Search results for: computational accuracy
2190 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models
Authors: Ramin Vafadary, Maryam Khanbaghi
Abstract:
Forecasting electricity load is important for various purposes like planning, operation, and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet, and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria, namely, the mean absolute error and root mean square error. The National Renewable Energy Laboratory (NREL) residential energy consumption data is used to train the models. The results of this study show that the SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts, we can improve the robustness of the models for 24 hours ahead of electricity load forecasting.Keywords: bagging, Fbprophet, Holt-Winters, LSTM, load forecast, SARIMA, TensorFlow probability, time series
Procedia PDF Downloads 952189 Physically Informed Kernels for Wave Loading Prediction
Authors: Daniel James Pitchforth, Timothy James Rogers, Ulf Tyge Tygesen, Elizabeth Jane Cross
Abstract:
Wave loading is a primary cause of fatigue within offshore structures and its quantification presents a challenging and important subtask within the SHM framework. The accurate representation of physics in such environments is difficult, however, driving the development of data-driven techniques in recent years. Within many industrial applications, empirical laws remain the preferred method of wave loading prediction due to their low computational cost and ease of implementation. This paper aims to develop an approach that combines data-driven Gaussian process models with physical empirical solutions for wave loading, including Morison’s Equation. The aim here is to incorporate physics directly into the covariance function (kernel) of the Gaussian process, enforcing derived behaviors whilst still allowing enough flexibility to account for phenomena such as vortex shedding, which may not be represented within the empirical laws. The combined approach has a number of advantages, including improved performance over either component used independently and interpretable hyperparameters.Keywords: offshore structures, Gaussian processes, Physics informed machine learning, Kernel design
Procedia PDF Downloads 1922188 Identity Management in Virtual Worlds Based on Biometrics Watermarking
Authors: S. Bader, N. Essoukri Ben Amara
Abstract:
With the technological development and rise of virtual worlds, these spaces are becoming more and more attractive for cybercriminals, hidden behind avatars and fictitious identities. Since access to these spaces is not restricted or controlled, some impostors take advantage of gaining unauthorized access and practicing cyber criminality. This paper proposes an identity management approach for securing access to virtual worlds. The major purpose of the suggested solution is to install a strong security mechanism to protect virtual identities represented by avatars. Thus, only legitimate users, through their corresponding avatars, are allowed to access the platform resources. Access is controlled by integrating an authentication process based on biometrics. In the request process for registration, a user fingerprint is enrolled and then encrypted into a watermark utilizing a cancelable and non-invertible algorithm for its protection. After a user personalizes their representative character, the biometric mark is embedded into the avatar through a watermarking procedure. The authenticity of the avatar identity is verified when it requests authorization for access. We have evaluated the proposed approach on a dataset of avatars from various virtual worlds, and we have registered promising performance results in terms of authentication accuracy, acceptation and rejection rates.Keywords: identity management, security, biometrics authentication and authorization, avatar, virtual world
Procedia PDF Downloads 2652187 Decision-Making using Fuzzy Linguistic Hypersoft Set Topology
Authors: Muhammad Saqlain, Poom Kumam
Abstract:
Language being an abstract system and creative act, is quite complicated as its meaning varies depending on the context. The context is determined by the empirical knowledge of a person, which is derived from observation and experience. About further subdivided attributes, the decision-making challenges may entail quantitative and qualitative factors. However, because there is no norm for putting a numerical value on language, existing approaches cannot carry out the operations of linguistic knowledge. The assigning of mathematical values (fuzzy, intuitionistic, and neutrosophic) to any decision-making problem; without considering any rule of linguistic knowledge is ambiguous and inaccurate. Thus, this paper aims to provide a generic model for these issues. This paper provides the linguistic set structure of the fuzzy hypersoft set (FLHSS) to solve decision-making issues. We have proposed the definition some basic operations like AND, NOT, OR, AND, compliment, negation, etc., along with Topology and examples, and properties. Secondly, the operational laws for the fuzzy linguistic hypersoft set have been proposed to deal with the decision-making issues. Implementing proposed aggregate operators and operational laws can be used to convert linguistic quantifiers into numerical values. This will increase the accuracy and precision of the fuzzy hypersoft set structure to deal with decision-making issues.Keywords: linguistic quantifiers, aggregate operators, multi-criteria decision making (mcdm)., fuzzy topology
Procedia PDF Downloads 972186 Modeling and Simulation of Textile Effluent Treatment Using Ultrafiltration Membrane Technology
Authors: Samia Rabet, Rachida Chemini, Gerhard Schäfer, Farid Aiouache
Abstract:
The textile industry generates large quantities of wastewater, which poses significant environmental problems due to its complex composition and high levels of pollutants loaded principally with heavy metals, large amounts of COD, and dye. Separation treatment methods are often known for their effectiveness in removing contaminants whereas membrane separation techniques are a promising process for the treatment of textile effluent due to their versatility, efficiency, and low energy requirements. This study focuses on the modeling and simulation of membrane separation technologies with a cross-flow filtration process for textile effluent treatment. It aims to explore the application of mathematical models and computational simulations using ASPEN Plus Software in the prediction of a complex and real effluent separation. The results demonstrate the effectiveness of modeling and simulation techniques in predicting pollutant removal efficiencies with a global deviation percentage of 1.83% between experimental and simulated results; membrane fouling behavior, and overall process performance (hydraulic resistance, membrane porosity) were also estimated and indicating that the membrane losses 10% of its efficiency after 40 min of working.Keywords: membrane separation, ultrafiltration, textile effluent, modeling, simulation
Procedia PDF Downloads 572185 Sinusoidal Roughness Elements in a Square Cavity
Authors: Muhammad Yousaf, Shoaib Usman
Abstract:
Numerical studies were conducted using Lattice Boltzmann Method (LBM) to study the natural convection in a square cavity in the presence of roughness. An algorithm basedon a single relaxation time Bhatnagar-Gross-Krook (BGK) model of Lattice Boltzmann Method (LBM) was developed. Roughness was introduced on both the hot and cold walls in the form of sinusoidal roughness elements. The study was conducted for a Newtonian fluid of Prandtl number (Pr) 1.0. The range of Ra number was explored from 103 to 106 in a laminar region. Thermal and hydrodynamic behavior of fluid was analyzed using a differentially heated square cavity with roughness elements present on both the hot and cold wall. Neumann boundary conditions were introduced on horizontal walls with vertical walls as isothermal. The roughness elements were at the same boundary condition as corresponding walls. Computational algorithm was validated against previous benchmark studies performed with different numerical methods, and a good agreement was found to exist. Results indicate that the maximum reduction in the average heat transfer was16.66 percent at Ra number 105.Keywords: Lattice Boltzmann method, natural convection, nusselt number, rayleigh number, roughness
Procedia PDF Downloads 5272184 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera
Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin
Abstract:
We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.Keywords: human action recognition, pose estimation, D-CNN, deep learning
Procedia PDF Downloads 1462183 Virtualization and Visualization Based Driver Configuration in Operating System
Authors: Pavan Shah
Abstract:
In an Embedded system, Virtualization and visualization technology can provide us an effective response and measurable work in a software development environment. In addition to work of virtualization and virtualization can be easily deserved to provide the best resource sharing between real-time hardware applications and a healthy environment. However, the virtualization is noticeable work to minimize the I/O work and utilize virtualization & virtualization technology for either a software development environment (SDE) or a runtime environment of real-time embedded systems (RTMES) or real-time operating system (RTOS) eras. In this Paper, we particularly focus on virtualization and visualization overheads data of network which generates the I/O and implementation of standardized I/O (i.e., Virto), which can work as front-end network driver in a real-time operating system (RTOS) hardware module. Even there have been several work studies are available based on the virtualization operating system environment, but for the Virto on a general-purpose OS, my implementation is on the open-source Virto for a real-time operating system (RTOS). In this paper, the measurement results show that implementation which can improve the bandwidth and latency of memory management of the real-time operating system environment (RTMES) for getting more accuracy of the trained model.Keywords: virtualization, visualization, network driver, operating system
Procedia PDF Downloads 1332182 Sensitivity and Specificity of Clinical Testing for Digital Nerve Injury
Authors: Guy Rubin, Ravit Shay, Nimrod Rozen
Abstract:
The accuracy of a diagnostic test used to classify a patient as having disease or being disease-free is a valuable piece of information to be used by the physician when making treatment decisions. Finger laceration, suspected to have nerve injury is a challenging decision for the treating surgeon. The purpose of this study was to evaluate the sensitivity, specificity and predictive values of six clinical tests in the diagnosis of digital nerve injury. The six clinical tests included light touch, pin prick, static and dynamic 2-point discrimination, Semmes Weinstein monofilament and wrinkle test. Data comparing pre-surgery examination with post-surgery results of 42 patients with 52 digital nerve injury was evaluated. The subjective examinations, light touch, pin prick, static and dynamic 2-point discrimination and Semmes-Weinstein monofilament were not sensitive (57.6, 69.7, 42.4, 40 and 66.8% respectively) and specific (36.8, 36.8, 47.4, 42.1 and 31.6% respectively). Wrinkle test, the only objective examination, was the most sensitive (78.1%) and specific (55.6%). This result gives no pre-operative examination the ability to predict the result of explorative surgery.Keywords: digital nerve, injury, nerve examination, Semmes-Weinstein monofilamen, sensitivity, specificity, two point discrimination, wrinkle test
Procedia PDF Downloads 3442181 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery
Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao
Abstract:
Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset
Procedia PDF Downloads 1202180 A Study on the Assessment of Prosthetic Infection after Total Knee Replacement Surgery
Authors: Chun-Lang Chang, Chun-Kai Liu
Abstract:
In this study, the patients that have undergone total knee replacement surgery from the 2010 National Health Insurance database were adopted as the study participants. The important factors were screened and selected through literature collection and interviews with physicians. Through the Cross Entropy Method (CE), Genetic Algorithm Logistic Regression (GALR), and Particle Swarm Optimization (PSO), the weights of the factors were obtained. In addition, the weights of the respective algorithms, coupled with the Excel VBA were adopted to construct the Case Based Reasoning (CBR) system. The results through statistical tests show that the GALR and PSO produced no significant differences, and the accuracy of both models were above 97%. Moreover, the area under the curve of ROC for these two models also exceeded 0.87. This study shall serve as a reference for medical staff as an assistance for clinical assessment of infections in order to effectively enhance medical service quality and efficiency, avoid unnecessary medical waste, and substantially contribute to resource allocations in medical institutions.Keywords: Case Based Reasoning, Cross Entropy Method, Genetic Algorithm Logistic Regression, Particle Swarm Optimization, Total Knee Replacement Surgery
Procedia PDF Downloads 3222179 Forecasting Age-Specific Mortality Rates and Life Expectancy at Births for Malaysian Sub-Populations
Authors: Syazreen N. Shair, Saiful A. Ishak, Aida Y. Yusof, Azizah Murad
Abstract:
In this paper, we forecast age-specific Malaysian mortality rates and life expectancy at births by gender and ethnic groups including Malay, Chinese and Indian. Two mortality forecasting models are adopted the original Lee-Carter model and its recent modified version, the product ratio coherent model. While the first forecasts the mortality rates for each subpopulation independently, the latter accounts for the relationship between sub-populations. The evaluation of both models is performed using the out-of-sample forecast errors which are mean absolute percentage errors (MAPE) for mortality rates and mean forecast errors (MFE) for life expectancy at births. The best model is then used to perform the long-term forecasts up to the year 2030, the year when Malaysia is expected to become an aged nation. Results suggest that in terms of overall accuracy, the product ratio model performs better than the original Lee-Carter model. The association of lower mortality group (Chinese) in the subpopulation model can improve the forecasts of high mortality groups (Malay and Indian).Keywords: coherent forecasts, life expectancy at births, Lee-Carter model, product-ratio model, mortality rates
Procedia PDF Downloads 2192178 Thermal Comfort Investigation Based on Predicted Mean Vote (PMV) Index Using Computation Fluid Dynamic (CFD) Simulation: Case Study of University of Brawijaya, Malang-Indonesia
Authors: Dewi Hardiningtyas Sugiono
Abstract:
Concerning towards the quality of air comfort and safety to pedestrians in the University area should be increased as Indonesia economics booming. Hence, the University management needs guidelines of thermal comfort to innovate a new layout building. The objectives of this study is to investigate and then to evaluate the distribution of thermal comfort which is indicated by predicted mean vote (PMV) index at the University of Brawijaya (UB), Malang. The PMV figures are used to evaluate and to redesign the UB layout. The research is started with study literature and early survey to collect all information of building layout and building shape at the University of Brawijaya. The information is used to create a 3D model in CAD software. The model is simulated by Computational Fluid Dynamic (CFD) software to measure the PMV factors of air temperature, relative humidity and air speed in some locations. Validation is done by comparing between PMV value from observation and PMV value from simulation. The resuls of the research shows the most sensitive of microclimatic factors is air temperature surrounding the UB building. Finally, the research is successfully figure out the UB layout and provides further actions to increase the thermal comfort.Keywords: thermal comfort, heat index (HI), CFD, layout
Procedia PDF Downloads 3052177 Molecular Docking and Synthesis of Nitrogen-Containing Bisphosphonates
Authors: S. Ghalem, M. Mesmoudi, I. Daoudand, H. Allali
Abstract:
The nitrogen-containing bisphosphonates (N-BPs) are well established as the treatments of choice for disorders of excessive bone resorption, myeloma and bone metastases, and osteoporosis. They inhibit farnesyl pyrophosphate synthase (FFPS), a key enzyme in the mevalonate pathway, resulting in inhibition of the prenylation of small GTP-binding proteins in osteoclasts and disruption of their cytoskeleton, adhesion/spreading, and invasion of cancer cells. A very few examples for synthesis of α-amino bisphosphonates based on several amino acids are known from the literature. In the present work, esters of aminoacid react with ketophsophonate (or their analog acid or acyl) to afford the desired products, α-iminophosphonates. The reaction of imine with dimethyl phosphate in the presence of catalytic amount of I2 give ester of α-aminobisphosphonate as sole product in good yield. Finally, we used computational docking methods to predict how several α-aminobisphosphonates bind to FPPS and how R and X influence. Pamidronate, β-aminobisphosphonate already marketed, was used as reference. These results are of interest since they represent a new and simple way to sythesize α-aminobisphosphonates with a free COOH group increased by R2 functionalisable and opening up the possibility of using the molecular docking to facilitate the design of other, novel FFPS inhibitors.Keywords: drug research, cancer, α-amino bisphosphonates, molecular docking
Procedia PDF Downloads 2712176 Investigation of Passive Solutions of Thermal Comfort in Housing Aiming to Reduce Energy Consumption
Authors: Josiane R. Pires, Marco A. S. González, Bruna L. Brenner, Luciana S. Roos
Abstract:
The concern with sustainability brought the need for optimization of the buildings to reduce consumption of natural resources. Almost 1/3 of energy demanded by Brazilian housings is used to provide thermal solutions. AEC sector may contribute applying bioclimatic strategies on building design. The aim of this research is to investigate the viability of applying some alternative solutions in residential buildings. The research was developed with computational simulation on single family social housing, examining envelope type, absorptance, and insolation. The analysis of the thermal performance applied both Brazilian standard NBR 15575 and degree-hour method, in the scenery of Porto Alegre, a southern Brazilian city. We used BIM modeling through Revit/Autodesk and used Energy Plus to thermal simulation. The payback of the investment was calculated comparing energy savings and building costs, in a period of 50 years. The results shown that with the increment of envelope’s insulation there is thermal comfort improvement and energy economy, with a pay-back period of 24 to 36 years, in some cases.Keywords: civil construction, design, thermal performance, energy, economic analysis
Procedia PDF Downloads 5522175 Multi-Criteria Inventory Classification Process Based on Logical Analysis of Data
Authors: Diana López-Soto, Soumaya Yacout, Francisco Ángel-Bello
Abstract:
Although inventories are considered as stocks of money sitting on shelve, they are needed in order to secure a constant and continuous production. Therefore, companies need to have control over the amount of inventory in order to find the balance between excessive and shortage of inventory. The classification of items according to certain criteria such as the price, the usage rate and the lead time before arrival allows any company to concentrate its investment in inventory according to certain ranking or priority of items. This makes the decision making process for inventory management easier and more justifiable. The purpose of this paper is to present a new approach for the classification of new items based on the already existing criteria. This approach is called the Logical Analysis of Data (LAD). It is used in this paper to assist the process of ABC items classification based on multiple criteria. LAD is a data mining technique based on Boolean theory that is used for pattern recognition. This technique has been tested in medicine, industry, credit risk analysis, and engineering with remarkable results. An application on ABC inventory classification is presented for the first time, and the results are compared with those obtained when using the well-known AHP technique and the ANN technique. The results show that LAD presented very good classification accuracy.Keywords: ABC multi-criteria inventory classification, inventory management, multi-class LAD model, multi-criteria classification
Procedia PDF Downloads 8812174 A Study of Behavioral Phenomena Using an Artificial Neural Network
Authors: Yudhajit Datta
Abstract:
Will is a phenomenon that has puzzled humanity for a long time. It is a belief that Will Power of an individual affects the success achieved by an individual in life. It is thought that a person endowed with great will power can overcome even the most crippling setbacks of life while a person with a weak will cannot make the most of life even the greatest assets. Behavioral aspects of the human experience such as will are rarely subjected to quantitative study owing to the numerous uncontrollable parameters involved. This work is an attempt to subject the phenomena of will to the test of an artificial neural network. The claim being tested is that will power of an individual largely determines success achieved in life. In the study, an attempt is made to incorporate the behavioral phenomenon of will into a computational model using data pertaining to the success of individuals obtained from an experiment. A neural network is to be trained using data based upon part of the model, and subsequently used to make predictions regarding will corresponding to data points of success. If the prediction is in agreement with the model values, the model is to be retained as a candidate. Ultimately, the best-fit model from among the many different candidates is to be selected, and used for studying the correlation between success and will.Keywords: will power, will, success, apathy factor, random factor, characteristic function, life story
Procedia PDF Downloads 3792173 The Impact of Artificial Intelligence on Spare Parts Technology
Authors: Amir Andria Gad Shehata
Abstract:
Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.Keywords: spare part, spare part inventory, inventory model, optimization, maintenanceneural network, LSTM, MLP, forecasting demand, inventory management
Procedia PDF Downloads 632172 Detection of Paenibacillus larvae (American Foulbrood Disease) by the PCR and Culture in the Remains of the Hive Collected at the Bottom of the Colony
Authors: N. Adjlane, N. Haddad
Abstract:
The American foulbrood is one of the most serious diseases that may affect brood of larvae and pupae stages. The causative organism is a gram positive bacterium Paaenibacillus larvae. American foulbrood infected apiaries suffer from severe economic losses, resulting from significant decreases in honeybee populations and honey production. The aim of this study was to detect Paenibacillus larvae in the remains collected at the bottom of the hive from the suspected hives by direct PCR and culture growth. A total of 56 suspected beehive wax debris samples collected in 40 different apiaries located in the central region of Algeria. MYPGP the culture medium is used during all the identifications of the bacterium. After positive results on samples, biochemical confirmation tests (test of catalase, presence hydrolysis of casein) and microscopic (gram stain) are used in order to verify the accuracy of the initial results. The QIAamp DNA Mini Kit is used to identify the DNA of Paaenibacillus larvae. Paaenibacillus larvae were identified in 14 samples out of 16 by the PCR. A suspected culture-negative sample was found positive through evaluation with PCR. This research is for the bacterium Paaenibacillus larvae in the debris of the colony is an effective method for diagnosis of the pathology of American foulbrood.Keywords: Paenibacillus larvae, honeybee, PCR, microbiological method
Procedia PDF Downloads 4112171 Predictive Analytics in Traffic Flow Management: Integrating Temporal Dynamics and Traffic Characteristics to Estimate Travel Time
Authors: Maria Ezziani, Rabie Zine, Amine Amar, Ilhame Kissani
Abstract:
This paper introduces a predictive model for urban transportation engineering, which is vital for efficient traffic management. Utilizing comprehensive datasets and advanced statistical techniques, the model accurately forecasts travel times by considering temporal variations and traffic dynamics. Machine learning algorithms, including regression trees and neural networks, are employed to capture sequential dependencies. Results indicate significant improvements in predictive accuracy, particularly during peak hours and holidays, with the incorporation of traffic flow and speed variables. Future enhancements may integrate weather conditions and traffic incidents. The model's applications range from adaptive traffic management systems to route optimization algorithms, facilitating congestion reduction and enhancing journey reliability. Overall, this research extends beyond travel time estimation, offering insights into broader transportation planning and policy-making realms, empowering stakeholders to optimize infrastructure utilization and improve network efficiency.Keywords: predictive analytics, traffic flow, travel time estimation, urban transportation, machine learning, traffic management
Procedia PDF Downloads 842170 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 752169 Effect of Corrugating Bottom Surface on Natural Convection in a Square Porous Enclosure
Authors: Khedidja Bouhadef, Imene Said Kouadri, Omar Rahli
Abstract:
In this paper numerical investigation is performed to analyze natural convection heat transfer characteristics within a wavy-wall enclosure filled with fluid-saturated porous medium. The bottom wall which has the wavy geometry is maintained at a constant high temperature, while the top wall is straight and is maintained at a constant lower temperature. The left and right walls of the enclosure are both straight and insulated. The governing differential equations are solved by Finite-volume approach and grid generation is used to transform the physical complex domain to a computational regular space. The aim is to examine flow field, temperature distribution and heat transfer evolutions inside the cavity when Darcy number, Rayleigh number and undulations number values are varied. The results mainly indicate that the heat transfer is rather affected by the permeability and Rayleigh number values since increasing these values enhance the Nusselt number; although the exchanges are not highly affected by the undulations number.Keywords: grid generation, natural convection, porous medium, wavy wall enclosure
Procedia PDF Downloads 2642168 Numerical Simulation of Multiple Arrays Arrangement of Micro Hydro Power Turbines
Authors: M. A. At-Tasneem, N. T. Rao, T. M. Y. S. Tuan Ya, M. S. Idris, M. Ammar
Abstract:
River flow over micro hydro power (MHP) turbines of multiple arrays arrangement is simulated with computational fluid dynamics (CFD) software to obtain the flow characteristics. In this paper, CFD software is used to simulate the water flow over MHP turbines as they are placed in a river. Multiple arrays arrangement of MHP turbines lead to generate large amount of power. In this study, a river model is created and simulated in CFD software to obtain the water flow characteristic. The process then continued by simulating different types of arrays arrangement in the river model. A MHP turbine model consists of a turbine outer body and static propeller blade in it. Five types of arrangements are used which are parallel, series, triangular, square and rhombus with different spacing sizes. The velocity profiles on each MHP turbines are identified at the mouth of each turbine bodies. This study is required to obtain the arrangement with increasing spacing sizes that can produce highest power density through the water flow variation.Keywords: micro hydro power, CFD, arrays arrangement, spacing sizes, velocity profile, power
Procedia PDF Downloads 3582167 Extraction of Road Edge Lines from High-Resolution Remote Sensing Images Based on Energy Function and Snake Model
Authors: Zuoji Huang, Haiming Qian, Chunlin Wang, Jinyan Sun, Nan Xu
Abstract:
In this paper, the strategy to extract double road edge lines from acquired road stripe image was explored. The workflow is as follows: the road stripes are acquired by probabilistic boosting tree algorithm and morphological algorithm immediately, and road centerlines are detected by thinning algorithm, so the initial road edge lines can be acquired along the road centerlines. Then we refine the results with big variation of local curvature of centerlines. Specifically, the energy function of edge line is constructed by gradient feature and spectral information, and Dijkstra algorithm is used to optimize the initial road edge lines. The Snake model is constructed to solve the fracture problem of intersection, and the discrete dynamic programming algorithm is used to solve the model. After that, we could get the final road network. Experiment results show that the strategy proposed in this paper can be used to extract the continuous and smooth road edge lines from high-resolution remote sensing images with an accuracy of 88% in our study area.Keywords: road edge lines extraction, energy function, intersection fracture, Snake model
Procedia PDF Downloads 3382166 Inversion of Electrical Resistivity Data: A Review
Authors: Shrey Sharma, Gunjan Kumar Verma
Abstract:
High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.Keywords: inversion, limitations, optimization, resistivity
Procedia PDF Downloads 3652165 Using Satellite Images Datasets for Road Intersection Detection in Route Planning
Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever
Abstract:
Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles
Procedia PDF Downloads 1442164 Automatic Adjustment of Thresholds via Closed-Loop Feedback Mechanism for Solder Paste Inspection
Authors: Chia-Chen Wei, Pack Hsieh, Jeffrey Chen
Abstract:
Surface Mount Technology (SMT) is widely used in the area of the electronic assembly in which the electronic components are mounted to the surface of the printed circuit board (PCB). Most of the defects in the SMT process are mainly related to the quality of solder paste printing. These defects lead to considerable manufacturing costs in the electronics assembly industry. Therefore, the solder paste inspection (SPI) machine for controlling and monitoring the amount of solder paste printing has become an important part of the production process. So far, the setting of the SPI threshold is based on statistical analysis and experts’ experiences to determine the appropriate threshold settings. Because the production data are not normal distribution and there are various variations in the production processes, defects related to solder paste printing still occur. In order to solve this problem, this paper proposes an online machine learning algorithm, called the automatic threshold adjustment (ATA) algorithm, and closed-loop architecture in the SMT process to determine the best threshold settings. Simulation experiments prove that our proposed threshold settings improve the accuracy from 99.85% to 100%.Keywords: big data analytics, Industry 4.0, SPI threshold setting, surface mount technology
Procedia PDF Downloads 1162163 A Study of Non Linear Partial Differential Equation with Random Initial Condition
Authors: Ayaz Ahmad
Abstract:
In this work, we present the effect of noise on the solution of a partial differential equation (PDE) in three different setting. We shall first consider random initial condition for two nonlinear dispersive PDE the non linear Schrodinger equation and the Kortteweg –de vries equation and analyse their effect on some special solution , the soliton solutions.The second case considered a linear partial differential equation , the wave equation with random initial conditions allow to substantially decrease the computational and data storage costs of an algorithm to solve the inverse problem based on the boundary measurements of the solution of this equation. Finally, the third example considered is that of the linear transport equation with a singular drift term, when we shall show that the addition of a multiplicative noise term forbids the blow up of solutions under a very weak hypothesis for which we have finite time blow up of a solution in the deterministic case. Here we consider the problem of wave propagation, which is modelled by a nonlinear dispersive equation with noisy initial condition .As observed noise can also be introduced directly in the equations.Keywords: drift term, finite time blow up, inverse problem, soliton solution
Procedia PDF Downloads 2152162 Ultra-High Frequency Passive Radar Coverage for Cars Detection in Semi-Urban Scenarios
Authors: Pedro Gómez-del-Hoyo, Jose-Luis Bárcena-Humanes, Nerea del-Rey-Maestre, María-Pilar Jarabo-Amores, David Mata-Moya
Abstract:
A study of achievable coverages using passive radar systems in terrestrial traffic monitoring applications is presented. The study includes the estimation of the bistatic radar cross section of different commercial vehicle models that provide challenging low values which make detection really difficult. A semi-urban scenario is selected to evaluate the impact of excess propagation losses generated by an irregular relief. A bistatic passive radar exploiting UHF frequencies radiated by digital video broadcasting transmitters is assumed. A general method of coverage estimation using electromagnetic simulators in combination with estimated car average bistatic radar cross section is applied. In order to reduce the computational cost, hybrid solution is implemented, assuming free space for the target-receiver path but estimating the excess propagation losses for the transmitter-target one.Keywords: bistatic radar cross section, passive radar, propagation losses, radar coverage
Procedia PDF Downloads 3362161 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks
Authors: Yong Zhao, Jian He, Cheng Zhang
Abstract:
Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.Keywords: feature extraction, heart rate variability, hypertension, residual networks
Procedia PDF Downloads 105