Search results for: pandemic. Economics variables shocks
2558 Optimal Temperature and Duration for Dabbing Customers with the Massage Compressed Packs Reported from Customers' Perception
Authors: Wichan Lertlop, Boonyarat Chaleephay
Abstract:
The objective of this research was to study the appropriate thermal level and time for dabbing customers with the massage compressed pack reported from their perception. The investigation was conducted by comparing different angles of tilted heads done by the customers together with their perception before and after the dabbing. The variables included different temperature of the compressed packs and different dabbing duration. Samples in this study included volunteers who got massage therapy and dabbing with hot compressed packs by traditional Thai medical students. The experiment was conducted during January to June 2013. The research tool consisted of angle meters, stop watches, thermometers, and massage compressed packs. The customers were interviewed for their perceptions before and after the dabbing. The results showed that: 1. There was a difference of the average angles of tilted heads before and after the dabbing. 2. There was no difference of the average angles at different temperatures but constant duration. 3. There was no difference of the average angles at different durations. 4. The customers reported relaxation no matter what the various temperatures and various dabbing durations were. However, they reported too hot at the temperature 70 °C and over.Keywords: massage, therapy, therapeutic systems, technologies
Procedia PDF Downloads 1712557 Understanding the Impact of Consumers’ Perceptions and Attitudes toward Eco-Friendly Hotel Recommended Advertisements on Tourist Buying Behavior
Authors: Cherouk Amr Yassin
Abstract:
This study aims to provide insight into consumer decision-making, which has become very complicated to understand and predict in the existing world of sustainable development. The deficiency of a good understanding of the tourist's perception and attitude toward sustainable development in the tourism industry may impede the ability of organizations to build a sustainable marketing orientation and may negatively influence predicted consumer response. Therefore, this research paper adds further insights into the attitude toward recommended eco-friendly hotel advertisements and their effect on the purchase intention of eco-friendly services. Structural equational modeling was completed to realize the effects of the variables under investigation. The findings revealed that consumer decision-making in choosing eco-friendly hotels is affected by the positive attitude toward sustainable development ads, influenced by informativeness and credibility as values perceived by eco-friendly hotels. This study provides practical implications for tourism, marketers, hotel managers, promoters, and consumers.Keywords: attitude, consumer behavior, consumer decision making, eco-friendly hotels, perception, the tourism industry
Procedia PDF Downloads 1142556 Impact of COVID-19 Disease on Reproductive Health in Women
Authors: Mikailzade Parvin, Gurbanova Jamila, Alizade Samaya, Hasanova Afat
Abstract:
It is known that in March 2020, the World Health Organization (WHO) declared a global pandemic of the 2019 coronovirus disease COVID-19, caused by the severe acute respiratory syndrome coronovirus (SARS-CoV-2). In this period, ensuring the safety of pregnancy and childbirth has become one of the necessary issues. The measures taken in this direction naturally consisted of strengthening and improving preventive measures among pregnant women. It should be noted that the lethality of SARS-CoV-2 infection among women reached 25%. The relevance of studying the effect of COVID-19 on reproductive health in women is due to its wide spread worldwide, severe clinical course, and the occurrence of numerous complications or lethality. It is of urgent importance to study the impact of the mentioned coronavirus infection on the health of pregnant women and the serious complications caused by it.Taking these into account, 230 pregnant women infected with the COVID-19 virus infection were registered. The average age of the pregnant women included in the study was: 29.24±6.0. The diagnosis of corona virus infection was made on the basis of polymerase chain reaction (PCR), serological tests (IgG, IgM). In 57.4% of cases, bilateral pneumonia was recorded in pregnant women and confirmed on the basis of radiological (RH) examination. RH examination revealed pneumonia with infiltrate in the lungs. Among clinical symptoms in pregnant women infected with COVID-19 virus infection: in 86 (37.4%) cases, symptoms such as high fever (t-39.0oC), shortness of breath, fatigue, and hypoxia were noted in pregnant women. A decrease in SpO2 to a minimal level was recorded. Laboratory-instrumental examinations were carried out. The obtained results showed: the average limit of D-dimer was 0.8±0.5; prothrombin time 13.2±1.1 seconds; INR 0.98±0.08, prothrombin index 104.3±19.5%, EHS - 34.8±13.6 mm/s. It should be noted that respiratory distress syndrome (RDS), premature birth, malformed and extremely malformed newborns, asphyxia or hypoxia have been reported in infants born to pregnant women infected with the coronavirus disease.Thus, from the obtained indicators, it is known that pregnant women infected with the virus have a high risk of serious illness and death for both themselves and their babies. It has been proven that the majority of babies born to SARS-CoV-2 positive mothers have a negative impact on their health.Keywords: Covid 19, reproductive health, preqnancy, premature birth
Procedia PDF Downloads 942555 Bio-Hub Ecosystems: Investment Risk Analysis Using Monte Carlo Techno-Economic Analysis
Authors: Kimberly Samaha
Abstract:
In order to attract new types of investors into the emerging Bio-Economy, new methodologies to analyze investment risk are needed. The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding the use of biomass as a feedstock for power plants. This study looked at repurposing existing biomass-energy plants into Circular Zero-Waste Bio-Hub Ecosystems. A Bio-Hub model that first targets a ‘whole-tree’ approach and then looks at the circular economics of co-hosting diverse industries (wood processing, aquaculture, agriculture) in the vicinity of the Biomass Power Plants facilities. This study modeled the economics and risk strategies of cradle-to-cradle linkages to incorporate the value-chain effects on capital/operational expenditures and investment risk reductions using a proprietary techno-economic model that incorporates investment risk scenarios utilizing the Monte Carlo methodology. The study calculated the sequential increases in profitability for each additional co-host on an operating forestry-based biomass energy plant in West Enfield, Maine. Phase I starts with the base-line of forestry biomass to electricity only and was built up in stages to include co-hosts of a greenhouse and a land-based shrimp farm. Phase I incorporates CO2 and heat waste streams from the operating power plant in an analysis of lowering and stabilizing the operating costs of the agriculture and aquaculture co-hosts. Phase II analysis incorporated a jet-fuel biorefinery and its secondary slip-stream of biochar which would be developed into two additional bio-products: 1) A soil amendment compost for agriculture and 2) A biochar effluent filter for the aquaculture. The second part of the study applied the Monte Carlo risk methodology to illustrate how co-location derisks investment in an integrated Bio-Hub versus individual investments in stand-alone projects of energy, agriculture or aquaculture. The analyzed scenarios compared reductions in both Capital and Operating Expenditures, which stabilizes profits and reduces the investment risk associated with projects in energy, agriculture, and aquaculture. The major findings of this techno-economic modeling using the Monte Carlo technique resulted in the masterplan for the first Bio-Hub to be built in West Enfield, Maine. In 2018, the site was designated as an economic opportunity zone as part of a Federal Program, which allows for Capital Gains tax benefits for investments on the site. Bioenergy facilities are currently at a critical juncture where they have an opportunity to be repurposed into efficient, profitable and socially responsible investments, or be idled and scrapped. The Bio-hub Ecosystems techno-economic analysis model is a critical model to expedite new standards for investments in circular zero-waste projects. Profitable projects will expedite adoption and advance the critical transition from the current ‘take-make-dispose’ paradigm inherent in the energy, forestry and food industries to a more sustainable Bio-Economy paradigm that supports local and rural communities.Keywords: bio-economy, investment risk, circular design, economic modelling
Procedia PDF Downloads 1022554 Performance Analysis of Deterministic Stable Election Protocol Using Fuzzy Logic in Wireless Sensor Network
Authors: Sumanpreet Kaur, Harjit Pal Singh, Vikas Khullar
Abstract:
In Wireless Sensor Network (WSN), the sensor containing motes (nodes) incorporate batteries that can lament at some extent. To upgrade the energy utilization, clustering is one of the prototypical approaches for split sensor motes into a number of clusters where one mote (also called as node) proceeds as a Cluster Head (CH). CH selection is one of the optimization techniques for enlarging stability and network lifespan. Deterministic Stable Election Protocol (DSEP) is an effectual clustering protocol that makes use of three kinds of nodes with dissimilar residual energy for CH election. Fuzzy Logic technology is used to expand energy level of DSEP protocol by using fuzzy inference system. This paper presents protocol DSEP using Fuzzy Logic (DSEP-FL) CH by taking into account four linguistic variables such as energy, concentration, centrality and distance to base station. Simulation results show that our proposed method gives more effective results in term of a lifespan of network and stability as compared to the performance of other clustering protocols.Keywords: DSEP, fuzzy logic, energy model, WSN
Procedia PDF Downloads 2082553 Business Ethics in Islamic and Economic Perspective
Authors: Mohammad Iqbal Malik
Abstract:
Economic development of a country depends on its business ethics and values. Islamic teachings provide obvious guidelines in this regard. Mutual understanding, honesty and ethics possess central place in Islamic teachings. These teachings not only prohibit from amalgamation, black-marketing, hoarding and deception but also force to treat a customer amiably. Business ethics are broad spectrum in Islamic society due to these high moral values. One can estimate the importance of business ethics in Islam for economic development in Islamic society is evident by the Hadith of Prophet Muhammad (PBUH) in which He excluded a trader from Muslim community who did not behave in good manners with his clients. In this study we present impact of business ethics on economic development of a Muslim society. This study is based on basic teachings of Quran and Sunnah, Fiqh, Economics and other books. This study explores the behavior of Muslim traders and reveals useful inferences. Policy makers, traders, academia, scholars, and general public may learn lessons from this study with respect to business ethics in Islamic perspective.Keywords: ethics, business, Islam, economic perspective
Procedia PDF Downloads 4082552 Study of Human Position in Architecture with Contextual Approach
Authors: E. Zarei, M. Bazaei, A. seifi, A. Keshavarzi
Abstract:
Contextuallism has been always the main component of urban science. It not only has great direct and indirect impact on behaviors, events and interactions, but also is one of the basic factors of an urban values and identity. Nowadays there might be some deficiencies in the cities. In the theories of environment designing, humanistic orientations with the focus on culture and cultural variables would enable us to transfer information. To communicate with the context in which human lives, he needs some common memories, understandable symbols and daily activities in that context. The configuration of a place can impact on human’s behaviors. The goal of this research is to review 7 projects in different parts of the world with various usages and some factors such as ‘sense of place’, ‘sense of belonging’ and ‘social and cultural relations’ will be discussed in these projects. The method used for research in this project is descriptive- analytic. Library information and Internet are the main sources of gathering information and the method of reasoning used in this project is inductive. The consequence of this research will be some data in the form of tables that has been extracted from mentioned projects.Keywords: contextuallism with humanistic approach, sense of place, sense of belonging, social and cultural relations
Procedia PDF Downloads 3982551 An Empirical Study on Growth, Trade, Foreign Direct Investment and Environment in India
Authors: Shilpi Tripathi
Abstract:
India has adopted the policy of economic reforms (Globalization, Liberalization, and Privatization) in 1991 which has reduced the trade barriers and investment restrictions and further increased the economy’s international trade, foreign direct investment (FDI) inflows and Gross Domestic Product (GDP) growth. The paper empirically studies the relationship between India’s international trades, GDP, FDI and environment during 1978-2012. The first part of the paper focuses on the background and trends of FDI, GDP, trade, and environment (CO2). The second part focuses on the literature regarding the relationship among all the variables. The last part of paper, we examine the results of empirical analysis like co integration and Granger causality between foreign trade, FDI inflows, GDP and CO2 since 1978. The findings of the paper revealed that there is only one uni- directional causality exists between GDP and trade. The direction of causality reveals that international trade is one of the major contributors to the economic growth (GDP). While, there is no causality found between GDP and FDI, FDI, and CO2 and International trade and CO2. The paper concludes with the policy recommendations that will ensure environmental friendly trade, investment and growth in India for future.Keywords: international trade, foreign direct investment, GDP, CO2, co-integration, granger causality test
Procedia PDF Downloads 4412550 Examining the Effects of College Education on Democratic Attitudes in China: A Regression Discontinuity Analysis
Authors: Gang Wang
Abstract:
Education is widely believed to be a prerequisite for democracy and civil society, but the causal link between education and outcome variables is usually hardly to be identified. This study applies a fuzzy regression discontinuity design to examine the effects of college education on democratic attitudes in the Chinese context. In the analysis treatment assignment is determined by students’ college entry years and thus naturally selected by subjects’ ages. Using a sample of Chinese college students collected in Beijing in 2009, this study finds that college education actually reduces undergraduates’ motivation for political development in China but promotes political loyalty to the authoritarian government. Further hypotheses tests explain these interesting findings from two perspectives. The first is related to the complexity of politics. As college students progress over time, they increasingly realize the complexity of political reform in China’s authoritarian regime and rather stay away from politics. The second is related to students’ career opportunities. As students are close to graduation, they are immersed with job hunting and have a reduced interest in political freedom.Keywords: china, college education, democratic attitudes, regression discontinuity
Procedia PDF Downloads 3512549 Predicting Career Adaptability and Optimism among University Students in Turkey: The Role of Personal Growth Initiative and Socio-Demographic Variables
Authors: Yagmur Soylu, Emir Ozeren, Erol Esen, Digdem M. Siyez, Ozlem Belkis, Ezgi Burc, Gülce Demirgurz
Abstract:
The aim of the study is to determine the predictive power of personal growth initiative, socio-demographic variables (such as sex, grade, and working condition) on career adaptability and optimism of bachelor students in Dokuz Eylul University in Turkey. According to career construction theory, career adaptability is viewed as a psychosocial construct, which refers to an individual’s resources for dealing with current and expected tasks, transitions and traumas in their occupational roles. Career optimism is defined as positive results for future career development of individuals in the expectation that it will achieve or to put the emphasis on the positive aspects of the event and feel comfortable about the career planning process. Personal Growth Initiative (PGI) is defined as being proactive about one’s personal development. Additionally, personal growth is defined as the active and intentional engagement in the process of personal. A study conducted on college students revealed that individuals with high self-development orientation make more effort to discover the requirements of the profession and workspaces than individuals with low levels of personal development orientation. University life is a period that social relations and the importance of academic activities are increased, the students make efforts to progress through their career paths and it is also an environment that offers opportunities to students for their self-realization. For these reasons, personal growth initiative is potentially an important variable which has a key role for an individual during the transition phase from university to the working life. Based on the review of the literature, it is expected that individual’s personal growth initiative, sex, grade, and working condition would significantly predict one’s career adaptability. In the relevant literature, it can be seen that there are relatively few studies available on the career adaptability and optimism of university students. Most of the existing studies have been carried out with limited respondents. In this study, the authors aim to conduct a comprehensive research with a large representative sample of bachelor students in Dokuz Eylul University, Izmir, Turkey. By now, personal growth initiative and career development constructs have been predominantly discussed in western contexts where individualistic tendencies are likely to be seen. Thus, the examination of the same relationship within the context of Turkey where collectivistic cultural characteristics can be more observed is expected to offer valuable insights and provide an important contribution to the literature. The participants in this study were comprised of 1500 undergraduate students being included from thirteen faculties in Dokuz Eylul University. Stratified and random sampling methods were adopted for the selection of the participants. The Personal Growth Initiative Scale-II and Career Futures Inventory were used as the major measurement tools. In data analysis stage, several statistical analysis concerning the regression analysis, one-way ANOVA and t-test will be conducted to reveal the relationships of the constructs under investigation. At the end of this project, we will be able to determine the level of career adaptability and optimism of university students at varying degrees so that a fertile ground is likely to be created to carry out several intervention techniques to make a contribution to an emergence of a healthier and more productive youth generation in psycho-social sense.Keywords: career optimism, career adaptability, personal growth initiative, university students
Procedia PDF Downloads 4212548 Ripple Effect Analysis of Government Investment for Research and Development by the Artificial Neural Networks
Authors: Hwayeon Song
Abstract:
The long-term purpose of research and development (R&D) programs is to strengthen national competitiveness by developing new knowledge and technologies. Thus, it is important to determine a proper budget for government programs to maintain the vigor of R&D when the total funding is tight due to the national deficit. In this regard, a ripple effect analysis for the budgetary changes in R&D programs is necessary as well as an investigation of the current status. This study proposes a new approach using Artificial Neural Networks (ANN) for both tasks. It particularly focuses on R&D programs related to Construction and Transportation (C&T) technology in Korea. First, key factors in C&T technology are explored to draw impact indicators in three areas: economy, society, and science and technology (S&T). Simultaneously, ANN is employed to evaluate the relationship between data variables. From this process, four major components in R&D including research personnel, expenses, management, and equipment are assessed. Then the ripple effect analysis is performed to see the changes in the hypothetical future by modifying current data. Any research findings can offer an alternative strategy about R&D programs as well as a new analysis tool.Keywords: Artificial Neural Networks, construction and transportation technology, Government Research and Development, Ripple Effect
Procedia PDF Downloads 2492547 A Qualitative Study of Children’s Experiences of Living with Long-COVID
Authors: Camille Alexis-Garsee, Nicola Payne
Abstract:
One consequence of the pandemic has been the debilitating health impact that some people experience over a longer period of time, known as long-COVID. This has been predominately researched in adults; however, there is emerging evidence on the effects of long-COVID in children. Research has indicated over half of children who contracted COVID-19 experienced persistent symptoms four months after a confirmed diagnosis. There is little research on the impact of this on children and their families. This study aimed to explore the experiences of children with long-COVID, to enable further understanding of the impacts and needs within this group. Semi-structured interviews, facilitated by children’s drawings, were conducted with 15 children (aged 9-16, 9 females). Inductive thematic analysis was used to analyze the data. The findings tell a story of loss, change and of resilience. Many children were unable to engage in normal daily activities and were unable to attend school, however, all employed self-management techniques to cope with symptoms and were positive for the future. Four main themes were identified: (1) Education challenges: although some schools tried to accommodate the child’s new limitations with provision of flexi-attendance, online classes and a reduced timetable, children struggled to keep up with their schoolwork and needed more support; (2) Disrupted relationships: children felt socially isolated; they were forced to give up co and extra-curricular activities, were no longer in contact with friendship groups and missed out on key experiences with friends and family; (3) Diverse health-related challenges: children’s symptoms affected daily functioning but were also triggers for changes in thoughts and mood; (4) Coping and resilience: children actively engaged in symptom management and were able to ‘self-pace’ and/or employ distraction activities to cope. They were also focused on living a ‘normal’ life and looked to the future with great positivity. A key challenge of the long-term effects of COVID is recognizing and treating the illness in children and the subsequent impact on multiple aspects of their lives. Even though children described feeling disconnected in many ways, their life goals were still important. A multi-faceted approach is needed for management of this illness, with a focus on helping these children successfully reintegrate into society and achieve their dreams.Keywords: children’s illness experience, COVID-19, long-COVID in children, long-COVID kids, qualitative research
Procedia PDF Downloads 682546 Generalized Approach to Linear Data Transformation
Authors: Abhijith Asok
Abstract:
This paper presents a generalized approach for the simple linear data transformation, Y=bX, through an integration of multidimensional coordinate geometry, vector space theory and polygonal geometry. The scaling is performed by adding an additional ’Dummy Dimension’ to the n-dimensional data, which helps plot two dimensional component-wise straight lines on pairs of dimensions. The end result is a set of scaled extensions of observations in any of the 2n spatial divisions, where n is the total number of applicable dimensions/dataset variables, created by shifting the n-dimensional plane along the ’Dummy Axis’. The derived scaling factor was found to be dependent on the coordinates of the common point of origin for diverging straight lines and the plane of extension, chosen on and perpendicular to the ’Dummy Axis’, respectively. This result indicates the geometrical interpretation of a linear data transformation and hence, opportunities for a more informed choice of the factor ’b’, based on a better choice of these coordinate values. The paper follows on to identify the effect of this transformation on certain popular distance metrics, wherein for many, the distance metric retained the same scaling factor as that of the features.Keywords: data transformation, dummy dimension, linear transformation, scaling
Procedia PDF Downloads 3002545 Landfill Leachate and Settled Domestic Wastewater Co-Treatment Using Activated Carbon in Sequencing Batch Reactors
Authors: Amin Mojiri, Hamidi Abdul Aziz
Abstract:
Leachate is created while water penetrates through the waste in a landfill, carrying some forms of pollutants. In literature, for treatment of wastewater and leachate, different ways of biological treatment were used. Sequencing batch reactor (SBR) is a kind of biological treatment. This study investigated the co-treatment of landfill leachate and domestic waste water by SBR and powdered activated carbon augmented (PAC) SBR process. The response surface methodology (RSM) and central composite design (CCD) were employed. The independent variables were aeration rate (L/min), contact time (h), and the ratio of leachate to wastewater mixture (%; v/v)). To perform an adequate analysis of the aerobic process, three dependent parameters, i.e. COD, color, and ammonia-nitrogen (NH3-N or NH4-N) were measured as responses. The findings of the study indicated that the PAC-SBR showed a higher performance in elimination of certain pollutants, in comparison with SBR. With the optimal conditions of aeration rate (0.6 L/min), leachate to waste water ratio (20%), and contact time (10.8 h) for the PAC-SBR, the removal efficiencies for color, NH3-N, and COD were 72.8%, 98.5%, and 65.2%, respectively.Keywords: co-treatment, landfill Leachate, wastewater, sequencing batch reactor, activate carbon
Procedia PDF Downloads 4672544 Enhancing Social Well-Being in Older Adults Through Tailored Technology Interventions: A Future Systematic Review
Authors: Rui Lin, Jimmy Xiangji Huang, Gary Spraakman
Abstract:
This forthcoming systematic review will underscore the imperative of leveraging technology to mitigate social isolation in older adults, particularly in the context of unprecedented global challenges such as the COVID-19 pandemic. With the continual evolution of technology, it becomes crucial to scrutinize the efficacy of interventions and discern how they can alleviate social isolation and augment social well-being among the elderly. This review will strive to clarify the best methods for older adults to utilize cost-effective and user-friendly technology and will investigate how the adaptation and execution of such interventions can be fine-tuned to maximize their positive outcomes. The study will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to filter pertinent studies. We foresee conducting an analysis of articles and executing a narrative analysis to discover themes and indicators related to quality of life and, technology use and well-being. The review will examine how involving older adults at the community level, applying top practices from community-based participatory research, can establish efficient strategies to implement technology-based interventions designed to diminish social isolation and boost digital use self-efficacy. Applications based on mobile technology and virtual platforms are set to assume a crucial role not only in enhancing connections within families but also in connecting older adults to vital healthcare resources, fostering both physical and mental well-being. The review will investigate how technological devices and platforms can address the cognitive, visual, and auditory requirements of older adults, thus strengthening their confidence and proficiency in digital use—a crucial factor during enforced social distancing or self-isolation periods during pandemics. This review will endeavor to provide insights into the multifaceted benefits of technology for older adults, focusing on how tailored technological interventions can be a beacon of social and mental wellness in times of social restrictions. It will contribute to the growing body of knowledge on the intersection of technology and elderly well-being, offering nuanced understandings and practical implications for developing user-centric, effective, and inclusive technological solutions for older populations.Keywords: older adults, health service delivery, digital health, social isolation, social well-being
Procedia PDF Downloads 622543 Effect of Temperature and Time on the Yield of Silica from Rice Husk Ash
Authors: Mohammed Adamu Musa, Shehu Saminu Babba
Abstract:
The technological trend towards waste utilization and cost reduction in industrial processing has attracted use of Rice Husk as a value added material. Both rice husk (RH) and Rice Husk Ash (RHA) has been found suitable for wide range of domestic as well as industrial applications. Therefore, the purpose of this research is to produce high grade sodium silicate from rice husk ash by considering the effect of temperature and time of heating as the process variables. The experiment was performed by heating the rice husk at temperatures 500 °C, 600 °C, 700 °C and 800 °C and time 60min, 90min, 120min and 150min were used to obtain the ash. 1.0M of aqueous sodium hydroxide solution was used to dissolve the silicate from the ash, which contained crude sodium silicate. In addition, the ash was neutralized by adding 5M of HCL until the pH reached 3.5 to give silica gel. At 6000C and 120mins, 94.23% silica was obtained from the RHA. At higher temperatures (700 °C and 800 °C) the percentage yield of silica reduced due to surface melting and carbon fixation in the lattice caused by presence of potassium. For this research, 600 °C is considered to be the optimum temperature for silica production from RHA. Silica produced from RHA can generate aggregate value and can be used in areas such as pulp and paper, plastic and rubber reinforcement industries.Keywords: burning, rice husk, rice husk ash, silica, silica gel, temperature
Procedia PDF Downloads 2472542 Analysis of Diabetes Patients Using Pearson, Cost Optimization, Control Chart Methods
Authors: Devatha Kalyan Kumar, R. Poovarasan
Abstract:
In this paper, we have taken certain important factors and health parameters of diabetes patients especially among children by birth (pediatric congenital) where using the above three metrics methods we are going to assess the importance of each attributes in the dataset and thereby determining the most highly responsible and co-related attribute causing diabetics among young patients. We use cost optimization, control chart and Spearmen methodologies for the real-time application of finding the data efficiency in this diabetes dataset. The Spearmen methodology is the correlation methodologies used in software development process to identify the complexity between the various modules of the software. Identifying the complexity is important because if the complexity is higher, then there is a higher chance of occurrence of the risk in the software. With the use of control; chart mean, variance and standard deviation of data are calculated. With the use of Cost optimization model, we find to optimize the variables. Hence we choose the Spearmen, control chart and cost optimization methods to assess the data efficiency in diabetes datasets.Keywords: correlation, congenital diabetics, linear relationship, monotonic function, ranking samples, pediatric
Procedia PDF Downloads 2582541 Evaluation of Biosurfactant Production by a New Strain Isolated from the Lagoon of Mar Chica Degrading Gasoline
Authors: Ikram Kamal, Mohamed Blaghen
Abstract:
Pollution caused by petroleum hydrocarbons in terrestrial and aquatic environment is a common phenomenon that causes significant ecological and social problems. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. Currently, the main application is for enhancement of oil recovery and hydrocarbon bioremediation due to their biodegradability and low critical micelle concentration (CMC). In this study we have investigated the potential of bacterial strains collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition a GC/MS was used to separate and identify different biosurfactants purified.Keywords: petroleum hydrocarbons, biosurfactant, biodegradability, critical micelle concentration, lagoon Marchika
Procedia PDF Downloads 3622540 Multi-Faceted Growth in Creative Industries
Authors: Sanja Pfeifer, Nataša Šarlija, Marina Jeger, Ana Bilandžić
Abstract:
The purpose of this study is to explore the different facets of growth among micro, small and medium-sized firms in Croatia and to analyze the differences between models designed for all micro, small and medium-sized firms and those in creative industries. Three growth prediction models were designed and tested using the growth of sales, employment and assets of the company as dependent variables. The key drivers of sales growth are: prudent use of cash, industry affiliation and higher share of intangible assets. Growth of assets depends on retained profits, internal and external sources of financing, as well as industry affiliation. Growth in employment is closely related to sources of financing, in particular, debt and it occurs less frequently than growth in sales and assets. The findings confirm the assumption that growth strategies of small and medium-sized enterprises (SMEs) in creative industries have specific differences in comparison to SMEs in general. Interestingly, only 2.2% of growing enterprises achieve growth in employment, assets and sales simultaneously.Keywords: creative industries, growth prediction model, growth determinants, growth measures
Procedia PDF Downloads 3332539 Productivity and Profitability of Field Pea as Influenced by Different Levels of Fertility and Bio-Fertilizers under Irrigated Condition
Authors: Akhilesh Mishra, Geeta Rai, Arvind Srivastava, Nalini Tiwari
Abstract:
A field experiment was conducted during two consecutive Rabi seasons of 2007 and 2008 to study the economics of different bio-fertilizer’s inoculations in fieldpea (cv. Jai) at Chandra Shekhar Azad University of Agriculture and Technology, Kanpur (India). Results indicated that the seed inoculation with Rhizobium + PSB + PGPR improved all the growth; yield attributes and yields of field pea. Fresh and dry weight plant-1, nodules number and dry weight plant-1 were found significantly maximum. Number of grains pod-1, number and weight of pods plant-1 at maturity attributed significantly in increasing the grain yield as well as net return. On pooled basis, maximum net income (Rs.22169 ha-1) was obtained with the use of Rhizobium + PSB + PGPR which was improved by a margin of Rs.1502 (6.77%), 2972 (13.40%), 2672 (12.05%), 5212 (23.51%), 6176 (27.85%), 4666 (21.04%) and 8842/ha (39.88%) over the inoculation of PSB + PGPR, Rhizobium + PGPR, Rhizobium + PSB, PGPR, PSB, Rhizobium and control, respectively. Thus, it can be recommended that to earn the maximum net profit from dwarf field pea, seed should be inoculated with Rhizobium + PSB + PGPR.Keywords: rhizobium, phosphorus solubilizing bacteria, plant growth promoting rhizobacteria, field pea
Procedia PDF Downloads 4102538 Reliability Analysis for Cyclic Fatigue Life Prediction in Railroad Bolt Hole
Authors: Hasan Keshavarzian, Tayebeh Nesari
Abstract:
Bolted rail joint is one of the most vulnerable areas in railway track. A comprehensive approach was developed for studying the reliability of fatigue crack initiation of railroad bolt hole under random axle loads and random material properties. The operation condition was also considered as stochastic variables. In order to obtain the comprehensive probability model of fatigue crack initiation life prediction in railroad bolt hole, we used FEM, response surface method (RSM), and reliability analysis. Combined energy-density based and critical plane based fatigue concept is used for the fatigue crack prediction. The dynamic loads were calculated according to the axle load, speed, and track properties. The results show that axle load is most sensitive parameter compared to Poisson’s ratio in fatigue crack initiation life. Also, the reliability index decreases slowly due to high cycle fatigue regime in this area.Keywords: rail-wheel tribology, rolling contact mechanic, finite element modeling, reliability analysis
Procedia PDF Downloads 3812537 Sharing Personal Information for Connection: The Effect of Social Exclusion on Consumer Self-Disclosure to Brands
Authors: Jiyoung Lee, Andrew D. Gershoff, Jerry Jisang Han
Abstract:
Most extant research on consumer privacy concerns and their willingness to share personal data has focused on contextual factors (e.g., types of information collected, type of compensation) that lead to consumers’ personal information disclosure. Unfortunately, the literature lacks a clear understanding of how consumers’ incidental psychological needs may influence consumers’ decisions to share their personal information with companies or brands. In this research, we investigate how social exclusion, which is an increasing societal problem, especially since the onset of the COVID-19 pandemic, leads to increased information disclosure intentions for consumers. Specifically, we propose and find that when consumers become socially excluded, their desire for social connection increases, and this desire leads to a greater willingness to disclose their personal information with firms. The motivation to form and maintain interpersonal relationships is one of the most fundamental human needs, and many researchers have found that deprivation of belongingness has negative consequences. Given the negative effects of social exclusion and the universal need to affiliate with others, people respond to exclusion with a motivation for social reconnection, resulting in various cognitive and behavioral consequences, such as paying greater attention to social cues and conforming to others. Here, we propose personal information disclosure as another form of behavior that can satisfy such social connection needs. As self-disclosure can serve as a strategic tool in creating and developing social relationships, those who have been socially excluded and thus have greater social connection desires may be more willing to engage in self-disclosure behavior to satisfy such needs. We conducted four experiments to test how feelings of social exclusion can influence the extent to which consumers share their personal information with brands. Various manipulations and measures were used to demonstrate the robustness of our effects. Through the four studies, we confirmed that (1) consumers who have been socially excluded show greater willingness to share their personal information with brands and that (2) such an effect is driven by the excluded individuals’ desire for social connection. Our findings shed light on how the desire for social connection arising from exclusion influences consumers’ decisions to disclose their personal information to brands. We contribute to the consumer disclosure literature by uncovering a psychological need that influences consumers’ disclosure behavior. We also extend the social exclusion literature by demonstrating that exclusion influences not only consumers’ choice of products but also their decision to disclose personal information to brands.Keywords: consumer-brand relationship, consumer information disclosure, consumer privacy, social exclusion
Procedia PDF Downloads 1272536 A Comparative Analysis of Geometric and Exponential Laws in Modelling the Distribution of the Duration of Daily Precipitation
Authors: Mounia El Hafyani, Khalid El Himdi
Abstract:
Precipitation is one of the key variables in water resource planning. The importance of modeling wet and dry durations is a crucial pointer in engineering hydrology. The objective of this study is to model and analyze the distribution of wet and dry durations. For this purpose, the daily rainfall data from 1967 to 2017 of the Moroccan city of Kenitra’s station are used. Three models are implemented for the distribution of wet and dry durations, namely the first-order Markov chain, the second-order Markov chain, and the truncated negative binomial law. The adherence of the data to the proposed models is evaluated using Chi-square and Kolmogorov-Smirnov tests. The Akaike information criterion is applied to assess the most effective model distribution. We go further and study the law of the number of wet and dry days among k consecutive days. The calculation of this law is done through an algorithm that we have implemented based on conditional laws. We complete our work by comparing the observed moments of the numbers of wet/dry days among k consecutive days to the calculated moment of the three estimated models. The study shows the effectiveness of our approach in modeling wet and dry durations of daily precipitation.Keywords: Markov chain, rainfall, truncated negative binomial law, wet and dry durations
Procedia PDF Downloads 1282535 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models
Authors: Yoonsuh Jung
Abstract:
As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an "optimal" value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.Keywords: cross validation, parameter averaging, parameter selection, regularization parameter search
Procedia PDF Downloads 4162534 Simulation of Flow through Dam Foundation by FEM and ANN Methods Case Study: Shahid Abbaspour Dam
Authors: Mehrdad Shahrbanozadeh, Gholam Abbas Barani, Saeed Shojaee
Abstract:
In this study, a finite element (Seep3D model) and an artificial neural network (ANN) model were developed to simulate flow through dam foundation. Seep3D model is capable of simulating three-dimensional flow through a heterogeneous and anisotropic, saturated and unsaturated porous media. Flow through the Shahid Abbaspour dam foundation has been used as a case study. The FEM with 24960 triangular elements and 28707 nodes applied to model flow through foundation of this dam. The FEM being made denser in the neighborhood of the curtain screen. The ANN model developed for Shahid Abbaspour dam is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning. The water level elevations of the upstream and downstream of the dam have been used as input variables and the piezometric heads as the target outputs in the ANN model. The two models are calibrated and verified using the Shahid Abbaspour’s dam piezometric data. Results of the models were compared with those measured by the piezometers which are in good agreement. The model results also revealed that the ANN model performed as good as and in some cases better than the FEM.Keywords: seepage, dam foundation, finite element method, neural network, seep 3D model
Procedia PDF Downloads 4762533 MapReduce Logistic Regression Algorithms with RHadoop
Authors: Byung Ho Jung, Dong Hoon Lim
Abstract:
Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. Logistic regression is used extensively in numerous disciplines, including the medical and social science fields. In this paper, we address the problem of estimating parameters in the logistic regression based on MapReduce framework with RHadoop that integrates R and Hadoop environment applicable to large scale data. There exist three learning algorithms for logistic regression, namely Gradient descent method, Cost minimization method and Newton-Rhapson's method. The Newton-Rhapson's method does not require a learning rate, while gradient descent and cost minimization methods need to manually pick a learning rate. The experimental results demonstrated that our learning algorithms using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also compared the performance of our Newton-Rhapson's method with gradient descent and cost minimization methods. The results showed that our newton's method appeared to be the most robust to all data tested.Keywords: big data, logistic regression, MapReduce, RHadoop
Procedia PDF Downloads 2852532 A Review of Recent Studies on Advanced Technologies for Water Treatment
Authors: Deniz Sahin
Abstract:
Growing concern for the presence and contamination of heavy metals in our water supplies has steadily increased over the last few years. A number of specialized technologies including precipitation, coagulation/flocculation, ion exchange, cementation, electrochemical operations, have been developed for the removal of heavy metals from wastewater. However, these technologies have many limitations in the application, such as high cost, low separation efficiency, Recently, numerous approaches have been investigated to overcome these difficulties and membrane filtration, advanced oxidation technologies (AOPs), and UV irradiation etc. are sufficiently developed to be considered as alternative treatments. Many factors come into play when selecting wastewater treatment technology, such as type of wastewater, operating conditions, economics etc. This study describes these various treatment technologies employed for heavy metal removal. Advantages and disadvantages of these technologies are also compared to highlight their current limitations and future research needs. For example, we investigated the applicability of the ultrafiltration technology for treating of heavy metal ions (e.g., Cu(II), Pb(II), Cd(II), Zn(II)) from synthetic wastewater solutions. Results shown that complete removal of metal ions, could be achieved.Keywords: heavy metal, treatment methodologies, water, water treatment
Procedia PDF Downloads 1722531 Extending the Theory of Planned Behaviour to Predict Intention to Commute by Bicycle: Case Study of Mexico City
Authors: Magda Cepeda, Frances Hodgson, Ann Jopson
Abstract:
There are different barriers people face when choosing to cycle for commuting purposes. This study examined the role of psycho-social factors predicting the intention to cycle to commute in Mexico City. An extended version of the theory of planned behaviour was developed and utilized with a simple random sample of 401 road users. We applied exploratory and confirmatory factor analysis and after identifying five factors, a structural equation model was estimated to find the relationships among the variables. The results indicated that cycling attributes, attitudes to cycling, social comparison and social image and prestige were the most important factors influencing intention to cycle. Although the results from this study are specific to Mexico City, they indicate areas of interest to transportation planners in other regions especially in those cities where intention to cycle its linked to its perceived image and there is political ambition to instigate positive cycling cultures. Moreover, this study contributes to the current literature developing applications of the Theory of Planned Behaviour.Keywords: cycling, latent variable model, perception, theory of planned behaviour
Procedia PDF Downloads 3542530 Comparison between Mental Toughness and Level of Physical Activity between Staff and Students in University of Tabriz
Authors: Mahta Eskandarnejad
Abstract:
The aim of this paper was to compare physical activity and mental toughness in the staff and students of the University of Tabriz. 615 people participated in this study and filled demographic questionnaire, mental thoughness48 (MTQ48) questionnaire and habitual physical activity questionnaire (Baecke physical activity questionnaire). The research sample included 355 students and 260 staff (615 questionnaires). For analyzing hypotheses MANOVA, correlation and independent t-test were used. Based on the result; some subscales of mental toughness and physical activity were significantly related. The result showed the significant correlation between mental toughness and physical activity in student and no significant correlation in staff. Students were significantly physically more active than staff, and mental toughness was higher in staff. There was no difference in mental toughness variable between active participants (active staff and student). The results of this study showed that mental toughness could influence the way a person cope with living conditions. It is expected that mental toughness changes can lead to changing in levels of physical activity. It should be noted that the other variables should not be ignored.Keywords: Baecke physical activity questionnaire, mental toughness, physical activity, university staff, university student
Procedia PDF Downloads 3922529 Pre-Cancerigene Injuries Related to Human Papillomavirus: Importance of Cervicography as a Complementary Diagnosis Method
Authors: Denise De Fátima Fernandes Barbosa, Tyane Mayara Ferreira Oliveira, Diego Jorge Maia Lima, Paula Renata Amorim Lessa, Ana Karina Bezerra Pinheiro, Cintia Gondim Pereira Calou, Glauberto Da Silva Quirino, Hellen Lívia Oliveira Catunda, Tatiana Gomes Guedes, Nicolau Da Costa
Abstract:
The aim of this study is to evaluate the use of Digital Cervicography (DC) in the diagnosis of precancerous lesions related to Human Papillomavirus (HPV). Cross-sectional study with a quantitative approach, of evaluative type, held in a health unit linked to the Pro Dean of Extension of the Federal University of Ceará, in the period of July to August 2015 with a sample of 33 women. Data collecting was conducted through interviews with enforcement tool. Franco (2005) standardized the technique used for DC. Polymerase Chain Reaction (PCR) was performed to identify high-risk HPV genotypes. DC were evaluated and classified by 3 judges. The results of DC and PCR were classified as positive, negative or inconclusive. The data of the collecting instruments were compiled and analyzed by the software Statistical Package for Social Sciences (SPSS) with descriptive statistics and cross-references. Sociodemographic, sexual and reproductive variables were analyzed through absolute frequencies (N) and their respective percentage (%). Kappa coefficient (κ) was applied to determine the existence of agreement between the DC of reports among evaluators with PCR and also among the judges about the DC results. The Pearson's chi-square test was used for analysis of sociodemographic, sexual and reproductive variables with the PCR reports. It was considered statistically significant (p<0.05). Ethical aspects of research involving human beings were respected, according to 466/2012 Resolution. Regarding the socio-demographic profile, the most prevalent ages and equally were those belonging to the groups 21-30 and 41-50 years old (24.2%). The brown color was reported in excess (84.8%) and 96.9% out of them had completed primary and secondary school or studying. 51.5% were married, 72.7% Catholic, 54.5% employed and 48.5% with income between one and two minimum wages. As for the sexual and reproductive characteristics, prevailed heterosexual (93.9%) who did not use condoms during sexual intercourse (72.7%). 51.5% had a previous history of Sexually Transmitted Infection (STI), and HPV the most prevalent STI (76.5%). 57.6% did not use contraception, 78.8% underwent examination Cancer Prevention Uterus (PCCU) with shorter time interval or equal to one year, 72.7% had no cases of Cervical Cancer in the family, 63.6% were multiparous and 97% were not vaccinated against HPV. DC identified good level of agreement between raters (κ=0.542), had a specificity of 77.8% and sensitivity of 25% when compared their results with PCR. Only the variable race showed a statistically significant association with CRP (p=0.042). DC had 100% acceptance amongst women in the sample, revealing the possibility of other experiments in using this method so that it proves as a viable technique. The DC positivity criteria were developed by nurses and these professionals also perform PCCU in Brazil, which means that DC can be an important complementary diagnostic method for the appreciation of these professional’s quality of examinations.Keywords: gynecological examination, human papillomavirus, nursing, papillomavirus infections, uterine lasmsneop
Procedia PDF Downloads 303