and new statistical methods. R does not limit user only to operation related only to these functions. This program has many benefits over other similar programs: it is free and, as an open source, constantly updated; it has built-in help system; the R language is easy to extend with user-written functions. The significance of the work is calculation of time to failure or reliability in a new way, using statistic. Another advantage of this calculation is that there is no need for technical details and it can be implemented in any part for which we need to know time to fail in order to have appropriate maintenance, but also to maximize usage and minimize costs. In this case, calculations have been made on diesel generator fans but the same principle can be applied to any other part. The data for this paper came from a field engineering study of the time to failure of diesel generator fans. The ultimate goal was to decide whether or not to replace the working fans with a higher quality fan to prevent future failures. Seventy generators were studied. For each one, the number of hours of running time from its first being put into service until fan failure or until the end of the study (whichever came first) was recorded. Dataset consists of two variables: hours and status. Hours show the time of each fan working and status shows the event: 1- failed, 0- censored data. Censored data represent cases when we cannot track the specific case, so it could fail or success. Gaining the result by using R was easy and quick. The program will take into consideration censored data and include this into the results. This is not so easy in hand calculation. For the purpose of the paper results from R program have been compared to hand calculations in two different cases: censored data taken as a failure and censored data taken as a success. In all three cases, results are significantly different. If user decides to use the R for further calculations, it will give more precise results with work on censored data than the hand calculation.Keywords: censored data, R statistical software, reliability analysis, time to failure
Procedia PDF Downloads 40223057 Distributed Automation System Based Remote Monitoring of Power Quality Disturbance on LV Network
Authors: Emmanuel D. Buedi, K. O. Boateng, Griffith S. Klogo
Abstract:
Electrical distribution networks are prone to power quality disturbances originating from the complexity of the distribution network, mode of distribution (overhead or underground) and types of loads used by customers. Data on the types of disturbances present and frequency of occurrence is needed for economic evaluation and hence finding solution to the problem. Utility companies have resorted to using secondary power quality devices such as smart meters to help gather the required data. Even though this approach is easier to adopt, data gathered from these devices may not serve the required purpose, since the installation of these devices in the electrical network usually does not conform to available PQM placement methods. This paper presents a design of a PQM that is capable of integrating into an existing DAS infrastructure to take advantage of available placement methodologies. The monitoring component of the design is implemented and installed to monitor an existing LV network. Data from the monitor is analyzed and presented. A portion of the LV network of the Electricity Company of Ghana is modeled in MATLAB-Simulink and analyzed under various earth fault conditions. The results presented show the ability of the PQM to detect and analyze PQ disturbance such as voltage sag and overvoltage. By adopting a placement methodology and installing these nodes, utilities are assured of accurate and reliable information with respect to the quality of power delivered to consumers.Keywords: power quality, remote monitoring, distributed automation system, economic evaluation, LV network
Procedia PDF Downloads 35823056 Hybrid Incentives for Excellent Abroad Students Study for High Education Degrees
Authors: L. Sun, C. Hardacre, A. Garforth, N. Zhang
Abstract:
Higher Education (HE) degrees in the UK are attractive for international students. The recognized reputation of the HE and the world-leading researchers in some areas in the UK imply that the HE degree from the UK might be a passport to a successful career for abroad students. However, it is a challenge to inspire outstanding students applying for the universities in the UK. The incentives should be country-specific for undergraduates and postgraduates. The potential obstacles to stop students applying for the study in the UK mainly lie in these aspects: different HE systems between the UK and other countries, such as China; less information for the application procedures; worries for the study in English for those non-native speakers; and expensive international tuition fees. The hybrid incentives have been proposed by the efforts from the institutions, stuffs, and students themselves. For example, excellent students from top universities would join us based on the abroad exchange programs or ‘2+2 programme’ with discount tuition. They are potential PhD candidates in the further study in the UK. Diversity promotions are implemented to share information and answer queries for potential students and their guardians. Face to face presentations, workshops, and seminars deliver chances for students to admire teaching and learning in the UK, and give students direct answers for their confusions. WeChat official account and Twitter as the online information platform are set up to post messages of recruitment, the guidance for the application procedures, and international collaboration in teaching and research as well. Students who are studying in the UK and the alumni would share their experiences in the study and lives in the UK and their careers after obtaining the HE degree would play as a positive stimulus to our potential students. Short term modules in the UK with exchangeable credits in summer holidays would give abroad students firsthand experiences of the study in the reputable schools with excellent academics, different cultures and the network with international students. Successful cases at the University of Manchester illustrated the effectiveness of these presented methodologies.Keywords: abroad students, degree study, high education, hybrid incentives
Procedia PDF Downloads 171