Search results for: batch machine learning
5792 Heavy Metal Contamination in Soils: Detection and Assessment Using Machine Learning Algorithms Based on Hyperspectral Images
Authors: Reem El Chakik
Abstract:
The levels of heavy metals in agricultural lands in Lebanon have been witnessing a noticeable increase in the past few years, due to increased anthropogenic pollution sources. Heavy metals pose a serious threat to the environment for being non-biodegradable and persistent, accumulating thus to dangerous levels in the soil. Besides the traditional laboratory and chemical analysis methods, Hyperspectral Imaging (HSI) has proven its efficiency in the rapid detection of HMs contamination. In Lebanon, a continuous environmental monitoring, including the monitoring of levels of HMs in agricultural soils, is lacking. This is due in part to the high cost of analysis. Hence, this proposed research aims at defining the current national status of HMs contamination in agricultural soil, and to evaluate the effectiveness of using HSI in the detection of HM in contaminated agricultural fields. To achieve the two main objectives of this study, soil samples were collected from different areas throughout the country and were analyzed for HMs using Atomic Absorption Spectrophotometry (AAS). The results were compared to those obtained from the HSI technique that was applied using Hyspex SWIR-384 camera. The results showed that the Lebanese agricultural soils contain high contamination levels of Zn, and that the more clayey the soil is, the lower reflectance it has.Keywords: agricultural soils in Lebanon, atomic absorption spectrophotometer, hyperspectral imaging., heavy metals contamination
Procedia PDF Downloads 1125791 Design, Implementation, and Evaluation of ALS-PBL Model in the EMI Classroom
Authors: Yen-Hui Lu
Abstract:
In the past two decades, in order to increase university visibility and internationalization, English as a medium of instruction (EMI) has become one of the main language policies in higher education institutions where English is not a dominant language. However, given the complex, discipline-embedded nature of academic communication, academic literacy does not come with students’ everyday language experience, and it is a challenge for all students. Particularly, to engage students in the effective learning process of discipline concepts in the EMI classrooms, teachers need to provide explicit academic language instruction to assist students in deep understanding of discipline concepts. To bridge the gap between academic language development and discipline learning in the EMI classrooms, the researcher incorporates academic language strategies and key elements of project-based learning (PBL) into an Academic Language Strategy driven PBL (ALS-PBL) model. With clear steps and strategies, the model helps EMI teachers to scaffold students’ academic language development in the EMI classrooms. ALS-PBL model includes three major stages: preparation, implementation, and assessment. First, in the preparation stage, ALS-PBL teachers need to identify learning goals for both content and language learning and to design PBL topics for investigation. Second, during the implementation stage, ALS-PBL teachers use the model as a guideline to create a lesson structure and class routine. There are five important elements in the implementation stage: (1) academic language preparation, (2) connecting background knowledge, (3) comprehensible input, (4) academic language reinforcement, and (5) sustained inquiry and project presentation. Finally, ALS-PBL teachers use formative assessments such as student learning logs, teachers’ feedback, and peer evaluation to collect detailed information that demonstrates students’ academic language development in the learning process. In this study, ALS-PBL model was implemented in an interdisciplinary course entitled “Science is Everywhere”, which was co-taught by five professors from different discipline backgrounds, English education, civil engineering, business administration, international business, and chemical engineering. The purpose of the course was to cultivate students’ interdisciplinary knowledge as well as English competency in disciplinary areas. This study used a case-study design to systematically investigate students’ learning experiences in the class using ALS-PBL model. The participants of the study were 22 college students with different majors. This course was one of the elective EMI courses in this focal university. The students enrolled in this EMI course to fulfill the school language policy, which requires the students to complete two EMI courses before their graduation. For the credibility, this study used multiple methods to collect data, including classroom observation, teachers’ feedback, peer assessment, student learning log, and student focus-group interviews. Research findings show four major successful aspects of implementing ALS-PBL model in the EMI classroom: (1) clear focus on both content and language learning, (2) meaningful practice in authentic communication, (3) reflective learning in academic language strategies, and (4) collaborative support in content knowledge.This study will be of value to teachers involved in delivering English as well as content lessons to language learners by providing a theoretically-sound practical model for application in the classroom.Keywords: academic language development, content and language integrated learning, english as a medium of instruction, project-based learning
Procedia PDF Downloads 835790 Positive Bias and Length Bias in Deep Neural Networks for Premises Selection
Authors: Jiaqi Huang, Yuheng Wang
Abstract:
Premises selection, the task of selecting a set of axioms for proving a given conjecture, is a major bottleneck in automated theorem proving. An array of deep-learning-based methods has been established for premises selection, but a perfect performance remains challenging. Our study examines the inaccuracy of deep neural networks in premises selection. Through training network models using encoded conjecture and axiom pairs from the Mizar Mathematical Library, two potential biases are found: the network models classify more premises as necessary than unnecessary, referred to as the ‘positive bias’, and the network models perform better in proving conjectures that paired with more axioms, referred to as ‘length bias’. The ‘positive bias’ and ‘length bias’ discovered could inform the limitation of existing deep neural networks.Keywords: automated theorem proving, premises selection, deep learning, interpreting deep learning
Procedia PDF Downloads 1835789 The Significance of Translating Folklore in Teaching and Learning Open Distance e-Learning
Authors: M. A. Mabasa, O. Ramokolo, M. Z. Mnikathi, D. Mathabatha, T. Manyapelo
Abstract:
The study examines the importance of translating South African folklore from Oral into Written Literature in a Multilingual Education. Therefore, the study postulates that translation can be regarded as a valuable tool when oral and written literature is transmitted from one generation to another. The study entails that translation does not take place in a haphazard fashion; for that reason, skills such as translation principles are required to translate folklore significantly and effectively. The purpose of the study is to indicate the significance of using translation relating to folklore in teaching and learning. The study also observed that Modernism in literature should be shared amongst varieties of cultures because folklore is interactive in narrating stories, folktales and myths to sharpen the reader’s knowledge and intellect because they are informative and educative in nature. As a technological tool, the study points out that translation is of paramount importance in the sense that the meanings of different data can be made available in all South African official languages using oral and written forms of folklore. The study opines that tradition and customary beliefs and practices in the institution of higher learning. The study envisages the way in which literature of folklore can be juxtaposed to ensure that translated folklore is of quality assured standards. The study alludes that well-translated folklore can serve as oral and written literature, which may contribute to the child’s learning and acquisition of knowledge and insights during cognitive development toward maturity. Methodologically, the study selects a qualitative research approach and selects content analysis as an instrument for data gathering, which will be analyzed qualitatively in consideration of the significance of translating folklore as written and spoken literature in a documented way. The study reveals that the translation of folktales promotes functional multilingualism in high-function formal contexts like a university. The study emphasizes that translated and preserved literary folklore may serve as a language repository from one generation to another because of the archival and storage of information in the form of a term bank.Keywords: translation, editing, teaching, learning, folklores
Procedia PDF Downloads 325788 Efficacy of Clickers in L2 Interaction
Authors: Ryoo Hye Jin Agnes
Abstract:
This study aims to investigate the efficacy of clickers in fostering L2 class interaction. In an L2 classroom, active learner-to-learner interactions and learner-to-teacher interactions play an important role in language acquisition. In light of this, introducing learning tools that promote such interactions would benefit L2 classroom by fostering interaction. This is because the anonymity of clickers allows learners to express their needs without the social risks associated with speaking up in the class. clickers therefore efficiently help learners express their level of understanding during the process of learning itself. This allows for an evaluative feedback loop where both learners and teachers understand the level of progress of the learners, better enabling classrooms to adapt to the learners’ needs. Eventually this tool promotes participation from learners. This, in turn, is believed to be effective in fostering classroom interaction, allowing learning to take place in a more comfortable yet vibrant way. This study is finalized by presenting the result of an experiment conducted to verify the effectiveness of this approach when teaching pragmatic aspect of Korean expressions with similar semantic functions. The learning achievement of learners in the experimental group was found higher than the learners’ in a control group. A survey was distributed to the learners, questioning them regarding the efficacy of clickers, and how it contributed to their learning in areas such as motivation, self-assessment, increasing participation, as well as giving feedback to teachers. Analyzing the data collected from the questionnaire given to the learners, the study presented data suggesting that this approach increased the scope of interactivity in the classroom, thus not only increasing participation but enhancing the type of classroom participation among learners. This participation in turn led to a marked improvement in their communicative abilities.Keywords: second language acquisition, interaction, clickers, learner response system, output from learners, learner’s cognitive process
Procedia PDF Downloads 5215787 Dynamic Distribution Calibration for Improved Few-Shot Image Classification
Authors: Majid Habib Khan, Jinwei Zhao, Xinhong Hei, Liu Jiedong, Rana Shahzad Noor, Muhammad Imran
Abstract:
Deep learning is increasingly employed in image classification, yet the scarcity and high cost of labeled data for training remain a challenge. Limited samples often lead to overfitting due to biased sample distribution. This paper introduces a dynamic distribution calibration method for few-shot learning. Initially, base and new class samples undergo normalization to mitigate disparate feature magnitudes. A pre-trained model then extracts feature vectors from both classes. The method dynamically selects distribution characteristics from base classes (both adjacent and remote) in the embedding space, using a threshold value approach for new class samples. Given the propensity of similar classes to share feature distributions like mean and variance, this research assumes a Gaussian distribution for feature vectors. Subsequently, distributional features of new class samples are calibrated using a corrected hyperparameter, derived from the distribution features of both adjacent and distant base classes. This calibration augments the new class sample set. The technique demonstrates significant improvements, with up to 4% accuracy gains in few-shot classification challenges, as evidenced by tests on miniImagenet and CUB datasets.Keywords: deep learning, computer vision, image classification, few-shot learning, threshold
Procedia PDF Downloads 675786 Memory Based Reinforcement Learning with Transformers for Long Horizon Timescales and Continuous Action Spaces
Authors: Shweta Singh, Sudaman Katti
Abstract:
The most well-known sequence models make use of complex recurrent neural networks in an encoder-decoder configuration. The model used in this research makes use of a transformer, which is based purely on a self-attention mechanism, without relying on recurrence at all. More specifically, encoders and decoders which make use of self-attention and operate based on a memory, are used. In this research work, results for various 3D visual and non-visual reinforcement learning tasks designed in Unity software were obtained. Convolutional neural networks, more specifically, nature CNN architecture, are used for input processing in visual tasks, and comparison with standard long short-term memory (LSTM) architecture is performed for both visual tasks based on CNNs and non-visual tasks based on coordinate inputs. This research work combines the transformer architecture with the proximal policy optimization technique used popularly in reinforcement learning for stability and better policy updates while training, especially for continuous action spaces, which are used in this research work. Certain tasks in this paper are long horizon tasks that carry on for a longer duration and require extensive use of memory-based functionalities like storage of experiences and choosing appropriate actions based on recall. The transformer, which makes use of memory and self-attention mechanism in an encoder-decoder configuration proved to have better performance when compared to LSTM in terms of exploration and rewards achieved. Such memory based architectures can be used extensively in the field of cognitive robotics and reinforcement learning.Keywords: convolutional neural networks, reinforcement learning, self-attention, transformers, unity
Procedia PDF Downloads 1365785 Let’s Work It Out: Effects of a Cooperative Learning Approach on EFL Students’ Motivation and Reading Comprehension
Authors: Shiao-Wei Chu
Abstract:
In order to enhance the ability of their graduates to compete in an increasingly globalized economy, the majority of universities in Taiwan require students to pass Freshman English in order to earn a bachelor's degree. However, many college students show low motivation in English class for several important reasons, including exam-oriented lessons, unengaging classroom activities, a lack of opportunities to use English in authentic contexts, and low levels of confidence in using English. Students’ lack of motivation in English classes is evidenced when students doze off, work on assignments from other classes, or use their phones to chat with others, play video games or watch online shows. Cooperative learning aims to address these problems by encouraging language learners to use the target language to share individual experiences, cooperatively complete tasks, and to build a supportive classroom learning community whereby students take responsibility for one another’s learning. This study includes approximately 50 student participants in a low-proficiency Freshman English class. Each week, participants will work together in groups of between 3 and 4 students to complete various in-class interactive tasks. The instructor will employ a reward system that incentivizes students to be responsible for their own as well as their group mates’ learning. The rewards will be based on points that team members earn through formal assessment scores as well as assessment of their participation in weekly in-class discussions. The instructor will record each team’s week-by-week improvement. Once a team meets or exceeds its own earlier performance, the team’s members will each receive a reward from the instructor. This cooperative learning approach aims to stimulate EFL freshmen’s learning motivation by creating a supportive, low-pressure learning environment that is meant to build learners’ self-confidence. Students will practice all four language skills; however, the present study focuses primarily on the learners’ reading comprehension. Data sources include in-class discussion notes, instructor field notes, one-on-one interviews, students’ midterm and final written reflections, and reading scores. Triangulation is used to determine themes and concerns, and an instructor-colleague analyzes the qualitative data to build interrater reliability. Findings are presented through the researcher’s detailed description. The instructor-researcher has developed this approach in the classroom over several terms, and its apparent success at motivating students inspires this research. The aims of this study are twofold: first, to examine the possible benefits of this cooperative approach in terms of students’ learning outcomes; and second, to help other educators to adapt a more cooperative approach to their classrooms.Keywords: freshman English, cooperative language learning, EFL learners, learning motivation, zone of proximal development
Procedia PDF Downloads 1455784 Children Overcome Learning Disadvantages through Mother-Tongue Based Multi-Lingual Education Programme
Authors: Binay Pattanayak
Abstract:
More than 9 out of every 10 children in Jharkhand struggle to understand the texts and teachers in public schools. The medium of learning in the schools is Hindi, which is very different in structure and vocabulary than those in children’s home languages. Hence around 3 out of 10 children enrolled in early grades drop out in these schools. The state realized the cause of children’s high dropout in 2013-14 when the M-TALL, the language research shared the findings of a state-wide socio-linguistic study. The study findings suggested that there was a great need for initiating a mother-tongue based multilingual education (MTB-MLE) programme for the state in early grades starting from pre-school level. Accordingly, M-TALL in partnership with department of education designed two learning packages: Bhasha Puliya pre-school education programme for 3-6-year-old children for their school readiness with bilingual picture dictionaries in 9 tribal and regional languages. This was followed by a plan for MTB-MLE programme for early primary grades. For this textbooks in five tribal and two regional languages were developed under the guidance of the author. These books were printed and circulated in the 1000 schools of the state for each child. Teachers and community members were trained for facilitating culturally sensitive mother-tongue based learning activities in and around the schools. The mother-tongue based approach of learning has worked very effectively in enabling them to acquire the basic literacy and numeracy skills in own mother-tongues. Using this basic early grade reading skills, these children are able to learn Hindi and English systematically. Community resource groups were constituted in each school for promoting storytelling, singing, painting, dancing, acting, riddles, humor, sanitation, health, nutrition, protection, etc. and were trained. School academic calendar was designed in each school to enable the community resource persons to visit the school as per the learning plan to assist children and teacher in facilitating rich cultural activities in mother-tongue. This enables children to take part in plethora of learning activities and acquire desired knowledge, skills and interest in mother-tongues. Also in this process, it is attempted to promote 21st Century learning skills by enabling children to apply their new knowledge and skills to look at their local issues and address those in a collective manner through team work, innovations and leadership.Keywords: community resource groups, learning, MTB-MLE, multilingual, socio-linguistic survey
Procedia PDF Downloads 2365783 Iot Device Cost Effective Storage Architecture and Real-Time Data Analysis/Data Privacy Framework
Authors: Femi Elegbeleye, Omobayo Esan, Muienge Mbodila, Patrick Bowe
Abstract:
This paper focused on cost effective storage architecture using fog and cloud data storage gateway and presented the design of the framework for the data privacy model and data analytics framework on a real-time analysis when using machine learning method. The paper began with the system analysis, system architecture and its component design, as well as the overall system operations. The several results obtained from this study on data privacy model shows that when two or more data privacy model is combined we tend to have a more stronger privacy to our data, and when fog storage gateway have several advantages over using the traditional cloud storage, from our result shows fog has reduced latency/delay, low bandwidth consumption, and energy usage when been compare with cloud storage, therefore, fog storage will help to lessen excessive cost. This paper dwelt more on the system descriptions, the researchers focused on the research design and framework design for the data privacy model, data storage, and real-time analytics. This paper also shows the major system components and their framework specification. And lastly, the overall research system architecture was shown, its structure, and its interrelationships.Keywords: IoT, fog, cloud, data analysis, data privacy
Procedia PDF Downloads 995782 Detection of Cyberattacks on the Metaverse Based on First-Order Logic
Authors: Sulaiman Al Amro
Abstract:
There are currently considerable challenges concerning data security and privacy, particularly in relation to modern technologies. This includes the virtual world known as the Metaverse, which consists of a virtual space that integrates various technologies and is therefore susceptible to cyber threats such as malware, phishing, and identity theft. This has led recent studies to propose the development of Metaverse forensic frameworks and the integration of advanced technologies, including machine learning for intrusion detection and security. In this context, the application of first-order logic offers a formal and systematic approach to defining the conditions of cyberattacks, thereby contributing to the development of effective detection mechanisms. In addition, formalizing the rules and patterns of cyber threats has the potential to enhance the overall security posture of the Metaverse and, thus, the integrity and safety of this virtual environment. The current paper focuses on the primary actions employed by avatars for potential attacks, including Interval Temporal Logic (ITL) and behavior-based detection to detect an avatar’s abnormal activities within the Metaverse. The research established that the proposed framework attained an accuracy of 92.307%, resulting in the experimental results demonstrating the efficacy of ITL, including its superior performance in addressing the threats posed by avatars within the Metaverse domain.Keywords: security, privacy, metaverse, cyberattacks, detection, first-order logic
Procedia PDF Downloads 415781 Applying Neural Networks for Solving Record Linkage Problem via Fuzzy Description Logics
Authors: Mikheil Kalmakhelidze
Abstract:
Record linkage (RL) problem has become more and more important in recent years due to the growing interest towards big data analysis. The problem can be formulated in a very simple way: Given two entries a and b of a database, decide whether they represent the same object or not. There are two classical deterministic and probabilistic ways of solving the RL problem. Using simple Bayes classifier in many cases produces useful results but sometimes they show to be poor. In recent years several successful approaches have been made towards solving specific RL problems by neural network algorithms including single layer perception, multilayer back propagation network etc. In our work, we model the RL problem for specific dataset of student applications in fuzzy description logic (FDL) where linkage of specific pair (a,b) depends on the truth value of corresponding formula A(a,b) in a canonical FDL model. As a main result, we build neural network for deciding truth value of FDL formulas in a canonical model and thus link RL problem to machine learning. We apply the approach to dataset with 10000 entries and also compare to classical RL solving approaches. The results show to be more accurate than standard probabilistic approach.Keywords: description logic, fuzzy logic, neural networks, record linkage
Procedia PDF Downloads 2735780 Hear Me: The Learning Experience on “Zoom” of Students With Deafness or Hard of Hearing Impairments
Authors: H. Weigelt-Marom
Abstract:
Over the years and up to the arousal of the COVID-19 pandemic, deaf or hard of hearing students studying in higher education institutions, participated lectures on campus using hearing aids and strategies adapted for frontal learning in a classroom. Usually, these aids were well known to them from their earlier study experience in school. However, the transition to online lessons, due to the latest pandemic, led deaf or hard of hearing students to study outside of their physical, well known learning environment. The change of learning environment and structure rose new challenges for these students. The present study examined the learning experience, limitations, challenges and benefits regarding learning online with lecture and classmates via the “Zoom” video conference program, among deaf or hard of hearing students in academia setting. In addition, emotional and social aspects related to learning in general versus the “Zoom” were examined. The study included 18 students diagnosed as deaf or hard of hearing, studying in various higher education institutions in Israel. All students had experienced lessons on the “Zoom”. Following allocation of the group study by the deaf and hard of hearing non-profit organization “Ma’agalei Shema”, and receiving the participants inform of consent, students were requested to answer a google form questioner and participate in an interview. The questioner included background information (e.g., age, year of studying, faculty etc.), level of computer literacy, and level of hearing and forms of communication (e.g., lip reading, sign language etc.). The interviews included a one on one, semi-structured, in-depth interview, conducted by the main researcher of the study (interview duration: up to 60 minutes). The interviews were held on “ZOOM” using specific adaptations for each interviewee: clear face screen of the interviewer for lip and face reading, and/ or professional sign language or live text transcript of the conversation. Additionally, interviewees used their audio devices if needed. Questions regarded: learning experience, difficulties and advantages studying using “Zoom”, learning in a classroom versus on “Zoom”, and questions concerning emotional and social aspects related to learning. Thematic analysis of the interviews revealed severe difficulties regarding the ability of deaf or hard of hearing students to comprehend during ”Zoom“ lessons without adoptive aids. For example, interviewees indicated difficulties understanding “Zoom” lessons due to their inability to use hearing devices commonly used by them in the classroom (e.g., FM systems). 80% indicated that they could not comprehend “Zoom” lessons since they could not see the lectures face, either because lectures did not agree to open their cameras or, either because they did not keep a straight forward clear face appearance while teaching. However, not all descriptions regarded learning via the “zoom” were negative. For example, 20% reported the recording of “Zoom” lessons as a main advantage. Enabling then to repeatedly watch the lessons at their own pace, mostly assisted by friends and family to translate the audio output into an accessible input. These finding and others regarding the learning experience of the group study on the “Zoom”, as well as their recommendation to enable deaf or hard of hearing students to study inclusively online, will be presented at the conference.Keywords: deaf or hard of hearing, learning experience, Zoom, qualitative research
Procedia PDF Downloads 1165779 Online vs. in vivo Workshops in a Masters’ Degree Course in Mental Health Nursing: Students’ Views and Opinions
Authors: Evmorfia Koukia, Polyxeni Mangoulia
Abstract:
Workshops tend to be a vivid and productive way as an in vivo teaching method. Due to the pandemic, COVID-19 university courses were conducted through the internet. Method It was tried for the first time to integrate online art therapy workshops in a core course named “Special Themes of Mental Health Nursing” in a MSc Program in Mental Health. The duration of the course is 3-hours per week for 11 weeks in a single semester. The course has a main instructor, a professor of psychiatric nursing experienced in arts therapies workshops and visiting art therapists. All art therapists were given a certain topic to cover. Students were encouraged to keep a logbook that was evaluated at the end of the semester and was submitted as a part of the examination process of the course. An interview of 10 minutes was conducted with each student at the end of the course from an independent investigator (an assistant professor) Participants The students (sample) of the program were: nurses, psychologists, and social workers Results: All students who participated in the courses found that the learning process was vivid, encouraging participation and self-motivation, and there were no main differences from in vivo learning. The students identified their personal needs, and they felt a personal connection with the learning experience. The result of the personalized learning was that students discovered their strengths and weaknesses and developed skills like critical thinking. All students admitted that the workshops were the optimal way for them to comprehend the courses’ content, their capability to become therapists, as well as their obstacles and weaknesses while working with patients in mental health. Conclusion: There were no important differences between the views of students in online and in vivo teaching method of the workshops. The result has shown that workshops in mental health can contribute equally in the learning experience.Keywords: mental health, workshops, students, nursing
Procedia PDF Downloads 2095778 Shotcrete Performance Optimisation and Audit Using 3D Laser Scanning
Authors: Carlos Gonzalez, Neil Slatcher, Marcus Properzi, Kan Seah
Abstract:
In many underground mining operations, shotcrete is used for permanent rock support. Shotcrete thickness is a critical measure of the success of this process. 3D Laser Mapping, in conjunction with Jetcrete, has developed a 3D laser scanning system specifically for measuring the thickness of shotcrete. The system is mounted on the shotcrete spraying machine and measures the rock faces before and after spraying. The calculated difference between the two 3D surface models is measured as the thickness of the sprayed concrete. Typical work patterns for the shotcrete process required a rapid and automatic system. The scanning takes place immediately before and after the application of the shotcrete so no convergence takes place in the interval between scans. Automatic alignment of scans without targets was implemented which allows for the possibility of movement of the spraying machine between scans. Case studies are presented where accuracy tests are undertaken and automatic audit reports are calculated. The use of 3D imaging data for the calculation of shotcrete thickness is an important tool for geotechnical engineers and contract managers, and this could become the new state-of-the-art methodology for the mining industry.Keywords: 3D imaging, shotcrete, surface model, tunnel stability
Procedia PDF Downloads 2905777 Application of Support Vector Machines in Forecasting Non-Residential
Authors: Wiwat Kittinaraporn, Napat Harnpornchai, Sutja Boonyachut
Abstract:
This paper deals with the application of a novel neural network technique, so-called Support Vector Machine (SVM). The objective of this study is to explore the variable and parameter of forecasting factors in the construction industry to build up forecasting model for construction quantity in Thailand. The scope of the research is to study the non-residential construction quantity in Thailand. There are 44 sets of yearly data available, ranging from 1965 to 2009. The correlation between economic indicators and construction demand with the lag of one year was developed by Apichat Buakla. The selected variables are used to develop SVM models to forecast the non-residential construction quantity in Thailand. The parameters are selected by using ten-fold cross-validation method. The results are indicated in term of Mean Absolute Percentage Error (MAPE). The MAPE value for the non-residential construction quantity predicted by Epsilon-SVR in corporation with Radial Basis Function (RBF) of kernel function type is 5.90. Analysis of the experimental results show that the support vector machine modelling technique can be applied to forecast construction quantity time series which is useful for decision planning and management purpose.Keywords: forecasting, non-residential, construction, support vector machines
Procedia PDF Downloads 4345776 The Implementation of Word Study Wall in an Online English Word Memorization Class
Authors: Yidan Shao
Abstract:
With the advancement of the economy, technology promotes online teaching, and learning has become one of the common features in the educational field. Meanwhile, the dramatic expansion of the online environment provides opportunities for more learners, including second language learners. A greater command of vocabulary improves students’ learning capacity, and word acquisition and development play a critical role in learning. Furthermore, the Word Wall is an effective tool to improve students’ knowledge of words, which works for a wide range of age groups. Therefore, this study is going to use the Word Wall as an intervention to examine whether it can bring some memorization changes in an online English language class for a second language learner based on the word morphology method. The participant will take ten courses in the experiment as it plans. The findings show that the Word Wall activity plays a slight role in improving word memorizing, but it does affect instant memorization. If longer periods and more comprehensive designs of research can be applied, it is expected to have more value.Keywords: second language acquisition, word morphology, word memorization, the Word Wall
Procedia PDF Downloads 1195775 Unleashing Potential in Pedagogical Innovation for STEM Education: Applying Knowledge Transfer Technology to Guide a Co-Creation Learning Mechanism for the Lingering Effects Amid COVID-19
Authors: Lan Cheng, Harry Qin, Yang Wang
Abstract:
Background: COVID-19 has induced the largest digital learning experiment in history. There is also emerging research evidence that students have paid a high cost of learning loss from virtual learning. University-wide survey results demonstrate that digital learning remains difficult for students who struggle with learning challenges, isolation, or a lack of resources. Large-scale efforts are therefore increasingly utilized for digital education. To better prepare students in higher education for this grand scientific and technological transformation, STEM education has been prioritized and promoted as a strategic imperative in the ongoing curriculum reform essential for unfinished learning needs and whole-person development. Building upon five key elements identified in the STEM education literature: Problem-based Learning, Community and Belonging, Technology Skills, Personalization of Learning, Connection to the External Community, this case study explores the potential of pedagogical innovation that integrates computational and experimental methodologies to support, enrich, and navigate STEM education. Objectives: The goal of this case study is to create a high-fidelity prototype design for STEM education with knowledge transfer technology that contains a Cooperative Multi-Agent System (CMAS), which has the objectives of (1) conduct assessment to reveal a virtual learning mechanism and establish strategies to facilitate scientific learning engagement, accessibility, and connection within and beyond university setting, (2) explore and validate an interactional co-creation approach embedded in project-based learning activities under the STEM learning context, which is being transformed by both digital technology and student behavior change,(3) formulate and implement the STEM-oriented campaign to guide learning network mapping, mitigate the loss of learning, enhance the learning experience, scale-up inclusive participation. Methods: This study applied a case study strategy and a methodology informed by Social Network Analysis Theory within a cross-disciplinary communication paradigm (students, peers, educators). Knowledge transfer technology is introduced to address learning challenges and to increase the efficiency of Reinforcement Learning (RL) algorithms. A co-creation learning framework was identified and investigated in a context-specific way with a learning analytic tool designed in this study. Findings: The result shows that (1) CMAS-empowered learning support reduced students’ confusion, difficulties, and gaps during problem-solving scenarios while increasing learner capacity empowerment, (2) The co-creation learning phenomenon have examined through the lens of the campaign and reveals that an interactive virtual learning environment fosters students to navigate scientific challenge independently and collaboratively, (3) The deliverables brought from the STEM educational campaign provide a methodological framework both within the context of the curriculum design and external community engagement application. Conclusion: This study brings a holistic and coherent pedagogy to cultivates students’ interest in STEM and develop them a knowledge base to integrate and apply knowledge across different STEM disciplines. Through the co-designing and cross-disciplinary educational content and campaign promotion, findings suggest factors to empower evidence-based learning practice while also piloting and tracking the impact of the scholastic value of co-creation under the dynamic learning environment. The data nested under the knowledge transfer technology situates learners’ scientific journey and could pave the way for theoretical advancement and broader scientific enervators within larger datasets, projects, and communities.Keywords: co-creation, cross-disciplinary, knowledge transfer, STEM education, social network analysis
Procedia PDF Downloads 1145774 Creating Complementary Bi-Modal Learning Environments: An Exploratory Study Combining Online and Classroom Techniques
Authors: Justin P. Pool, Haruyo Yoshida
Abstract:
This research focuses on the effects of creating an English as a foreign language curriculum that combines online learning and classroom teaching in a complementary manner. Through pre- and post-test results, teacher observation, and learner reflection, it will be shown that learners can benefit from online programs focusing on receptive skills if combined with a communicative classroom environment that encourages learners to develop their productive skills. Much research has lamented the fact that many modern mobile assisted language learning apps do not take advantage of the affordances of modern technology by focusing only on receptive skills rather than inviting learners to interact with one another and develop communities of practice. This research takes into account the realities of the state of such apps and focuses on how to best create a curriculum that complements apps which focus on receptive skills. The research involved 15 adult learners working for a business in Japan simultaneously engaging in 1) a commercial online English language learning application that focused on reading, listening, grammar, and vocabulary and 2) a 15-week class focused on communicative language teaching, presentation skills, and mitigation of error aversion tendencies. Participants of the study experienced large gains on a standardized test, increased motivation and willingness to communicate, and asserted that they felt more confident regarding English communication. Moreover, learners continued to study independently at higher rates after the study than they had before the onset of the program. This paper will include the details of the program, reveal the improvement in test scores, share learner reflections, and critically view current evaluation models for mobile assisted language learning applications.Keywords: adult learners, communicative language teaching, mobile assisted language learning, motivation
Procedia PDF Downloads 1355773 Inquiry-based Science Education in Computer Science Learning in Primary School
Authors: Maslin Masrom, Nik Hasnaa Nik Mahmood, Wan Normeza Wan Zakaria, Azizul Azizan, Norshaliza Kamaruddin
Abstract:
Traditionally, in science education, the teacher provides facts and the students learn them. It is outmoded for today’s students to equip them with real-life situations, mainly because knowledge and life skills are acquired passively from the instructors. Inquiry-Based Science Education (IBSE) is an approach that allows students to experiment, ask questions, and develop responses based on reasoning. It has provided students and teachers with opportunities to actively engage in collaborative learning via inquiry. This approach inspires the students to become active thinkers, research for solutions, and gain life-long experience and self-confidence. Therefore, the research aims to investigate how the primary-school teacher supports students or pupils through an inquiry-based science education approach for computer science, specifically coding skills. The results are presented and described.Keywords: inquiry-based science education, student-centered learning, computer science, primary school
Procedia PDF Downloads 1575772 Enhancing goal Achivement through Improved Communication Skills
Abstract:
An extensive body of research studies suggest that students, teachers, and supervisors can enhance the likelihood of reaching their goals by improving their communication skills. It is highly important to learn how and when to provide different kinds of feedback, e.g. anticipatory, corrective and positive) will gain better result and higher morale. The purpose of this mixed methods research is twofold: 1) To find out what factors affect effective communication among different stakeholders and how these factors affect student learning 2) What are the good practices for improving communication among different stakeholders and improve student achievement. This presentation first begins with an introduction to the recent research on Marshall’s Nonviolent Communication Techniques (NVC), including four important components: observations, feelings, needs, requests. These techniques can be effectively applied at all levels of communication. To develop an in-depth understanding of the relationship among different techniques within, this research collected, compared, and combined qualitative and quantitative data to better improve communication and support student learning.Keywords: communication, education, language learning, goal achievement, academic success
Procedia PDF Downloads 725771 Applications of Artificial Intelligence (AI) in Cardiac imaging
Authors: Angelis P. Barlampas
Abstract:
The purpose of this study is to inform the reader, about the various applications of artificial intelligence (AI), in cardiac imaging. AI grows fast and its role is crucial in medical specialties, which use large amounts of digital data, that are very difficult or even impossible to be managed by human beings and especially doctors.Artificial intelligence (AI) refers to the ability of computers to mimic human cognitive function, performing tasks such as learning, problem-solving, and autonomous decision making based on digital data. Whereas AI describes the concept of using computers to mimic human cognitive tasks, machine learning (ML) describes the category of algorithms that enable most current applications described as AI. Some of the current applications of AI in cardiac imaging are the follows: Ultrasound: Automated segmentation of cardiac chambers across five common views and consequently quantify chamber volumes/mass, ascertain ejection fraction and determine longitudinal strain through speckle tracking. Determine the severity of mitral regurgitation (accuracy > 99% for every degree of severity). Identify myocardial infarction. Distinguish between Athlete’s heart and hypertrophic cardiomyopathy, as well as restrictive cardiomyopathy and constrictive pericarditis. Predict all-cause mortality. CT Reduce radiation doses. Calculate the calcium score. Diagnose coronary artery disease (CAD). Predict all-cause 5-year mortality. Predict major cardiovascular events in patients with suspected CAD. MRI Segment of cardiac structures and infarct tissue. Calculate cardiac mass and function parameters. Distinguish between patients with myocardial infarction and control subjects. It could potentially reduce costs since it would preclude the need for gadolinium-enhanced CMR. Predict 4-year survival in patients with pulmonary hypertension. Nuclear Imaging Classify normal and abnormal myocardium in CAD. Detect locations with abnormal myocardium. Predict cardiac death. ML was comparable to or better than two experienced readers in predicting the need for revascularization. AI emerge as a helpful tool in cardiac imaging and for the doctors who can not manage the overall increasing demand, in examinations such as ultrasound, computed tomography, MRI, or nuclear imaging studies.Keywords: artificial intelligence, cardiac imaging, ultrasound, MRI, CT, nuclear medicine
Procedia PDF Downloads 795770 Online Postgraduate Students’ Perceptions and Experiences With Student to Student Interactions: A Case for Kamuzu University of Health Sciences in Malawi
Authors: Frazer McDonald Ng'oma
Abstract:
Online Learning in Malawi has only immersed in recent years due to the need to increase access to higher education, the need to accommodate upgrading students who wish to study on a part time basis while still continuing their work, and the COVID-19 pandemic, which forced the closure of schools resulting in academic institutions seeking alternative modes of teaching and Learning to ensure continued teaching and Learning. Realizing that this mode of Learning is becoming a norm, institutions of higher Learning have started pioneering online post-graduate programs from which they can draw lessons before fully implementing it in undergraduate programs. Online learning pedagogy has not been fully grasped and institutions are still experimenting with this mode of Learning until online Learning guiding policies are created and its standards improved. This single case descriptive qualitative research study sought to investigate online postgraduate students’ perceptions and experiences with Student to student interactive pedagogy in their programs. The results of the study are to inform institutions and educators how to structure their programs to ensure that their students get the full satisfaction. 25 Masters students in 3 recently introduced online programs at Kamuzu University of Health Sciences (KUHES), were engaged; 19 were interviewed and 6 responded to questionnaires. The findings from the students were presented and categorized in themes and subthemes that emerged from the qualitative data that was collected and analysed following Colaizzi’s framework for data analysis that resulted in themes formulation. Findings revealed that Student to student interactions occurred in the online programme during live sessions, on class Whatsapp group, in discussion boards as well as on emails. Majority of the students (n=18) felt the level of students’ interaction initiated by the institution was too much, referring to mandatory interactions activities like commenting in discussion boards and attending to live sessons. Some participants (n=7) were satisfied with the level of interaction and also pointed out that they would be fine with more program-initiated student–to–student interactions. These participants attributed having been out of school for some time as a reason for needing peer interactions citing that it is already difficult to get back to a traditional on-campus school after some time, let alone an online class where there is no physical interaction with other students. In general, majority of the participants (n=18) did not value Student to student interaction in online Learning. The students suggested that having intensive student-to-student interaction in postgraduate online studies does not need to be a high priority for the institution and they further recommended that if a lecturer decides to incorporate student-to-student activities into a class, they should be optional.Keywords: online learning, interactions, student interactions, post graduate students
Procedia PDF Downloads 715769 The Implementation of Character Education in Code Riverbanks, Special Region of Yogyakarta, Indonesia
Authors: Ulil Afidah, Muhamad Fathan Mubin, Firdha Aulia
Abstract:
Code riverbanks Yogyakarta is a settlement area with middle to lower social classes. Socio-economic situation is affecting the behavior of society. This research aimed to find and explain the implementation and the assessment of character education which were done in elementary schools in Code riverside, Yogyakarta region of Indonesia. This research is a qualitative research which the subjects were the kids of Code riverbanks, Yogyakarta. The data were collected through interviews and document studies and analyzed qualitatively using the technique of interactive analysis model of Miles and Huberman. The results show that: (1) The learning process of character education was done by integrating all aspects such as democratic and interactive learning session also introducing role model to the students. 2) The assessment of character education was done by teacher based on teaching and learning process and an activity in outside the classroom that was the criterion on three aspects: Cognitive, affective and psychomotor.Keywords: character, Code riverbanks, education, Yogyakarta
Procedia PDF Downloads 2485768 Analogy to Continental Divisions: An Attention-Grabbing Approach to Teach Taxonomic Hierarchy to Students
Authors: Sagheer Ahmad
Abstract:
Teaching is a sacred profession whereby students are developed in their mental abilities to cope with the challenges of the remote world. Thinkers have developed plenty of interesting ways to make the learning process quick and absorbing for the students. However, third world countries are still lacking these remote facilities in the institutions, and therefore, teaching is totally dependent upon the skills of the teachers. Skillful teachers use self-devised and stimulating ideas to grab the attention of their students. Most of the time their ideas are based on local grounds with which the students are already familiar. This self-explanatory characteristic is the base of several local ideologies to disseminate scientific knowledge to new generations. Biology is such a subject which largely bases upon hypotheses, and teaching it in an interesting way is needful to create a friendly relationship between teacher and student, and to make a fantastic learning environment. Taxonomic classification if presented as it is, may not be attractive for the secondary school students who just start learning about biology at elementary levels. Presenting this hierarchy by exemplifying Kingdom, Phylum, Class, Order, family, genus and Species as comparatives of our division into continents, countries, cities, towns, villages, homes and finally individuals could be an attention-grabbing approach to make this concept get into bones of students. Similarly, many other interesting approaches have also been adopted to teach students in a fascinating way so that learning science subjects may not be boring for them. Discussing these appealing ways of teaching students can be a valuable stimulus to refine teaching methodologies about science, thereby promoting the concept of friendly learning.Keywords: biology, innovative approaches, taxonomic classification, teaching
Procedia PDF Downloads 2505767 Eco-Drive Predictive Analytics
Authors: Sharif Muddsair, Eisels Martin, Giesbrecht Eugenie
Abstract:
With development of society increase the demand for the movement of people also increases gradually. The various modes of the transport in different extent which expat impacts, which depends on mainly technical-operating conditions. The up-to-date telematics systems provide the transport industry a revolutionary. Appropriate use of these systems can help to substantially improve the efficiency. Vehicle monitoring and fleet tracking are among services used for improving efficiency and effectiveness of utility vehicle. There are many telematics systems which may contribute to eco-driving. Generally, they can be grouped according to their role in driving cycle. • Before driving - eco-route selection, • While driving – Advanced driver assistance, • After driving – remote analysis. Our point of interest is regulated in third point [after driving – remote analysis]. TS [Telematics-system] make it possible to record driving patterns in real time and analysis the data later on, So that driver- classification-specific hints [fast driver, slow driver, aggressive driver…)] are given to imitate eco-friendly driving style. Together with growing number of vehicle and development of information technology, telematics become an ‘active’ research subject in IT and the car industry. Telematics has gone a long way from providing navigation solution/assisting the driver to become an integral part of the vehicle. Today’s telematics ensure safety, comfort and become convenience of the driver.Keywords: internet of things, iot, connected vehicle, cv, ts, telematics services, ml, machine learning
Procedia PDF Downloads 3065766 Image Inpainting Model with Small-Sample Size Based on Generative Adversary Network and Genetic Algorithm
Authors: Jiawen Wang, Qijun Chen
Abstract:
The performance of most machine-learning methods for image inpainting depends on the quantity and quality of the training samples. However, it is very expensive or even impossible to obtain a great number of training samples in many scenarios. In this paper, an image inpainting model based on a generative adversary network (GAN) is constructed for the cases when the number of training samples is small. Firstly, a feature extraction network (F-net) is incorporated into the GAN network to utilize the available information of the inpainting image. The weighted sum of the extracted feature and the random noise acts as the input to the generative network (G-net). The proposed network can be trained well even when the sample size is very small. Secondly, in the phase of the completion for each damaged image, a genetic algorithm is designed to search an optimized noise input for G-net; based on this optimized input, the parameters of the G-net and F-net are further learned (Once the completion for a certain damaged image ends, the parameters restore to its original values obtained in the training phase) to generate an image patch that not only can fill the missing part of the damaged image smoothly but also has visual semantics.Keywords: image inpainting, generative adversary nets, genetic algorithm, small-sample size
Procedia PDF Downloads 1305765 Beyond the Flipped Classroom: A Tool to Promote Autonomy, Cooperation, Differentiation and the Pleasure of Learning
Authors: Gabriel Michel
Abstract:
The aim of our research is to find solutions for adapting university teaching to today's students and companies. To achieve this, we have tried to change the posture and behavior of those involved in the learning situation by promoting other skills. There is a gap between the expectations and functioning of students and university teaching. At the same time, the business world needs employees who are obviously competent and proficient in technology, but who are also imaginative, flexible, able to communicate, learn on their own and work in groups. These skills are rarely developed as a goal at university. The flipped classroom has been one solution. Thanks to digital tools such as Moodle, for example, but the model behind them is still centered on teachers and classic learning scenarios: it makes course materials available without really involving them and encouraging them to cooperate. It's against this backdrop that we've conducted action research to explore the possibility of changing the way we learn (rather than teach) by changing the posture of both the classic student and the teacher. We hypothesized that a tool we developed would encourage autonomy, the possibility of progressing at one's own pace, collaboration and learning using all available resources(other students, course materials, those on the web and the teacher/facilitator). Experimentation with this tool was carried out with around thirty German and French first-year students at the Université de Lorraine in Metz (France). The projected changesin the groups' learning situations were as follows: - use the flipped classroom approach but with a few traditional presentations by the teacher (materials having been put on a server) and lots of collective case solving, - engage students in their learning by inviting them to set themselves a primary objective from the outset, e.g. “Assimilating 90% of the course”, and secondary objectives (like a to-do list) such as “create a new case study for Tuesday”, - encourage students to take control of their learning (knowing at all times where they stand and how far they still have to go), - develop cooperation: the tool should encourage group work, the search for common solutions and the exchange of the best solutions with other groups. Those who have advanced much faster than the others, or who already have expertise in a subject, can become tutors for the others. A student can also present a case study he or she has developed, for example, or share materials found on the web or produced by the group, as well as evaluating the productions of others, - etc… A questionnaire and analysis of assessment results showed that the test group made considerable progress compared with a similar control group. These results confirmed our hypotheses. Obviously, this tool is only effective if the organization of teaching is adapted and if teachers are willing to change the way they work.Keywords: pedagogy, cooperation, university, learning environment
Procedia PDF Downloads 225764 Students' Willingness to Accept Virtual Lecturing Systems: An Empirical Study by Extending the UTAUT Model
Authors: Ahmed Shuhaiber
Abstract:
The explosion of the World Wide Web and the electronic trend of university teaching have transformed the learning style to become more learner-centred, Which has popularized the digital delivery of mediated lectures as an alternative or an adjunct to traditional lectures. Despite its potential and popularity, virtual lectures have not been adopted yet in Jordanian universities. This research aimed to fill this gap by studying the factors that influence student’s willingness to accept virtual lectures in one Jordanian University. A quantitative approach was followed by obtaining 216 survey responses and statistically applying the UTAUT model with some modifications. Results revealed that performance expectancy, effort expectancy, social influences and self-efficacy could significantly influence student’s attitudes towards virtual lectures. Additionally, facilitating conditions and attitudes towards virtual lectures were found with significant influence on student’s intention to take virtual lectures. Research implications and future work were specified afterwards.Keywords: E-learning, student willingness, UTAUT, virtual Lectures, web-based learning systems
Procedia PDF Downloads 2915763 Exploratory Study of the Influencing Factors for Hotels' Competitors
Authors: Asma Ameur, Dhafer Malouche
Abstract:
Hotel competitiveness research is an essential phase of the marketing strategy for any hotel. Certainly, knowing the hotels' competitors helps the hotelier to grasp its position in the market and the citizen to make the right choice in picking a hotel. Thus, competitiveness is an important indicator that can be influenced by various factors. In fact, the issue of competitiveness, this ability to cope with competition, remains a difficult and complex concept to define and to exploit. Therefore, the purpose of this article is to make an exploratory study to calculate a competitiveness indicator for hotels. Further on, this paper makes it possible to determine the criteria of direct or indirect effect on the image and the perception of a hotel. The actual research is used to look into the right model for hotel ‘competitiveness. For this reason, we exploit different theoretical contributions in the field of machine learning. Thus, we use some statistical techniques such as the Principal Component Analysis (PCA) to reduce the dimensions, as well as other techniques of statistical modeling. This paper presents a survey covering of the techniques and methods in hotel competitiveness research. Furthermore, this study allows us to deduct the significant variables that influence the determination of hotel’s competitors. Lastly, the discussed experiences in this article found that the hotel competitors are influenced by several factors with different rates.Keywords: competitiveness, e-reputation, hotels' competitors, online hotel’ review, principal component analysis, statistical modeling
Procedia PDF Downloads 119