Search results for: algorithms and data structure
29060 Using Implicit Data to Improve E-Learning Systems
Authors: Slah Alsaleh
Abstract:
In the recent years and with popularity of internet and technology, e-learning became a major part of majority of education systems. One of the advantages the e-learning systems provide is the large amount of information available about the students' behavior while communicating with the e-learning system. Such information is very rich and it can be used to improve the capability and efficiency of e-learning systems. This paper discusses how e-learning can benefit from implicit data in different ways including; creating homogeneous groups of student, evaluating students' learning, creating behavior profiles for students and identifying the students through their behaviors.Keywords: e-learning, implicit data, user behavior, data mining
Procedia PDF Downloads 31529059 Seamless Mobility in Heterogeneous Mobile Networks
Authors: Mohab Magdy Mostafa Mohamed
Abstract:
The objective of this paper is to introduce a vertical handover (VHO) algorithm between wireless LANs (WLANs) and LTE mobile networks. The proposed algorithm is based on the fuzzy control theory and takes into consideration power level, subscriber velocity, and target cell load instead of only power level in traditional algorithms. Simulation results show that network performance in terms of number of handovers and handover occurrence distance is improved.Keywords: vertical handover, fuzzy control theory, power level, speed, target cell load
Procedia PDF Downloads 35829058 Enabling Quantitative Urban Sustainability Assessment with Big Data
Authors: Changfeng Fu
Abstract:
Sustainable urban development has been widely accepted a common sense in the modern urban planning and design. However, the measurement and assessment of urban sustainability, especially the quantitative assessment have been always an issue obsessing planning and design professionals. This paper will present an on-going research on the principles and technologies to develop a quantitative urban sustainability assessment principles and techniques which aim to integrate indicators, geospatial and geo-reference data, and assessment techniques together into a mechanism. It is based on the principles and techniques of geospatial analysis with GIS and statistical analysis methods. The decision-making technologies and methods such as AHP and SMART are also adopted to address overall assessment conclusions. The possible interfaces and presentation of data and quantitative assessment results are also described. This research is based on the knowledge, situations and data sources of UK, but it is potentially adaptable to other countries or regions. The implementation potentials of the mechanism are also discussed.Keywords: urban sustainability assessment, quantitative analysis, sustainability indicator, geospatial data, big data
Procedia PDF Downloads 36329057 A Seismic Study on The Settlement of Superstructures Due to the Tunnel Construction
Authors: Seyed Abolhasan Naeini, Saeideh Mohammadi
Abstract:
Rapid urban development leads to the construction of urban tunnels for transport. Passage of tunnels under the surface structures and utilities prompted the changes in the site conditions and hence alteration of the dynamic response of surface structures. Therefore, in this study, the effect of the interaction of tunnel-superstructure on the site response is investigated numerically. For this purpose, Fast Lagrangian Analysis of Continua (FLAC 2D) is used, and stratification and properties of soil layers are selected based on the line No 7 of Tehran subway. The superstructure is modeled both as an equivalent surcharge and the actual structure, and the results are compared. A comparison of the results shows that consideration of structure geometry is necessary for dynamic analysis and it leads to the changes in displacements and accelerations. Consequently, the geometry of the superstructure should be modeled completely instead of the application of an equivalent load. The effect of tunnel diameter and depth on the settlement of superstructures is also studied. Results show that when the tunnel depth and diameter grow, the settlements increase considerably.Keywords: tunnel, FLAC2D, settlement, dynamic analysis
Procedia PDF Downloads 13529056 The Influence of Microsilica on the Cluster Cracks' Geometry of Cement Paste
Authors: Maciej Szeląg
Abstract:
The changing nature of environmental impacts, in which cement composites are operating, are causing in the structure of the material a number of phenomena, which result in volume deformation of the composite. These strains can cause composite cracking. Cracks are merging by propagation or intersect to form a characteristic structure of cracks known as the cluster cracks. This characteristic mesh of cracks is crucial to almost all building materials, which are working in service loads conditions. Particularly dangerous for a cement matrix is a sudden load of elevated temperature – the thermal shock. Resulting in a relatively short period of time a large value of a temperature gradient between the outer surface and the material’s interior can result in cracks formation on the surface and in the volume of the material. In the paper, in order to analyze the geometry of the cluster cracks of the cement pastes, the image analysis tools were used. Tested were 4 series of specimens made of two different Portland cement. In addition, two series include microsilica as a substitute for the 10% of the cement. Within each series, specimens were performed in three w/b indicators (water/binder): 0.4; 0.5; 0.6. The cluster cracks were created by sudden loading the samples by elevated temperature of 250°C. Images of the cracked surfaces were obtained via scanning at 2400 DPI. Digital processing and measurements were performed using ImageJ v. 1.46r software. To describe the structure of the cluster cracks three stereological parameters were proposed: the average cluster area - A ̅, the average length of cluster perimeter - L ̅, and the average opening width of a crack between clusters - I ̅. The aim of the study was to identify and evaluate the relationships between measured stereological parameters, and the compressive strength and the bulk density of the modified cement pastes. The tests of the mechanical and physical feature have been carried out in accordance with EN standards. The curves describing the relationships have been developed using the least squares method, and the quality of the curve fitting to the empirical data was evaluated using three diagnostic statistics: the coefficient of determination – R2, the standard error of estimation - Se, and the coefficient of random variation – W. The use of image analysis allowed for a quantitative description of the cluster cracks’ geometry. Based on the obtained results, it was found a strong correlation between the A ̅ and L ̅ – reflecting the fractal nature of the cluster cracks formation process. It was noted that the compressive strength and the bulk density of cement pastes decrease with an increase in the values of the stereological parameters. It was also found that the main factors, which impact on the cluster cracks’ geometry are the cement particles’ size and the general content of the binder in a volume of the material. The microsilica caused the reduction in the A ̅, L ̅ and I ̅ values compared to the values obtained by the classical cement paste’s samples, which is caused by the pozzolanic properties of the microsilica.Keywords: cement paste, cluster cracks, elevated temperature, image analysis, microsilica, stereological parameters
Procedia PDF Downloads 24829055 An Investigation of Customer Relationship Management of Tourism
Authors: Wanida Suwunniponth
Abstract:
This research paper aimed to developing a causal relationship model of success factors of customer relationship management of tourism in Thailand and to investigating relationships among the potential factors that facilitate the success of customer relationship management (CRM). The research was conducted in both quantitative and qualitative methods, by utilizing both questionnaire and in-depth interview. The questionnaire was used in collecting the data from 250 management staff in the hotels located within Bangkok area. Sampling techniques used in this research included cluster sampling according to the service quality and simple random sampling. The data input was analyzed by use of descriptive analysis and System Equation Model (SEM). The research findings demonstrated important factors accentuated by most respondents towards the success of CRM, which were organization, people, information technology and the process of CRM. Moreover, the customer relationship management of tourism business in Thailand was found to be successful at a very significant level. The hypothesis testing showed that the hypothesis was accepted, as the factors concerning with organization, people and information technology played an influence on the process and the success of customer relationship management, whereas the process of customer relationship management factor manipulated its success. The findings suggested that tourism business in Thailand with the implementation of customer relationship management should opt in improvement approach in terms of managerial structure, corporate culture building with customer- centralized approach accentuated, and investment of information technology and customer analysis, in order to capacitate higher efficiency of customer relationship management process that would result in customer satisfaction and retention of service.Keywords: customer relationship management, casual relationship model, tourism, Thailand
Procedia PDF Downloads 33329054 Parallel Multisplitting Methods for DAE’s
Authors: Ahmed Machmoum, Malika El Kyal
Abstract:
We consider iterative parallel multi-splitting method for differential algebraic equations. The main feature of the proposed idea is to use the asynchronous form. We prove that the multi-splitting technique can effectively accelerate the convergent performance of the iterative process. The main characteristic of an asynchronous mode is that the local algorithm not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays tobe substantial and unpredictable. Note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one.Keywords: computer, multi-splitting methods, asynchronous mode, differential algebraic systems
Procedia PDF Downloads 55229053 Description of a Structural Health Monitoring and Control System Using Open Building Information Modeling
Authors: Wahhaj Ahmed Farooqi, Bilal Ahmad, Sandra Maritza Zambrano Bernal
Abstract:
In view of structural engineering, monitoring of structural responses over time is of great importance with respect to recent developments of construction technologies. Recently, developments of advanced computing tools have enabled researcher’s better execution of structural health monitoring (SHM) and control systems. In the last decade, building information modeling (BIM) has substantially enhanced the workflow of planning and operating engineering structures. Typically, building information can be stored and exchanged via model files that are based on the Industry Foundation Classes (IFC) standard. In this study a modeling approach for semantic modeling of SHM and control systems is integrated into the BIM methodology using the IFC standard. For validation of the modeling approach, a laboratory test structure, a four-story shear frame structure, is modeled using a conventional BIM software tool. An IFC schema extension is applied to describe information related to monitoring and control of a prototype SHM and control system installed on the laboratory test structure. The SHM and control system is described by a semantic model applying Unified Modeling Language (UML). Subsequently, the semantic model is mapped into the IFC schema. The test structure is composed of four aluminum slabs and plate-to-column connections are fully fixed. In the center of the top story, semi-active tuned liquid column damper (TLCD) is installed. The TLCD is used to reduce effects of structural responses in context of dynamic vibration and displacement. The wireless prototype SHM and control system is composed of wireless sensor nodes. For testing the SHM and control system, acceleration response is automatically recorded by the sensor nodes equipped with accelerometers and analyzed using embedded computing. As a result, SHM and control systems can be described within open BIM, dynamic responses and information of damages can be stored, documented, and exchanged on the formal basis of the IFC standard.Keywords: structural health monitoring, open building information modeling, industry foundation classes, unified modeling language, semi-active tuned liquid column damper, nondestructive testing
Procedia PDF Downloads 15729052 Mapping Man-Induced Soil Degradation in Armenia's High Mountain Pastures through Remote Sensing Methods: A Case Study
Authors: A. Saghatelyan, Sh. Asmaryan, G. Tepanosyan, V. Muradyan
Abstract:
One of major concern to Armenia has been soil degradation emerged as a result of unsustainable management and use of grasslands, this in turn largely impacting environment, agriculture and finally human health. Hence, assessment of soil degradation is an essential and urgent objective set out to measure its possible consequences and develop a potential management strategy. Since recently, an essential tool for assessing pasture degradation has been remote sensing (RS) technologies. This research was done with an intention to measure preciseness of Linear spectral unmixing (LSU) and NDVI-SMA methods to estimate soil surface components related to degradation (fractional vegetation cover-FVC, bare soils fractions, surface rock cover) and determine appropriateness of these methods for mapping man-induced soil degradation in high mountain pastures. Taking into consideration a spatially complex and heterogeneous biogeophysical structure of the studied site, we used high resolution multispectral QuickBird imagery of a pasture site in one of Armenia’s rural communities - Nerkin Sasoonashen. The accuracy assessment was done by comparing between the land cover abundance data derived through RS methods and the ground truth land cover abundance data. A significant regression was established between ground truth FVC estimate and both NDVI-LSU and LSU - produced vegetation abundance data (R2=0.636, R2=0.625, respectively). For bare soil fractions linear regression produced a general coefficient of determination R2=0.708. Because of poor spectral resolution of the QuickBird imagery LSU failed with assessment of surface rock abundance (R2=0.015). It has been well documented by this particular research, that reduction in vegetation cover runs in parallel with increase in man-induced soil degradation, whereas in the absence of man-induced soil degradation a bare soil fraction does not exceed a certain level. The outcomes show that the proposed method of man-induced soil degradation assessment through FVC, bare soil fractions and field data adequately reflects the current status of soil degradation throughout the studied pasture site and may be employed as an alternate of more complicated models for soil degradation assessment.Keywords: Armenia, linear spectral unmixing, remote sensing, soil degradation
Procedia PDF Downloads 33229051 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling
Authors: Florin Leon, Silvia Curteanu
Abstract:
Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression
Procedia PDF Downloads 30729050 Efficacy of Knowledge Management Practices in Selected Public Libraries in the Province of Kwazulu-Natal, South Africa
Authors: Petros Dlamini, Bethiweli Malambo, Maggie Masenya
Abstract:
Knowledge management practices are very important in public libraries, especial in the era of the information society. The success of public libraries depends on the recognition and application of knowledge management practices. The study investigates the value and challenges of knowledge management practices in public libraries. Three research objectives informed the study: to identify knowledge management practices in public libraries, understand the value of knowledge management practices in public libraries, and determine the factors hampering knowledge management practices in public libraries. The study was informed by the interpretivism research paradigm, which is associated with qualitative studies. In that light, the study collected data from eight librarians and or library heads, who were purposively selected from public libraries. The study adopted a social anthropological approach, which thoroughly evaluated each participant's response. Data was collected from the respondents through telephonic semi-structured interviews and assessed accordingly. Furthermore, the study used the latest content concept for data interpretation. The chosen data analysis method allowed the study to achieve its main purpose with concrete and valid information. The study's findings showed that all six (100%) selected public libraries apply knowledge management practices. The findings of the study revealed that public libraries have knowledge sharing as the main knowledge management practice. It was noted that public libraries employ many practices, but each library employed its practices of choice depending on their knowledge management practices structure. The findings further showed that knowledge management practices in public libraries are employed through meetings, training, information sessions, and awareness, to mention a few. The findings revealed that knowledge management practices make the libraries usable. Furthermore, it has been asserted that knowledge management practices in public libraries meet users’ needs and expectations and equip them with skills. It was discovered that all participating public libraries from Umkhanyakude district municipality valued their knowledge management practices as the pillar and foundation of services. Noticeably, knowledge management practices improve users ‘standard of living and build an information society. The findings of the study showed that librarians should be responsible for the value of knowledge management practices as they are qualified personnel. The results also showed that 83.35% of public libraries had factors hampering knowledge management practices. The factors are not limited to shortage of funds, resources and space, and political interference. Several suggestions were made to improve knowledge management practices in public libraries. These suggestions include improving the library budget, increasing libraries’ building sizes, and conducting more staff training.Keywords: knowledge management, knowledge management practices, storage, dissemination
Procedia PDF Downloads 9929049 Development of Generalized Correlation for Liquid Thermal Conductivity of N-Alkane and Olefin
Authors: A. Ishag Mohamed, A. A. Rabah
Abstract:
The objective of this research is to develop a generalized correlation for the prediction of thermal conductivity of n-Alkanes and Alkenes. There is a minority of research and lack of correlation for thermal conductivity of liquids in the open literature. The available experimental data are collected covering the groups of n-Alkanes and Alkenes.The data were assumed to correlate to temperature using Filippov correlation. Nonparametric regression of Grace Algorithm was used to develop the generalized correlation model. A spread sheet program based on Microsoft Excel was used to plot and calculate the value of the coefficients. The results obtained were compared with the data that found in Perry's Chemical Engineering Hand Book. The experimental data correlated to the temperature ranged "between" 273.15 to 673.15 K, with R2 = 0.99.The developed correlation reproduced experimental data that which were not included in regression with absolute average percent deviation (AAPD) of less than 7 %. Thus the spread sheet was quite accurate which produces reliable data.Keywords: N-Alkanes, N-Alkenes, nonparametric, regression
Procedia PDF Downloads 65729048 Response Analysis of a Steel Reinforced Concrete High-Rise Building during the 2011 Tohoku Earthquake
Authors: Naohiro Nakamura, Takuya Kinoshita, Hiroshi Fukuyama
Abstract:
The 2011 off The Pacific Coast of Tohoku Earthquake caused considerable damage to wide areas of eastern Japan. A large number of earthquake observation records were obtained at various places. To design more earthquake-resistant buildings and improve earthquake disaster prevention, it is necessary to utilize these data to analyze and evaluate the behavior of a building during an earthquake. This paper presents an earthquake response simulation analysis (hereafter a seismic response analysis) that was conducted using data recorded during the main earthquake (hereafter the main shock) as well as the earthquakes before and after it. The data were obtained at a high-rise steel-reinforced concrete (SRC) building in the bay area of Tokyo. We first give an overview of the building, along with the characteristics of the earthquake motion and the building during the main shock. The data indicate that there was a change in the natural period before and after the earthquake. Next, we present the results of our seismic response analysis. First, the analysis model and conditions are shown, and then, the analysis result is compared with the observational records. Using the analysis result, we then study the effect of soil-structure interaction on the response of the building. By identifying the characteristics of the building during the earthquake (i.e., the 1st natural period and the 1st damping ratio) by the Auto-Regressive eXogenous (ARX) model, we compare the analysis result with the observational records so as to evaluate the accuracy of the response analysis. In this study, a lumped-mass system SR model was used to conduct a seismic response analysis using observational data as input waves. The main results of this study are as follows: 1) The observational records of the 3/11 main shock put it between a level 1 and level 2 earthquake. The result of the ground response analysis showed that the maximum shear strain in the ground was about 0.1% and that the possibility of liquefaction occurring was low. 2) During the 3/11 main shock, the observed wave showed that the eigenperiod of the building became longer; this behavior could be generally reproduced in the response analysis. This prolonged eigenperiod was due to the nonlinearity of the superstructure, and the effect of the nonlinearity of the ground seems to have been small. 3) As for the 4/11 aftershock, a continuous analysis in which the subject seismic wave was input after the 3/11 main shock was input was conducted. The analyzed values generally corresponded well with the observed values. This means that the effect of the nonlinearity of the main shock was retained by the building. It is important to consider this when conducting the response evaluation. 4) The first period and the damping ratio during a vibration were evaluated by an ARX model. Our results show that the response analysis model in this study is generally good at estimating a change in the response of the building during a vibration.Keywords: ARX model, response analysis, SRC building, the 2011 off the Pacific Coast of Tohoku Earthquake
Procedia PDF Downloads 16729047 Evaluation of Weather Risk Insurance for Agricultural Products Using a 3-Factor Pricing Model
Authors: O. Benabdeljelil, A. Karioun, S. Amami, R. Rouger, M. Hamidine
Abstract:
A model for preventing the risks related to climate conditions in the agricultural sector is presented. It will determine the yearly optimum premium to be paid by a producer in order to reach his required turnover. The model is based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, the main ones of which are daily average sunlight, rainfall and temperature. By simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is determined from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. The model also requires accurate pricing of commodity at N+1. Therefore, a pricing model is developed using 3 state variables, namely the spot price, the difference between the mean-term and the long-term forward price, and the long-term structure of the model. The use of historical data enables to calibrate the parameters of state variables, and allows the pricing of commodity. Application to beet sugar underlines pricer precision. Indeed, the percentage of accuracy between computed result and real world is 99,5%. Optimal premium is then deduced and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect its harvest. The application to beet production in French Oise department illustrates the reliability of present model with as low as 6% difference between predicted and real data. The model can be adapted to almost any agricultural field by changing state parameters and calibrating their associated coefficients.Keywords: agriculture, production model, optimal price, meteorological factors, 3-factor model, parameter calibration, forward price
Procedia PDF Downloads 38129046 Survey on Arabic Sentiment Analysis in Twitter
Authors: Sarah O. Alhumoud, Mawaheb I. Altuwaijri, Tarfa M. Albuhairi, Wejdan M. Alohaideb
Abstract:
Large-scale data stream analysis has become one of the important business and research priorities lately. Social networks like Twitter and other micro-blogging platforms hold an enormous amount of data that is large in volume, velocity and variety. Extracting valuable information and trends out of these data would aid in a better understanding and decision-making. Multiple analysis techniques are deployed for English content. Moreover, one of the languages that produce a large amount of data over social networks and is least analyzed is the Arabic language. The proposed paper is a survey on the research efforts to analyze the Arabic content in Twitter focusing on the tools and methods used to extract the sentiments for the Arabic content on Twitter.Keywords: big data, social networks, sentiment analysis, twitter
Procedia PDF Downloads 58529045 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 34429044 Optimizing PharmD Education: Quantifying Curriculum Complexity to Address Student Burnout and Cognitive Overload
Authors: Frank Fan
Abstract:
PharmD (Doctor of Pharmacy) education has confronted an increasing challenge — curricular overload, a phenomenon resulting from the expansion of curricular requirements, as PharmD education strives to produce graduates who are practice-ready. The aftermath of the global pandemic has amplified the need for healthcare professionals, leading to a growing trend of assigning more responsibilities to them to address the global healthcare shortage. For instance, the pharmacist’s role has expanded to include not only compounding and distributing medication but also providing clinical services, including minor ailments management, patient counselling and vaccination. Consequently, PharmD programs have responded by continually expanding their curricula adding more requirements. While these changes aim to enhance the education and training of future professionals, they have also led to unintended consequences, including curricular overload, student burnout, and a potential decrease in program quality. To address the issue and ensure program quality, there is a growing need for evidence-based curriculum reforms. My research seeks to integrate Cognitive Load Theory, emerging machine learning algorithms within artificial intelligence (AI), and statistical approaches to develop a quantitative framework for optimizing curriculum design within the PharmD program at the University of Toronto, the largest PharmD program within Canada, to provide quantification and measurement of issues that currently are only discussed in terms of anecdote rather than data. This research will serve as a guide for curriculum planners, administrators, and educators, aiding in the comprehension of how the pharmacy degree program compares to others within and beyond the field of pharmacy. It will also shed light on opportunities to reduce the curricular load while maintaining its quality and rigor. Given that pharmacists constitute the third-largest healthcare workforce, their education shares similarities and challenges with other health education programs. Therefore, my evidence-based, data-driven curriculum analysis framework holds significant potential for training programs in other healthcare professions, including medicine, nursing, and physiotherapy.Keywords: curriculum, curriculum analysis, health professions education, reflective writing, machine learning
Procedia PDF Downloads 6829043 Estimating Current Suicide Rates Using Google Trends
Authors: Ladislav Kristoufek, Helen Susannah Moat, Tobias Preis
Abstract:
Data on the number of people who have committed suicide tends to be reported with a substantial time lag of around two years. We examine whether online activity measured by Google searches can help us improve estimates of the number of suicide occurrences in England before official figures are released. Specifically, we analyse how data on the number of Google searches for the terms “depression” and “suicide” relate to the number of suicides between 2004 and 2013. We find that estimates drawing on Google data are significantly better than estimates using previous suicide data alone. We show that a greater number of searches for the term “depression” is related to fewer suicides, whereas a greater number of searches for the term “suicide” is related to more suicides. Data on suicide related search behaviour can be used to improve current estimates of the number of suicide occurrences.Keywords: nowcasting, search data, Google Trends, official statistics
Procedia PDF Downloads 36329042 Optimization of Multiplier Extraction Digital Filter On FPGA
Authors: Shiksha Jain, Ramesh Mishra
Abstract:
One of the most widely used complex signals processing operation is filtering. The most important FIR digital filter are widely used in DSP for filtering to alter the spectrum according to some given specifications. Power consumption and Area complexity in the algorithm of Finite Impulse Response (FIR) filter is mainly caused by multipliers. So we present a multiplier less technique (DA technique). In this technique, precomputed value of inner product is stored in LUT. Which are further added and shifted with number of iterations equal to the precision of input sample. But the exponential growth of LUT with the order of FIR filter, in this basic structure, makes it prohibitive for many applications. The significant area and power reduction over traditional Distributed Arithmetic (DA) structure is presented in this paper, by the use of slicing of LUT to the desired length. An architecture of 16 tap FIR filter is presented, with different length of slice of LUT. The result of FIR Filter implementation on Xilinx ISE synthesis tool (XST) vertex-4 FPGA Tool by using proposed method shows the increase of the maximum frequency, the decrease of the resources as usage saving in area with more number of slices and the reduction dynamic power.Keywords: multiplier less technique, linear phase symmetric FIR filter, FPGA tool, look up table
Procedia PDF Downloads 39529041 Engineering Topology of Construction Ecology in Urban Environments: Suez Canal Economic Zone
Authors: Moustafa Osman Mohammed
Abstract:
Integration sustainability outcomes give attention to construction ecology in the design review of urban environments to comply with Earth’s System that is composed of integral parts of the (i.e., physical, chemical and biological components). Naturally, exchange patterns of industrial ecology have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. When engineering topology is affecting internal and external processes in system networks, it postulated the valence of the first-level spatial outcome (i.e., project compatibility success). These instrumentalities are dependent on relating the second-level outcome (i.e., participant security satisfaction). Construction ecology approach feedback energy from resources flows between biotic and abiotic in the entire Earth’s ecosystems. These spatial outcomes are providing an innovation, as entails a wide range of interactions to state, regulate and feedback “topology” to flow as “interdisciplinary equilibrium” of ecosystems. The interrelation dynamics of ecosystems are performing a process in a certain location within an appropriate time for characterizing their unique structure in “equilibrium patterns”, such as biosphere and collecting a composite structure of many distributed feedback flows. These interdisciplinary systems regulate their dynamics within complex structures. These dynamic mechanisms of the ecosystem regulate physical and chemical properties to enable a gradual and prolonged incremental pattern to develop a stable structure. The engineering topology of construction ecology for integration sustainability outcomes offers an interesting tool for ecologists and engineers in the simulation paradigm as an initial form of development structure within compatible computer software. This approach argues from ecology, resource savings, static load design, financial other pragmatic reasons, while an artistic/architectural perspective, these are not decisive. The paper described an attempt to unify analytic and analogical spatial modeling in developing urban environments as a relational setting, using optimization software and applied as an example of integrated industrial ecology where the construction process is based on a topology optimization approach.Keywords: construction ecology, industrial ecology, urban topology, environmental planning
Procedia PDF Downloads 13729040 On the Network Packet Loss Tolerance of SVM Based Activity Recognition
Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir
Abstract:
In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss
Procedia PDF Downloads 47929039 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building
Authors: Aaditya U. Jhamb
Abstract:
Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.Keywords: energy efficient buildings, heating load, cooling load, machine learning models
Procedia PDF Downloads 10229038 GIS Data Governance: GIS Data Submission Process for Build-in Project, Replacement Project at Oman electricity Transmission Company
Authors: Rahma Saleh Hussein Al Balushi
Abstract:
Oman Electricity Transmission Company's (OETC) vision is to be a renowned world-class transmission grid by 2025, and one of the indications of achieving the vision is obtaining Asset Management ISO55001 certification, which required setting out a documented Standard Operating Procedures (SOP). Hence, documented SOP for the Geographical information system data process has been established. Also, to effectively manage and improve OETC power transmission, asset data and information need to be governed as such by Asset Information & GIS department. This paper will describe in detail the current GIS data submission process and the journey for developing it. The methodology used to develop the process is based on three main pillars, which are system and end-user requirements, Risk evaluation, data availability, and accuracy. The output of this paper shows the dramatic change in the used process, which results subsequently in more efficient, accurate, and updated data. Furthermore, due to this process, GIS has been and is ready to be integrated with other systems as well as the source of data for all OETC users. Some decisions related to issuing No objection certificates (NOC) for excavation permits and scheduling asset maintenance plans in Computerized Maintenance Management System (CMMS) have been made consequently upon GIS data availability. On the Other hand, defining agreed and documented procedures for data collection, data systems update, data release/reporting and data alterations has also contributed to reducing the missing attributes and enhance data quality index of GIS transmission data. A considerable difference in Geodatabase (GDB) completeness percentage was observed between the years 2017 and year 2022. Overall, concluding that by governance, asset information & GIS department can control the GIS data process; collect, properly record, and manage asset data and information within the OETC network. This control extends to other applications and systems integrated with/related to GIS systems.Keywords: asset management ISO55001, standard procedures process, governance, CMMS
Procedia PDF Downloads 13029037 Metaphor Scenarios of Translation: An Applied Linguistic Approach to Discourse Analysis
Authors: Elizabeta Eduard Baltadzhyan
Abstract:
This work presents a stage of an investigation about the metaphorical conceptualization of translation in Bulgarian language. The material is a linguistic corpus consisting of 38 interviews with several generations Bulgarian translators and interpreters. The aim of this presentation is to inform about the results of the organization of the source concepts in scenarios that dominate the discursive manifestations of the source domains. The data show that, on the one hand, translators from different generations share some basic assignments of source and target domains, e. g. translation is a journey or translation is an artistic presentation. On the other hand, there are some specific scenarios motivated by significant changes in the socio-economic structure of the country and the valuation of the translator´s mission and work, e. g., the scenario of pleasure and addictive activity marks the generation that enjoy great support and stimulation from the socialist government, whereas the war scenario marks the generation during the Perestroika time.Keywords: Bulgarian language, metaphor, scenario, translation
Procedia PDF Downloads 30029036 Book Exchange System with a Hybrid Recommendation Engine
Authors: Nilki Upathissa, Torin Wirasinghe
Abstract:
This solution addresses the challenges faced by traditional bookstores and the limitations of digital media, striking a balance between the tactile experience of printed books and the convenience of modern technology. The book exchange system offers a sustainable alternative, empowering users to access a diverse range of books while promoting community engagement. The user-friendly interfaces incorporated into the book exchange system ensure a seamless and enjoyable experience for users. Intuitive features for book management, search, and messaging facilitate effortless exchanges and interactions between users. By streamlining the process, the system encourages readers to explore new books aligned with their interests, enhancing the overall reading experience. Central to the system's success is the hybrid recommendation engine, which leverages advanced technologies such as Long Short-Term Memory (LSTM) models. By analyzing user input, the engine accurately predicts genre preferences, enabling personalized book recommendations. The hybrid approach integrates multiple technologies, including user interfaces, machine learning models, and recommendation algorithms, to ensure the accuracy and diversity of the recommendations. The evaluation of the book exchange system with the hybrid recommendation engine demonstrated exceptional performance across key metrics. The high accuracy score of 0.97 highlights the system's ability to provide relevant recommendations, enhancing users' chances of discovering books that resonate with their interests. The commendable precision, recall, and F1score scores further validate the system's efficacy in offering appropriate book suggestions. Additionally, the curve classifications substantiate the system's effectiveness in distinguishing positive and negative recommendations. This metric provides confidence in the system's ability to navigate the vast landscape of book choices and deliver recommendations that align with users' preferences. Furthermore, the implementation of this book exchange system with a hybrid recommendation engine has the potential to revolutionize the way readers interact with printed books. By facilitating book exchanges and providing personalized recommendations, the system encourages a sense of community and exploration within the reading community. Moreover, the emphasis on sustainability aligns with the growing global consciousness towards eco-friendly practices. With its robust technical approach and promising evaluation results, this solution paves the way for a more inclusive, accessible, and enjoyable reading experience for book lovers worldwide. In conclusion, the developed book exchange system with a hybrid recommendation engine represents a progressive solution to the challenges faced by traditional bookstores and the limitations of digital media. By promoting sustainability, widening access to printed books, and fostering engagement with reading, this system addresses the evolving needs of book enthusiasts. The integration of user-friendly interfaces, advanced machine learning models, and recommendation algorithms ensure accurate and diverse book recommendations, enriching the reading experience for users.Keywords: recommendation systems, hybrid recommendation systems, machine learning, data science, long short-term memory, recurrent neural network
Procedia PDF Downloads 9929035 Computational Fluid Dynamics Simulation of Floating Body Motion Interacting with Focused Waves
Authors: Seul-Ki Park, Jong-Chun Park, Gyu-Mok Jeon, Dae-Kyung Ock, Seung-Gyu Jeong
Abstract:
Rogue waves cause frequent accidents of ships and offshore structures, which can result in severe damage to the structures. The Rogue waves, which are also known as big waves, freak waves, extreme waves, monster waves, focused waves, giant waves and abnormal waves, are unexpected and suddenly appearing, and can have a breaking force to destroy the structure even though modern structures are designed to tolerate a breaking wave. In the present study, a series of focused waves are numerically reproduced by concentrating nonlinear multi-directional waves into a target point using a commercial CFD software, Star-CCM+. A flow analysis for investigating the physical characteristics of the focused waves is performed using the Star-CCM+, while it has several difficulties to examine the inner properties of the waves in existing potential theory and experiments. Additionally, the 6-DOF (Degree of Freedom) motion of a floating body interacting with the focused waves are simulated, and the dynamic response of the body are discussed.Keywords: multidirectional waves, focused waves, rogue waves, wave-structure interaction, numerical wave tank, computational fluid dynamics
Procedia PDF Downloads 25629034 Efects of Data Corelation in a Sparse-View Compresive Sensing Based Image Reconstruction
Authors: Sajid Abas, Jon Pyo Hong, Jung-Ryun Le, Seungryong Cho
Abstract:
Computed tomography and laminography are heavily investigated in a compressive sensing based image reconstruction framework to reduce the dose to the patients as well as to the radiosensitive devices such as multilayer microelectronic circuit boards. Nowadays researchers are actively working on optimizing the compressive sensing based iterative image reconstruction algorithm to obtain better quality images. However, the effects of the sampled data’s properties on reconstructed the image’s quality, particularly in an insufficient sampled data conditions have not been explored in computed laminography. In this paper, we investigated the effects of two data properties i.e. sampling density and data incoherence on the reconstructed image obtained by conventional computed laminography and a recently proposed method called spherical sinusoidal scanning scheme. We have found that in a compressive sensing based image reconstruction framework, the image quality mainly depends upon the data incoherence when the data is uniformly sampled.Keywords: computed tomography, computed laminography, compressive sending, low-dose
Procedia PDF Downloads 47029033 Synthesis of α-Diimin Nickel(II) Catalyst Supported on Graphene and Graphene Oxide for Ethylene Slurry Polymerization
Authors: Mehrji Khosravan, Mostafa Fathali-Sianib, Davood Soudbar, Sasan Talebnezhad, Mohammad-Reza Ebrahimi
Abstract:
The late transition metal catalyst of the end group of transition metals in the periodic table as Ni, Fe, Co, and Pd was grown up rapidly in polyolefin industries recently. These metals with suitable ligands exhibited special characteristic properties and appropriate activities in the production of polyolefins. The ligand 1,4-bis (2,6-diisopropyl phenyl) acenaphthene was synthesized by reaction of 2,6-diisopropyl aniline and acenaphthenequinone. The ligand was added to nickel (II) dibromide salt for synthesis the 1,4-bis (2,6 diisopropylphenyl) acenaphthene nickel (II) dibromide catalyst. The structure of the ligand characterized by IR technique. The catalyst then deposited on graphene and graphene oxide by vander walss-attachment for use in Ethylene slurry polymerization process in the presence of catalyst activator such as methylaluminoxane (MAO) in hexane solvent. The structure of the catalyst characterized by IR and TEM techniques and some of the polymers were characterized by DSC. The highest activity was achieved at 600 C for catalyst.Keywords: α-diimine nickel (II) complex, graphene as supported catalyst, late transition metal, ethylene polymerization
Procedia PDF Downloads 39329032 Creating and Questioning Research-Oriented Digital Outputs to Manuscript Metadata: A Case-Based Methodological Investigation
Authors: Diandra Cristache
Abstract:
The transition of traditional manuscript studies into the digital framework closely affects the methodological premises upon which manuscript descriptions are modeled, created, and questioned for the purpose of research. This paper intends to explore the issue by presenting a methodological investigation into the process of modeling, creating, and questioning manuscript metadata. The investigation is founded on a close observation of the Polonsky Greek Manuscripts Project, a collaboration between the Universities of Cambridge and Heidelberg. More than just providing a realistic ground for methodological exploration, along with a complete metadata set for computational demonstration, the case study also contributes to a broader purpose: outlining general methodological principles for making the most out of manuscript metadata by means of research-oriented digital outputs. The analysis mainly focuses on the scholarly approach to manuscript descriptions, in the specific instance where the act of metadata recording does not have a programmatic research purpose. Close attention is paid to the encounter of 'traditional' practices in manuscript studies with the formal constraints of the digital framework: does the shift in practices (especially from the straight narrative of free writing towards the hierarchical constraints of the TEI encoding model) impact the structure of metadata and its capability to respond specific research questions? It is argued that flexible structure of TEI and traditional approaches to manuscript description lead to a proliferation of markup: does an 'encyclopedic' descriptive approach ensure the epistemological relevance of the digital outputs to metadata? To provide further insight on the computational approach to manuscript metadata, the metadata of the Polonsky project are processed with techniques of distant reading and data networking, thus resulting in a new group of digital outputs (relational graphs, geographic maps). The computational process and the digital outputs are thoroughly illustrated and discussed. Eventually, a retrospective analysis evaluates how the digital outputs respond to the scientific expectations of research, and the other way round, how the requirements of research questions feed back into the creation and enrichment of metadata in an iterative loop.Keywords: digital manuscript studies, digital outputs to manuscripts metadata, metadata interoperability, methodological issues
Procedia PDF Downloads 14429031 Humanising Digital Healthcare to Build Capacity by Harnessing the Power of Patient Data
Authors: Durhane Wong-Rieger, Kawaldip Sehmi, Nicola Bedlington, Nicole Boice, Tamás Bereczky
Abstract:
Patient-generated health data should be seen as the expression of the experience of patients, including the outcomes reflecting the impact a treatment or service had on their physical health and wellness. We discuss how the healthcare system can reach a place where digital is a determinant of health - where data is generated by patients and is respected and which acknowledges their contribution to science. We explore the biggest barriers facing this. The International Experience Exchange with Patient Organisation’s Position Paper is based on a global patient survey conducted in Q3 2021 that received 304 responses. Results were discussed and validated by the 15 patient experts and supplemented with literature research. Results are a subset of this. Our research showed patient communities want to influence how their data is generated, shared, and used. Our study concludes that a reasonable framework is needed to protect the integrity of patient data and minimise abuse, and build trust. Results also demonstrated a need for patient communities to have more influence and control over how health data is generated, shared, and used. The results clearly highlight that the community feels there is a lack of clear policies on sharing data.Keywords: digital health, equitable access, humanise healthcare, patient data
Procedia PDF Downloads 87