Search results for: Signal Processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5008

Search results for: Signal Processing

1708 A Graph-Based Retrieval Model for Passage Search

Authors: Junjie Zhong, Kai Hong, Lei Wang

Abstract:

Passage Retrieval (PR) plays an important role in many Natural Language Processing (NLP) tasks. Traditional efficient retrieval models relying on exact term-matching, such as TF-IDF or BM25, have nowadays been exceeded by pre-trained language models which match by semantics. Though they gain effectiveness, deep language models often require large memory as well as time cost. To tackle the trade-off between efficiency and effectiveness in PR, this paper proposes Graph Passage Retriever (GraphPR), a graph-based model inspired by the development of graph learning techniques. Different from existing works, GraphPR is end-to-end and integrates both term-matching information and semantics. GraphPR constructs a passage-level graph from BM25 retrieval results and trains a GCN-like model on the graph with graph-based objectives. Passages were regarded as nodes in the constructed graph and were embedded in dense vectors. PR can then be implemented using embeddings and a fast vector-similarity search. Experiments on a variety of real-world retrieval datasets show that the proposed model outperforms related models in several evaluation metrics (e.g., mean reciprocal rank, accuracy, F1-scores) while maintaining a relatively low query latency and memory usage.

Keywords: efficiency, effectiveness, graph learning, language model, passage retrieval, term-matching model

Procedia PDF Downloads 150
1707 Bacteriological Safety of Sachet Drinking Water Sold in Benin City, Nigeria

Authors: Stephen Olusanmi Akintayo

Abstract:

Access to safe drinking water remains a major challenge in Nigeria, and where available, the quality of the water is often in doubt. An alternative to the inadequate clean drinking water is being found in treated drinking water packaged in electrically heated sealed nylon and commonly referred to as “sachet water”. “Sachet water” is a common thing in Nigeria as the selling price is within the reach of members of the low socio- economic class and the setting up of a production unit does not require huge capital input. The bacteriological quality of selected “sachet water” stored at room temperature over a period of 56 days was determined to evaluate the safety of the sachet drinking water. Test for the detection of coliform bacteria was performed, and the result showed no coliform bacteria that indicates the absence of fecal contamination throughout 56 days. Heterotrophic plate count (HPC) was done at an interval 14 days, and the samples showed HPC between 0 cfu/mL and 64 cfu/mL. The highest count was observed on day 1. The count decreased between day 1 and 28, while no growths were observed between day 42 and 56. The decrease in HPC suggested the presence of residual disinfectant in the water. The organisms isolated were identified as Staphylococcus epidermis and S. aureus. The presence of these microorganisms in sachet water is indicative for contamination during processing and handling.

Keywords: coliform, heterotrophic plate count, sachet water, Staphyloccocus aureus, Staphyloccocus epidermidis

Procedia PDF Downloads 341
1706 Effect of Cuminum Cyminum L. Essential Oil on Staphylococcus Aureus during the Manufacture, Ripening and Storage of White Brined Cheese

Authors: Ali Misaghi, Afshin Akhondzadeh Basti, Ehsan Sadeghi

Abstract:

Staphylococcus aureus is a pathogen of major concern for clinical infection and food borne illness. Humans and most domesticated animals harbor S. aureus, and so we may expect staphylococci to be present in food products of animal origin or in those handled directly by humans, unless heat processing is applied to destroy them. Cuminum cyminum L. has been allocated the topic of some recent studies in addition to its well-documented traditional usage for treatment of toothache, dyspepsia, diarrhea, epilepsy and jaundice. The air-dried seed of the plant was completely immersed in water and subjected to hydro distillation for 3 h, using a clevenger-type apparatus. In this study, the effect of Cuminum cyminum L. essential oil (EO) on growth of Staphylococcus aureus in white brined cheese was evaluated. The experiment included different levels of EO (0, 7.5, 15 and 30 mL/ 100 mL milk) to assess their effects on S. aureus count during the manufacture, ripening and storage of Iranian white brined cheese for up to 75 days. The significant (P < 0.05) inhibitory effects of EO (even at its lowest concentration) on this organism were observed. The significant (P < 0.05) inhibitory effect of the EO on S. aureus shown in this study may improve the scope of the EO function in the food industry.

Keywords: cuminum cyminum L. essential oil, staphylococcus aureus, white brined cheese

Procedia PDF Downloads 389
1705 Performance Comparison of Thread-Based and Event-Based Web Servers

Authors: Aikaterini Kentroti, Theodore H. Kaskalis

Abstract:

Today, web servers are expected to serve thousands of client requests concurrently within stringent response time limits. In this paper, we evaluate experimentally and compare the performance as well as the resource utilization of popular web servers, which differ in their approach to handle concurrency. More specifically, Central Processing Unit (CPU)- and I/O intensive tests were conducted against the thread-based Apache and Go as well as the event-based Nginx and Node.js under increasing concurrent load. The tests involved concurrent users requesting a term of the Fibonacci sequence (the 10th, 20th, 30th) and the content of a table from the database. The results show that Go achieved the best performance in all benchmark tests. For example, Go reached two times higher throughput than Node.js and five times higher than Apache and Nginx in the 20th Fibonacci term test. In addition, Go had the smallest memory footprint and demonstrated the most efficient resource utilization, in terms of CPU usage. Instead, Node.js had by far the largest memory footprint, consuming up to 90% more memory than Nginx and Apache. Regarding the performance of Apache and Nginx, our findings indicate that Hypertext Preprocessor (PHP) becomes a bottleneck when the servers are requested to respond by performing CPU-intensive tasks under increasing concurrent load.

Keywords: apache, Go, Nginx, node.js, web server benchmarking

Procedia PDF Downloads 97
1704 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix to Pix GAN

Authors: Muhammad Atif, Cang Yan

Abstract:

The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on convolutional neural networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an autoencoder-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the PIX to PIX GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.

Keywords: low light image enhancement, deep learning, convolutional neural network, image processing

Procedia PDF Downloads 80
1703 Laser Based Microfabrication of a Microheater Chip for Cell Culture

Authors: Daniel Nieto, Ramiro Couceiro

Abstract:

Microfluidic chips have demonstrated their significant application potentials in microbiological processing and chemical reactions, with the goal of developing monolithic and compact chip-sized multifunctional systems. Heat generation and thermal control are critical in some of the biochemical processes. The paper presents a laser direct-write technique for rapid prototyping and manufacturing of microheater chips and its applicability for perfusion cell culture outside a cell incubator. The aim of the microheater is to take the role of conventional incubators for cell culture for facilitating microscopic observation or other online monitoring activities during cell culture and provides portability of cell culture operation. Microheaters (5 mm × 5 mm) have been successfully fabricated on soda-lime glass substrates covered with aluminum layer of thickness 120 nm. Experimental results show that the microheaters exhibit good performance in temperature rise and decay characteristics, with localized heating at targeted spatial domains. These microheaters were suitable for a maximum long-term operation temperature of 120ºC and validated for long-time operation at 37ºC. for 24 hours. Results demonstrated that the physiology of the cultured SW480 adenocarcinoma of the colon cell line on the developed microheater chip was consistent with that of an incubator.

Keywords: laser microfabrication, microheater, bioengineering, cell culture

Procedia PDF Downloads 297
1702 Wear Assessment of SS316l-Al2O3 Composites for Heavy Wear Applications

Authors: Catherine Kuforiji, Michel Nganbe

Abstract:

The abrasive wear of composite materials is a major challenge in highly demanding wear applications. Therefore, this study focuses on fabricating, testing and assessing the properties of 50wt% SS316L stainless steel–50wt% Al2O3 particle composites. Composite samples were fabricated using the powder metallurgy route. The effects of the powder metallurgy processing parameters and hard particle reinforcement were studied. The microstructure, density, hardness and toughness were characterized. The wear behaviour was studied using pin-on-disc testing under dry sliding conditions. The highest hardness of 1085.2 HV, the highest theoretical density of 94.7% and the lowest wear rate of 0.00397 mm3/m were obtained at a milling speed of 720 rpm, a compaction pressure of 794.4 MPa and sintering at 1400 °C in an argon atmosphere. Compared to commercial SS316 and fabricated SS316L, the composites had 7.4 times and 11 times lower wear rate, respectively. However, the commercial 90WC-10Co showed 2.2 times lower wear rate compared to the fabricated SS316L-Al2O3 composites primarily due to the higher ceramic content of 90 wt.% in the reference WC-Co. However, eliminating the relatively high porosity of about 5 vol% using processes such as HIP and hot pressing can be expected to lead to further substantial improvements of the composites wear resistance.

Keywords: SS316L, Al2O3, powder metallurgy, wear characterization

Procedia PDF Downloads 304
1701 Futuristic Black Box Design Considerations and Global Networking for Real Time Monitoring of Flight Performance Parameters

Authors: K. Parandhama Gowd

Abstract:

The aim of this research paper is to conceptualize, discuss, analyze and propose alternate design methodologies for futuristic Black Box for flight safety. The proposal also includes global networking concepts for real time surveillance and monitoring of flight performance parameters including GPS parameters. It is expected that this proposal will serve as a failsafe real time diagnostic tool for accident investigation and location of debris in real time. In this paper, an attempt is made to improve the existing methods of flight data recording techniques and improve upon design considerations for futuristic FDR to overcome the trauma of not able to locate the block box. Since modern day communications and information technologies with large bandwidth are available coupled with faster computer processing techniques, the attempt made in this paper to develop a failsafe recording technique is feasible. Further data fusion/data warehousing technologies are available for exploitation.

Keywords: flight data recorder (FDR), black box, diagnostic tool, global networking, cockpit voice and data recorder (CVDR), air traffic control (ATC), air traffic, telemetry, tracking and control centers ATTTCC)

Procedia PDF Downloads 572
1700 Adaptive Swarm Balancing Algorithms for Rare-Event Prediction in Imbalanced Healthcare Data

Authors: Jinyan Li, Simon Fong, Raymond Wong, Mohammed Sabah, Fiaidhi Jinan

Abstract:

Clinical data analysis and forecasting have make great contributions to disease control, prevention and detection. However, such data usually suffer from highly unbalanced samples in class distributions. In this paper, we target at the binary imbalanced dataset, where the positive samples take up only the minority. We investigate two different meta-heuristic algorithms, particle swarm optimization and bat-inspired algorithm, and combine both of them with the synthetic minority over-sampling technique (SMOTE) for processing the datasets. One approach is to process the full dataset as a whole. The other is to split up the dataset and adaptively process it one segment at a time. The experimental results reveal that while the performance improvements obtained by the former methods are not scalable to larger data scales, the later one, which we call Adaptive Swarm Balancing Algorithms, leads to significant efficiency and effectiveness improvements on large datasets. We also find it more consistent with the practice of the typical large imbalanced medical datasets. We further use the meta-heuristic algorithms to optimize two key parameters of SMOTE. Leading to more credible performances of the classifier, and shortening the running time compared with the brute-force method.

Keywords: Imbalanced dataset, meta-heuristic algorithm, SMOTE, big data

Procedia PDF Downloads 441
1699 Factors Influencing the Logistics Services Providers' Performance: A Literature Overview

Authors: A. Aguezzoul

Abstract:

The Logistics Services Providers (LSPs) selection and performance is a strategic decision that affects the overall performance of any company as well as its supply chain. It is a complex process, which takes into account various conflicting quantitative and qualitative factors, as well as outsourced logistics activities. This article focuses on the evolution of the weights associated to these factors over the last years in order to better understand the change in the importance that logistics professionals place on them criteria when choosing their LSPs. For that, an analysis of 17 main studies published during 2014-2017 period was carried out and the results are compared to those of a previous literature review on this subject. Our analysis allowed us to deduce the following observations: 1) the LSPs selection is a multi-criteria process; 2) the empirical character of the majority of studies, conducted particularly in Asian countries; 3) the criteria importance has undergone significant changes following the emergence of information technologies that have favored the work in close collaboration and in partnership between the LSPs and their customers, even on a worldwide scale; 4) the cost criterion is relatively less important than in the past; and finally 5) with the development of sustainable supply chains, the factors associated with the logistic activities of return and waste processing (reverse logistics) are becoming increasingly important in this multi-criteria process of selection and evaluation of LSPs performance.

Keywords: logistics outsourcing, logistics providers, multi-criteria decision making, performance

Procedia PDF Downloads 154
1698 Analysis of Airborne Data Using Range Migration Algorithm for the Spotlight Mode of Synthetic Aperture Radar

Authors: Peter Joseph Basil Morris, Chhabi Nigam, S. Ramakrishnan, P. Radhakrishna

Abstract:

This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data using the Range Migration Algorithm (RMA) for the spotlight mode of operation. Unlike in polar format algorithm (PFA), space-variant defocusing and geometric distortion effects are mitigated in RMA since it does not assume that the illuminating wave-fronts are planar. This facilitates the use of RMA for imaging scenarios involving severe differential range curvatures enabling the imaging of larger scenes at fine resolution and at shorter ranges with low center frequencies. The RMA algorithm for the spotlight mode of SAR is analyzed in this paper using the airborne data. Pre-processing operations viz: - range de-skew and motion compensation to a line are performed on the raw data before being fed to the RMA component. Various stages of the RMA viz:- 2D Matched Filtering, Along Track Fourier Transform and Slot Interpolation are analyzed to find the performance limits and the dependence of the imaging geometry on the resolution of the final image. The ability of RMA to compensate for severe differential range curvatures in the two-dimensional spatial frequency domain are also illustrated in this paper.

Keywords: range migration algorithm, spotlight SAR, synthetic aperture radar, matched filtering, slot interpolation

Procedia PDF Downloads 241
1697 Nagabhasma Preparation and Its Effect on Kidneys: A Histopathological Study

Authors: Lydia Andrade, Kumar M. R. Bhat

Abstract:

Heavy metals, especially lead, is considered to be a multi-organ toxicant. However, such heavy metals, are used in the preparation of traditional medicines. Nagabhasma is one of the traditional medicines. Lead is the metal used in its preparation. Lead is converted into a health beneficial, organometallic compound, when subjected to various traditional methods of purification. Therefore, this study is designed to evaluate the effect of such processed lead in various stages of traditionally prepared Nagabhasma on the histological structure of kidneys. Using the human equivalent doses of Nagabhasma, various stages of its preparation were fed orally for 30 days and 60 days (short term and long term). The treated and untreated rats were then sacrificed for the collection of kidneys. The kidneys were processed for histopathological study. The results show severe changes in the histological structure of kidneys. The animals treated with lead acetate showed changes in the epithelial cells lining the bowman’s capsule. The proximal and distal convoluted tubules were dilated leading to atrophy of their epithelial cells. The amount of inflammatory infiltrates was more in this group. A few groups also showed pockets of inter-tubular hemorrhage. These changes, however, were minimized as the stages progressed form stages 1 to 4 of Nagabhasma preparation. Therefore, it is necessary to stringently monitor the processing of lead acetate during the preparation of Nagabhasma.

Keywords: heavy metals, kidneys, lead acetate, Nagabhasma

Procedia PDF Downloads 146
1696 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.

Keywords: computer vision, human motion analysis, random forest, machine learning

Procedia PDF Downloads 36
1695 Automatic Generating CNC-Code for Milling Machine

Authors: Chalakorn Chitsaart, Suchada Rianmora, Mann Rattana-Areeyagon, Wutichai Namjaiprasert

Abstract:

G-code is the main factor in computer numerical control (CNC) machine for controlling the tool-paths and generating the profile of the object’s features. For obtaining high surface accuracy of the surface finish, non-stop operation is required for CNC machine. Recently, to design a new product, the strategy that concerns about a change that has low impact on business and does not consume lot of resources has been introduced. Cost and time for designing minor changes can be reduced since the traditional geometric details of the existing models are applied. In order to support this strategy as the alternative channel for machining operation, this research proposes the automatic generating codes for CNC milling operation. Using this technique can assist the manufacturer to easily change the size and the geometric shape of the product during the operation where the time spent for setting up or processing the machine are reduced. The algorithm implemented on MATLAB platform is developed by analyzing and evaluating the geometric information of the part. Codes are created rapidly to control the operations of the machine. Comparing to the codes obtained from CAM, this developed algorithm can shortly generate and simulate the cutting profile of the part.

Keywords: geometric shapes, milling operation, minor changes, CNC Machine, G-code, cutting parameters

Procedia PDF Downloads 349
1694 A Levelized Cost Analysis for Solar Energy Powered Sea Water Desalination in the Arabian Gulf Region

Authors: Abdullah Kaya, Muammer Koc

Abstract:

A levelized cost analysis of solar energy powered seawater desalination in The Emirate of Abu Dhabi is conducted to show that clean and renewable desalination is economically viable. The Emirate heavily relies on seawater desalination for its freshwater needs due to limited freshwater resources available. This trend is expected to increase further due to growing population and economic activity, rapid decline in limited freshwater reserves, and aggravating effects of climate change. Seawater desalination in Abu Dhabi is currently done through thermal desalination technologies such as multi-stage flash (MSF) and multi-effect distillation (MED) which are coupled with thermal power plants known as co-generation. Our analysis indicates that these thermal desalination methods are inefficient regarding energy consumption and harmful to the environment due to CO₂ emissions and other dangerous byproducts. Therefore, utilization of clean and renewable desalination options has become a must for The Emirate for the transition to a sustainable future. The rapid decline in the cost of solar PV system for energy production and RO technology for desalination makes the combination of these two an ideal option for a future of sustainable desalination in the Emirate of Abu Dhabi. A Levelized cost analysis for water produced by solar PV + RO system indicates that Abu Dhabi is well positioned to utilize this technological combination for cheap and clean desalination for the coming years. It has been shown that cap-ex cost of solar PV powered RO system has potential to go as low as to 101 million US $ (1111 $/m³) at best case considering the recent technological developments. The levelized cost of water (LCW) values fluctuate between 0.34 $/m³ for the baseline case and 0.27 $/m³ for the best case. Even the highly conservative case yields LCW cheaper than 100% from all thermal desalination methods currently employed in the Emirate. Exponential cost decreases in both solar PV and RO sectors along with increasing economic scale globally signal the fact that a cheap and clean desalination can be achieved by the combination of these technologies.

Keywords: solar PV, RO desalination, sustainable desalination, levelized cost of analysis, Emirate of Abu Dhabi

Procedia PDF Downloads 163
1693 Analytical Model of Multiphase Machines Under Electrical Faults: Application on Dual Stator Asynchronous Machine

Authors: Nacera Yassa, Abdelmalek Saidoune, Ghania Ouadfel, Hamza Houassine

Abstract:

The rapid advancement in electrical technologies has underscored the increasing importance of multiphase machines across various industrial sectors. These machines offer significant advantages in terms of efficiency, compactness, and reliability compared to their single-phase counterparts. However, early detection and diagnosis of electrical faults remain critical challenges to ensure the durability and safety of these complex systems. This paper presents an advanced analytical model for multiphase machines, with a particular focus on dual stator asynchronous machines. The primary objective is to develop a robust diagnostic tool capable of effectively detecting and locating electrical faults in these machines, including short circuits, winding faults, and voltage imbalances. The proposed methodology relies on an analytical approach combining electrical machine theory, modeling of magnetic and electrical circuits, and advanced signal analysis techniques. By employing detailed analytical equations, the developed model accurately simulates the behavior of multiphase machines in the presence of electrical faults. The effectiveness of the proposed model is demonstrated through a series of case studies and numerical simulations. In particular, special attention is given to analyzing the dynamic behavior of machines under different types of faults, as well as optimizing diagnostic and recovery strategies. The obtained results pave the way for new advancements in the field of multiphase machine diagnostics, with potential applications in various sectors such as automotive, aerospace, and renewable energies. By providing precise and reliable tools for early fault detection, this research contributes to improving the reliability and durability of complex electrical systems while reducing maintenance and operation costs.

Keywords: faults, diagnosis, modelling, multiphase machine

Procedia PDF Downloads 63
1692 Non-Contact Measurement of Soil Deformation in a Cyclic Triaxial Test

Authors: Erica Elice Uy, Toshihiro Noda, Kentaro Nakai, Jonathan Dungca

Abstract:

Deformation in a conventional cyclic triaxial test is normally measured by using point-wise measuring device. In this study, non-contact measurement technique was applied to be able to monitor and measure the occurrence of non-homogeneous behavior of the soil under cyclic loading. Non-contact measurement is executed through image processing. Two-dimensional measurements were performed using Lucas and Kanade optical flow algorithm and it was implemented Labview. In this technique, the non-homogeneous deformation was monitored using a mirrorless camera. A mirrorless camera was used because it is economical and it has the capacity to take pictures at a fast rate. The camera was first calibrated to remove the distortion brought about the lens and the testing environment as well. Calibration was divided into 2 phases. The first phase was the calibration of the camera parameters and distortion caused by the lens. The second phase was to for eliminating the distortion brought about the triaxial plexiglass. A correction factor was established from this phase. A series of consolidated undrained cyclic triaxial test was performed using a coarse soil. The results from the non-contact measurement technique were compared to the measured deformation from the linear variable displacement transducer. It was observed that deformation was higher at the area where failure occurs.

Keywords: cyclic loading, non-contact measurement, non-homogeneous, optical flow

Procedia PDF Downloads 301
1691 Stabilizing Additively Manufactured Superalloys at High Temperatures

Authors: Keivan Davami, Michael Munther, Lloyd Hackel

Abstract:

The control of properties and material behavior by implementing thermal-mechanical processes is based on mechanical deformation and annealing according to a precise schedule that will produce a unique and stable combination of grain structure, dislocation substructure, texture, and dispersion of precipitated phases. The authors recently developed a thermal-mechanical technique to stabilize the microstructure of additively manufactured nickel-based superalloys even after exposure to high temperatures. However, the mechanism(s) that controls this stability is still under investigation. Laser peening (LP), also called laser shock peening (LSP), is a shock based (50 ns duration) post-processing technique used for extending performance levels and improving service life of critical components by developing deep levels of plastic deformation, thereby generating high density of dislocations and inducing compressive residual stresses in the surface and deep subsurface of components. These compressive residual stresses are usually accompanied with an increase in hardness and enhance the material’s resistance to surface-related failures such as creep, fatigue, contact damage, and stress corrosion cracking. While the LP process enhances the life span and durability of the material, the induced compressive residual stresses relax at high temperatures (>0.5Tm, where Tm is the absolute melting temperature), limiting the applicability of the technology. At temperatures above 0.5Tm, the compressive residual stresses relax, and yield strength begins to drop dramatically. The principal reason is the increasing rate of solid-state diffusion, which affects both the dislocations and the microstructural barriers. Dislocation configurations commonly recover by mechanisms such as climbing and recombining rapidly at high temperatures. Furthermore, precipitates coarsen, and grains grow; virtually all of the available microstructural barriers become ineffective.Our results indicate that by using “cyclic” treatments with sequential LP and annealing steps, the compressive stresses survive, and the microstructure is stable after exposure to temperatures exceeding 0.5Tm for a long period of time. When the laser peening process is combined with annealing, dislocations formed as a result of LPand precipitates formed during annealing have a complex interaction that provides further stability at high temperatures. From a scientific point of view, this research lays the groundwork for studying a variety of physical, materials science, and mechanical engineering concepts. This research could lead to metals operating at higher sustained temperatures enabling improved system efficiencies. The strengthening of metals by a variety of means (alloying, work hardening, and other processes) has been of interest for a wide range of applications. However, the mechanistic understanding of the often complex processes of interactionsbetween dislocations with solute atoms and with precipitates during plastic deformation have largely remained scattered in the literature. In this research, the elucidation of the actual mechanisms involved in the novel cyclic LP/annealing processes as a scientific pursuit is investigated through parallel studies of dislocation theory and the implementation of advanced experimental tools. The results of this research help with the validation of a novel laser processing technique for high temperature applications. This will greatly expand the applications of the laser peening technology originally devised only for temperatures lower than half of the melting temperature.

Keywords: laser shock peening, mechanical properties, indentation, high temperature stability

Procedia PDF Downloads 149
1690 The Evolution of the Human Brain from the Hind Brain to the Fore Brain: Dialectics from the African Perspective in Understanding Stunted Development in Science and Technology

Authors: Philemon Wokoma Iyagba, Obey Onenee Christie

Abstract:

From the hindbrain, which is responsible for motor activities, to the forebrain, responsible for processing information related to complex cognitive activities, the human brain has continued to evolve over the years. This evolution- has been progressive, leading to advancements in science and technology. However, the development of science and technology in Africa, where ancient civilization arguably began, has been retrogressive. Dialectics was done by dissecting different opinions on the reason behind the stunted development of science and technology in Africa. The researchers proposed that the inability to sustain the technological advancements made by early Africans is due to poor or lack of replicability of the African knowledge-based system, almost no or poor documentation of adopted procedures and the approval-seeking mentality that cheaply paved the way for westernization which also led to the adulteration of the African way of life and education without making room for incorporating her identity and proper alignment of her rich cultural heritage in education and her enormous achievements before and during the middle age. This article discussed conceptual issues, with its positions based on established facts, the discussion was based on relevant literature and recommendations were made accordingly.

Keywords: forebrain, hindbrain, dialectics from African perspective, development in science and technology

Procedia PDF Downloads 77
1689 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods

Authors: Bandar Alahmadi, Lethia Jackson

Abstract:

Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 339
1688 The Global-Local Dimension in Cognitive Control after Left Lateral Prefrontal Cortex Damage: Evidence from the Non-Verbal Domain

Authors: Eleni Peristeri, Georgia Fotiadou, Ianthi-Maria Tsimpli

Abstract:

The local-global dimension has been studied extensively in healthy controls and preference for globally processed stimuli has been validated in both the visual and auditory modalities. Critically, the local-global dimension has an inherent interference resolution component, a type of cognitive control, and left-prefrontal-cortex-damaged (LPFC) individuals have exhibited inability to override habitual response behaviors in item recognition tasks that involve representational interference. Eight patients with damage in the left PFC (age range: 32;5 to 69;0. Mean age: 54;6 yrs) and twenty age- and education-matched language-unimpaired adults (mean age: 56;7yrs) have participated in the study. Distinct performance patterns were found between the language-unimpaired and the LPFC-damaged group which have mainly stemmed from the latter’s difficulty with inhibiting global stimuli in incongruent trials. Overall, the local-global attentional dimension affects LPFC-damaged individuals with non-fluent aphasia in non-language domains implicating distinct types of inhibitory processes depending on the level of processing.

Keywords: left lateral prefrontal cortex damage (LPFC), local-global non-language attention, representational interference, non-fluent aphasia

Procedia PDF Downloads 470
1687 Disruption of MoNUC1 Gene Mediates Conidiation in Magnaporthe oryzae

Authors: Irshad Ali Khan, Jian-Ping Lu, Xiao-Hong Liu, Fu-Cheng Lin

Abstract:

This study reports the functional analysis of a gene MoNUC1 in M. oryzae, which is homologous to the Saccharomyces cerevisiae NUC1 encoding a mitochondrial nuclease protein. The MoNUC1 having a gene locus MGG_05324 is 1002-bp in length and encodes an identical protein of 333 amino acids. We disrupted the gene through gene disruption strategy and isolated two mutants confirmed by southern blotting. The deleted mutants were then used for phenotypic studies and their phenotypes were compared to those of the Guy-11 strain. The mutants were first grown on CM medium to find the effect of MoNUC1 gene disruption on colony growth and the mutants were found to show normal culture colony growth similar to that of the Guy-11 strain. Conidial germination and appressorial formation were also similar in both the mutants and Guy-11 strains showing that this gene plays no significant role in these phenotypes. For pathogenicity, the mutants and Guy-11 mycelium blocks were inoculated on blast susceptible barley seedlings and it was found that both the strains exhibited full pathogenicity showing coalesced and necrotic blast lesions suggesting that this gene is not involved in pathogenicity. Mating of the mutants with 2539 strain formed numerous perithecia showing that MoNUC1 is not essential for sexual reproduction in M. oryzae. However, the mutants were found to form reduced conidia (1.06±8.03B and 1.08±9.80B) than those of the Guy-11 strain (1.46±10.61A) and we conclude that this protein is not required for the blast fungus to cause pathogenicity but plays significant role in conidiation. Proteins of signal transduction pathways that could be disrupted/ intervened genetically or chemically could lead to antifungal products of important fungal cereal diseases and reduce rice yield losses. Tipping the balance toward understanding the whole of pathogenesis, rather than simply conidiation will take some time, but clearly presents the most exciting challenge of all.

Keywords: appressorium formation, conidiation, NUC1, Magnaporthe oryzae, pathogenicity

Procedia PDF Downloads 498
1686 Inflammatory Alleviation on Microglia Cells by an Apoptotic Mimicry

Authors: Yi-Feng Kao, Huey-Jine Chai, Chin-I Chang, Yi-Chen Chen, June-Ru Chen

Abstract:

Microglia is a macrophage that resides in brain, and overactive microglia may result in brain neuron damage or inflammation. In this study, the phospholipids was extracted from squid skin and manufactured into a liposome (SQ liposome) to mimic apoptotic body. We then evaluated anti-inflammatory effects of SQ liposome on mouse microglial cell line (BV-2) by lipopolysaccharide (LPS) induction. First, the major phospholipid constituents in the squid skin extract were including 46.2% of phosphatidylcholine, 18.4% of phosphatidylethanolamine, 7.7% of phosphatidylserine, 3.5% of phosphatidylinositol, 4.9% of Lysophosphatidylcholine and 19.3% of other phospholipids by HPLC-UV analysis. The contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the squid skin extract were 11.8 and 28.7%, respectively. The microscopic images showed that microglia cells can engulf apoptotic cells or SQ-liposome. In cell based studies, there was no cytotoxicity to BV-2 as the concentration of SQ-liposome was less than 2.5 mg/mL. The LPS induced pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), were significant suppressed (P < 0.05) by pretreated 0.03~2.5mg/ml SQ liposome. Oppositely, the anti-inflammatory cytokines transforming growth factor-beta (TGF-β) and interleukin-10 (IL-10) secretion were enhanced (P < 0.05). The results suggested that SQ-liposome possess anti-inflammatory properties on BV-2 and may be a good strategy for against neuro-inflammatory disease.

Keywords: apoptotic mimicry, neuroinflammation, microglia, squid processing by-products

Procedia PDF Downloads 483
1685 Anthropometric Data Variation within Gari-Frying Population

Authors: T. M. Samuel, O. O. Aremu, I. O. Ismaila, L. I. Onu, B. O. Adetifa, S. E. Adegbite, O. O. Olokoshe

Abstract:

The imperative of anthropometry in designing to fit cannot be overemphasized. Of essence is the variability of measurements among population for which data is collected. In this paper anthropometric data were collected for the design of gari-frying facility such that work system would be designed to fit the gari-frying population in the Southwestern states of Nigeria comprising Lagos, Ogun, Oyo, Osun, Ondo, and Ekiti. Twenty-seven body dimensions were measured among 120 gari-frying processors. Statistical analysis was performed using SPSS package to determine the mean, standard deviation, minimum value, maximum value and percentiles (2nd, 5th, 25th, 50th, 75th, 95th, and 98th) of the different anthropometric parameters. One sample t-test was conducted to determine the variation within the population. The 50th percentiles of some of the anthropometric parameters were compared with those from other populations in literature. The correlation between the worker’s age and the body anthropometry was also investigated.The mean weight, height, shoulder height (sitting), eye height (standing) and eye height (sitting) are 63.37 kg, 1.57 m, 0.55 m, 1.45 m, and 0.67 m respectively.Result also shows a high correlation with other populations and a statistically significant difference in variability of data within the population in all the body dimensions measured. With a mean age of 42.36 years, results shows that age will be a wrong indicator for estimating the anthropometry for the population.

Keywords: anthropometry, cassava processing, design to fit, gari-frying, workstation design

Procedia PDF Downloads 253
1684 Marble Powder’s Effect on Permeability and Mechanical Properties of Concrete

Authors: Shams Ul Khaliq, Khan Shahzada, Bashir Alam, Fawad Bilal, Mushtaq Zeb, Faizan Akbar

Abstract:

Marble industry contributes its fair share in environmental deterioration, producing voluminous amounts of mud and other excess residues obtained from marble and granite processing, polluting soil, water and air. Reusing these products in other products will not just prevent our environment from polluting but also help with economy. In this research, an attempt has been made to study the expediency of waste Marble Powder (MP) in concrete production. Various laboratory tests were performed to investigate permeability, physical and mechanical properties, such as slump, compressive strength, split tensile test, etc. Concrete test samples were fabricated with varying MP content (replacing 5-30% cement), furnished from two different sources. 5% replacement of marble dust caused 6% and 12% decrease in compressive and tensile strength respectively. These parameters gradually decreased with increasing MP content up to 30%. Most optimum results were obtained with 10% replacement. Improvement in consistency and permeability were noticed. The permeability was improved with increasing MP proportion up to 10% without substantial decrease in compressive strength. Obtained results revealed that MP as an alternative to cement in concrete production is a viable option considering its economic and environment friendly implications.

Keywords: marble powder, strength, permeability, consistency, environment

Procedia PDF Downloads 333
1683 Mobile Devices and E-Learning Systems as a Cost-Effective Alternative for Digitizing Paper Quizzes and Questionnaires in Social Work

Authors: K. Myška, L. Pilařová

Abstract:

The article deals with possibilities of using cheap mobile devices with the combination of free or open source software tools as an alternative to professional hardware and software equipment. Especially in social work, it is important to find cheap yet functional solution that can compete with complex but expensive solutions for digitizing paper materials. Our research was focused on the analysis of cheap and affordable solutions for digitizing the most frequently used paper materials that are being commonly used by terrain workers in social work. We used comparative analysis as a research method. Social workers need to process data from paper forms quite often. It is still more affordable, time and cost-effective to use paper forms to get feedback in many cases. Collecting data from paper quizzes and questionnaires can be done with the help of professional scanners and software. These technologies are very powerful and have advanced options for digitizing and processing digitized data, but are also very expensive. According to results of our study, the combination of open source software and mobile phone or cheap scanner can be considered as a cost-effective alternative to professional equipment.

Keywords: digitalization, e-learning, mobile devices, questionnaire

Procedia PDF Downloads 151
1682 Association of Sensory Processing and Cognitive Deficits in Children with Autism Spectrum Disorders – Pioneer Study in Saudi Arabia

Authors: Rana Zeina

Abstract:

Objective: The association between Sensory problems and cognitive abilities has been studied in individuals with Autism Spectrum Disorders (ASDs). In this study, we used a neuropsychological test to evaluate memory and attention in ASDs children with sensory problems compared to the ASDs children without sensory problems. Methods: Four visual memory tests of Cambridge Neuropsychological Test Automated Battery (CANTAB) including Big/Little Circle (BLC), Simple Reaction Time (SRT), Intra/Extra Dimensional Set Shift (IED), Spatial Recognition Memory (SRM), were administered to 14 ASDs children with sensory problems compared to 13 ASDs without sensory problems aged 3 to 12 with IQ of above 70. Results: ASDs Individuals with sensory problems performed worse than the ASDs group without sensory problems on comprehension, learning, reversal and simple reaction time tasks, and no significant difference between the two groups was recorded in terms of the visual memory and visual comprehension tasks. Conclusion: The findings of this study suggest that ASDs children with sensory problems are facing deficits in learning, comprehension, reversal, and speed of response to stimuli.

Keywords: visual memory, attention, autism spectrum disorders, CANTAB eclipse

Procedia PDF Downloads 451
1681 Cardiokey: A Binary and Multi-Class Machine Learning Approach to Identify Individuals Using Electrocardiographic Signals on Wearable Devices

Authors: S. Chami, J. Chauvin, T. Demarest, Stan Ng, M. Straus, W. Jahner

Abstract:

Biometrics tools such as fingerprint and iris are widely used in industry to protect critical assets. However, their vulnerability and lack of robustness raise several worries about the protection of highly critical assets. Biometrics based on Electrocardiographic (ECG) signals is a robust identification tool. However, most of the state-of-the-art techniques have worked on clinical signals, which are of high quality and less noisy, extracted from wearable devices like a smartwatch. In this paper, we are presenting a complete machine learning pipeline that identifies people using ECG extracted from an off-person device. An off-person device is a wearable device that is not used in a medical context such as a smartwatch. In addition, one of the main challenges of ECG biometrics is the variability of the ECG of different persons and different situations. To solve this issue, we proposed two different approaches: per person classifier, and one-for-all classifier. The first approach suggests making binary classifier to distinguish one person from others. The second approach suggests a multi-classifier that distinguishes the selected set of individuals from non-selected individuals (others). The preliminary results, the binary classifier obtained a performance 90% in terms of accuracy within a balanced data. The second approach has reported a log loss of 0.05 as a multi-class score.

Keywords: biometrics, electrocardiographic, machine learning, signals processing

Procedia PDF Downloads 142
1680 Indoor Real-Time Positioning and Mapping Based on Manhattan Hypothesis Optimization

Authors: Linhang Zhu, Hongyu Zhu, Jiahe Liu

Abstract:

This paper investigated a method of indoor real-time positioning and mapping based on the Manhattan world assumption. In indoor environments, relying solely on feature matching techniques or other geometric algorithms for sensor pose estimation inevitably resulted in cumulative errors, posing a significant challenge to indoor positioning. To address this issue, we adopt the Manhattan world hypothesis to optimize the camera pose algorithm based on feature matching, which improves the accuracy of camera pose estimation. A special processing method was applied to image data frames that conformed to the Manhattan world assumption. When similar data frames appeared subsequently, this could be used to eliminate drift in sensor pose estimation, thereby reducing cumulative errors in estimation and optimizing mapping and positioning. Through experimental verification, it is found that our method achieves high-precision real-time positioning in indoor environments and successfully generates maps of indoor environments. This provides effective technical support for applications such as indoor navigation and robot control.

Keywords: Manhattan world hypothesis, real-time positioning and mapping, feature matching, loopback detection

Procedia PDF Downloads 61
1679 Self-Attention Mechanism for Target Hiding Based on Satellite Images

Authors: Hao Yuan, Yongjian Shen, Xiangjun He, Yuheng Li, Zhouzhou Zhang, Pengyu Zhang, Minkang Cai

Abstract:

Remote sensing data can provide support for decision-making in disaster assessment or disaster relief. The traditional processing methods of sensitive targets in remote sensing mapping are mainly based on manual retrieval and image editing tools, which are inefficient. Methods based on deep learning for sensitive target hiding are faster and more flexible. But these methods have disadvantages in training time and cost of calculation. This paper proposed a target hiding model Self Attention (SA) Deepfill, which used self-attention modules to replace part of gated convolution layers in image inpainting. By this operation, the calculation amount of the model becomes smaller, and the performance is improved. And this paper adds free-form masks to the model’s training to enhance the model’s universal. The experiment on an open remote sensing dataset proved the efficiency of our method. Moreover, through experimental comparison, the proposed method can train for a longer time without over-fitting. Finally, compared with the existing methods, the proposed model has lower computational weight and better performance.

Keywords: remote sensing mapping, image inpainting, self-attention mechanism, target hiding

Procedia PDF Downloads 136