Search results for: voice activity detection
9635 A Human Activity Recognition System Based on Sensory Data Related to Object Usage
Authors: M. Abdullah, Al-Wadud
Abstract:
Sensor-based activity recognition systems usually accounts which sensors have been activated to perform an activity. The system then combines the conditional probabilities of those sensors to represent different activities and takes the decision based on that. However, the information about the sensors which are not activated may also be of great help in deciding which activity has been performed. This paper proposes an approach where the sensory data related to both usage and non-usage of objects are utilized to make the classification of activities. Experimental results also show the promising performance of the proposed method.Keywords: Naïve Bayesian, based classification, activity recognition, sensor data, object-usage model
Procedia PDF Downloads 3219634 Development of Cost-effective Sensitive Methods for Pathogen Detection in Community Wastewater for Disease Surveillance
Authors: Jesmin Akter, Chang Hyuk Ahn, Ilho Kim, Jaiyeop Lee
Abstract:
Global pandemic coronavirus disease (COVID-19) caused by Severe acute respiratory syndrome SARS-CoV-2, to control the spread of the COVID-19 pandemic, wastewater surveillance has been used to monitor SARS-CoV2 prevalence in the community. The challenging part is establishing wastewater surveillance; there is a need for a well-equipped laboratory for wastewater sample analysis. According to many previous studies, reverse transcription-polymerase chain reaction (RT-PCR) based molecular tests are the most widely used and popular detection method worldwide. However, the RT-qPCR based approaches for the detection or quantification of SARS-CoV-2 genetic fragments ribonucleic acid (RNA) from wastewater require a specialized laboratory, skilled personnel, expensive instruments, and a workflow that typically requires 6 to 8 hours to provide results for just minimum samples. Rapid and reliable alternative detection methods are needed to enable less-well-qualified practitioners to set up and provide sensitive detection of SARS-CoV-2 within wastewater at less-specialized regional laboratories. Therefore, scientists and researchers are conducting experiments for rapid detection methods of COVID-19; in some cases, the structural and molecular characteristics of SARS-CoV-2 are unknown, and various strategies for the correct diagnosis of COVID-19 have been proposed by research laboratories, which are presented in the present study. The ongoing research and development of these highly sensitive and rapid technologies, namely RT-LAMP, ELISA, Biosensors, GeneXpert, allows a wide range of potential options not only for SARS-CoV-2 detection but also for other viruses as well. The effort of this study is to discuss the above effective and regional rapid detection and quantification methods in community wastewater as an essential step in advancing scientific goals.Keywords: rapid detection, SARS-CoV-2, sensitive detection, wastewater surveillance
Procedia PDF Downloads 859633 Innovative Activity and Firm Performance: The Case of Eurozone Periphery
Authors: Ilias A. Makris
Abstract:
In this work, we attempt to analyse the contribution of innovative activities to firm performance and growth. We examine economic data from some of the economies that were heavily affected by current economic crisis: the countries of southern Europe (Portugal, Italy, Greece, and Spain) and Ireland. Following literature, an appropriate econometric model is developed and several indicators are tested in order to disclose possible relation with innovative activity. Findings confirm the crucial effect of innovative process in economic activity, in firm and country level.Keywords: Eurozone periphery, firm performance, innovative activity, R&D
Procedia PDF Downloads 5019632 Design and Fabrication of Optical Nanobiosensors for Detection of MicroRNAs Involved in Neurodegenerative Diseases
Authors: Mahdi Rahaie
Abstract:
MicroRNAs are a novel class of small RNAs which regulate gene expression by translational repression or degradation of messenger RNAs. To produce sensitive, simple and cost-effective assays for microRNAs, detection is in urgent demand due to important role of these biomolecules in progression of human disease such as Alzheimer’s, Multiple sclerosis, and some other neurodegenerative diseases. Herein, we report several novel, sensitive and specific microRNA nanobiosensors which were designed based on colorimetric and fluorescence detection of nanoparticles and hybridization chain reaction amplification as an enzyme-free amplification. These new strategies eliminate the need for enzymatic reactions, chemical changes, separation processes and sophisticated equipment whereas less limit of detection with most specify are acceptable. The important features of these methods are high sensitivity and specificity to differentiate between perfectly matched, mismatched and non-complementary target microRNAs and also decent response in the real sample analysis with blood plasma. These nanobiosensors can clinically be used not only for the early detection of neuro diseases but also for every sickness related to miRNAs by direct detection of the plasma microRNAs in real clinical samples, without a need for sample preparation, RNA extraction and/or amplification.Keywords: hybridization chain reaction, microRNA, nanobiosensor, neurodegenerative diseases
Procedia PDF Downloads 1519631 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network
Authors: Shoujia Fang, Guoqing Ding, Xin Chen
Abstract:
The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.Keywords: keypoint detection, curve feature, convolutional neural network, press-fit assembly
Procedia PDF Downloads 2289630 Quinazolino-Thiazoles: Fused Pharmacophores as Antimicrobial Agents
Authors: Sanjay Bari, Vinod Ugale, Kamalkishor Patil
Abstract:
Over the past several years the emergence of micro-organisms resistant to nearly all the class of antimicrobial agents has become a serious public health concern. In the present research, we report the synthesis and in-vitro antimicrobial activity of a new series of novel quinazolino-thiadiazoles 3 (a-j). The synthesized compounds were confirmed by melting point, IR, 1H-NMR, 13C NMR and Mass spectroscopy. In general, the results of the in-vitro antibacterial activity are encouraging, as out of 10 compounds tested, Compound 3f and 3i with a 4-chloro phenyl and 4-nitro phenyl at C-2 of thiadiazolyl of quinazolino-thiadiazoles, displayed the excellent antibacterial and antifungal activities against all the tested microorganisms (Bacterial and Fungal strain) with MIC values of 62.5 μg/mL. It is worth to mention that the combination of two biologically active moieties quinazoline and thiadiazole profoundly influences the biological activity. While evaluating the antimicrobial activity, it was observed that compounds having electron withdrawing groups on thiazole has shown profound activity in comparison to compounds having electron releasing groups. As a result of this study, it can be concluded that halogen substituent on thiazole ring increases antimicrobial activity. Possible improvements in the antimicrobial activity can be further achieved by slight modifications in the substituent’s and/or additional structural activity investigations to have good antimicrobial activity.Keywords: antifungal, antimicrobial, quinazolino-thiazoles, synthesis
Procedia PDF Downloads 4159629 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation
Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang
Abstract:
Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.Keywords: CCS concepts, computing methodologies, interest point, salient region detections, image segmentation
Procedia PDF Downloads 1329628 Motion-Based Detection and Tracking of Multiple Pedestrians
Authors: A. Harras, A. Tsuji, K. Terada
Abstract:
Tracking of moving people has gained a matter of great importance due to rapid technological advancements in the field of computer vision. The objective of this study is to design a motion based detection and tracking multiple walking pedestrians randomly in different directions. In our proposed method, Gaussian mixture model (GMM) is used to determine moving persons in image sequences. It reacts to changes that take place in the scene like different illumination; moving objects start and stop often, etc. Background noise in the scene is eliminated through applying morphological operations and the motions of tracked people which is determined by using the Kalman filter. The Kalman filter is applied to predict the tracked location in each frame and to determine the likelihood of each detection. We used a benchmark data set for the evaluation based on a side wall stationary camera. The actual scenes from the data set are taken on a street including up to eight people in front of the camera in different two scenes, the duration is 53 and 35 seconds, respectively. In the case of walking pedestrians in close proximity, the proposed method has achieved the detection ratio of 87%, and the tracking ratio is 77 % successfully. When they are deferred from each other, the detection ratio is increased to 90% and the tracking ratio is also increased to 79%.Keywords: automatic detection, tracking, pedestrians, counting
Procedia PDF Downloads 2579627 Chemical Compositon and Antimicrobial Activity of Daucus aristidis Coss. Essential Oil in Pre-Flowering Stage from Algeria
Authors: M. Lamamra, H. Laouer, A. Adjaoud, Sahli Farida
Abstract:
Essential oils can have significant antimicrobial activities and can successfully replace antibiotics that show their ineffectiveness against resistant germs. The chemical composition of the essential oil obtained by hydrodistillation from the aerial part of Daucus aristidis (Apiaceae) at the pre-flowering stage was investigated for the first time, by GC and GC-MS and evaluated for in vitro antimicrobial activity by the disk diffusion method. The Main components of D. aristidis oil were α-pinene (20.13%), cedrol (20.11%), and E- asarone (18.53%). The oil exhibited an antibacterial activity against almost strains tested except for Klebsiella pneumoniae ATCC 700603 K6 and Enterococcus faecalis ATCC 49452, the oil of D. aristidis had no activity against all fungi tested.Keywords: α-pinene, antimicrobial activity, Daucus aridtidis, essential oil
Procedia PDF Downloads 4819626 Plastic Pipe Defect Detection Using Nonlinear Acoustic Modulation
Authors: Gigih Priyandoko, Mohd Fairusham Ghazali, Tan Siew Fun
Abstract:
This paper discusses about the defect detection of plastic pipe by using nonlinear acoustic wave modulation method. It is a sensitive method for damage detection and it is based on the propagation of high frequency acoustic waves in plastic pipe with low frequency excitation. The plastic pipe is excited simultaneously with a slow amplitude modulated vibration pumping wave and a constant amplitude probing wave. The frequency of both the excitation signals coincides with the resonances of the plastic pipe. A PVP pipe is used as the specimen as it is commonly used for the conveyance of liquid in many fields. The results obtained are being observed and the difference between uncracked specimen and cracked specimen can be distinguished clearly.Keywords: plastic pipe, defect detection, nonlinear acoustic modulation, excitation
Procedia PDF Downloads 4519625 Aspects and Studies of Fractal Geometry in Automatic Breast Cancer Detection
Authors: Mrinal Kanti Bhowmik, Kakali Das Jr., Barin Kumar De, Debotosh Bhattacharjee
Abstract:
Breast cancer is the most common cancer and a leading cause of death for women in the 35 to 55 age group. Early detection of breast cancer can decrease the mortality rate of breast cancer. Mammography is considered as a ‘Gold Standard’ for breast cancer detection and a very popular modality, presently used for breast cancer screening and detection. The screening of digital mammograms often leads to over diagnosis and a consequence to unnecessary traumatic & painful biopsies. For that reason recent studies involving the use of thermal imaging as a screening technique have generated a growing interest especially in cases where the mammography is limited, as in young patients who have dense breast tissue. Tumor is a significant sign of breast cancer in both mammography and thermography. The tumors are complex in structure and they also exhibit a different statistical and textural features compared to the breast background tissue. Fractal geometry is a geometry which is used to describe this type of complex structure as per their main characteristic, where traditional Euclidean geometry fails. Over the last few years, fractal geometrics have been applied mostly in many medical image (1D, 2D, or 3D) analysis applications. In breast cancer detection using digital mammogram images, also it plays a significant role. Fractal is also used in thermography for early detection of the masses using the thermal texture. This paper presents an overview of the recent aspects and initiatives of fractals in breast cancer detection in both mammography and thermography. The scope of fractal geometry in automatic breast cancer detection using digital mammogram and thermogram images are analysed, which forms a foundation for further study on application of fractal geometry in medical imaging for improving the efficiency of automatic detection.Keywords: fractal, tumor, thermography, mammography
Procedia PDF Downloads 3889624 The Factor Affecting the Students’ Participation and Satisfaction in Activities of Student Affairs in Faculty of Management Science
Authors: Natthiya Nuchanang, Pannarunsri Inpayung
Abstract:
The study of participation in student affair activity, Faculty of Management Science of Suan Sunandha Rajabhat University, these objective were 1) to study of need and attention activity of SUT student 2) to study of participation and sufficient of student affair activity and advantage of student participation. The populations were 400 undergrad students year 1st-4th. The data were analyzed by descriptive statistics. The result found that; 1. The need of participate activity of students was medium level. Environment Conservation club and Badminton club were high level of experience for student. 2. The need and attention of activity were sufficient for student. Almost problems were not having enough time. 3. The advantages of activity were high level.4. The satisfaction of students for student affair unit was high level. Major problem that students do not attend, the tired from studying, Where the activity is not permitting, activities are not interesting and activity implementation overhead.Keywords: faculty of management science, Suan Sunandha Rajabhat university, satisfaction in activities of student affairs, students’ participation
Procedia PDF Downloads 3569623 Short-Path Near-Infrared Laser Detection of Environmental Gases by Wavelength-Modulation Spectroscopy
Authors: Isao Tomita
Abstract:
The detection of environmental gases, 12CO_2, 13CO_2, and CH_4, using near-infrared semiconductor lasers with a short laser path length is studied by means of wavelength-modulation spectroscopy. The developed system is compact and has high sensitivity enough to detect the absorption peaks of isotopic 13CO_2 of a 3-% CO_2 gas at 2 um with a path length of 2.4 m, where its peak size is two orders of magnitude smaller than that of the ordinary 12CO_2 peaks. In addition, the detection of 12CO_2 peaks of a 385-ppm (0.0385-%) CO_2 gas in the air is made at 2 um with a path length of 1.4 m. Furthermore, in pursuing the detection of an ancient environmental CH_4 gas confined to a bubble in ice at the polar regions, measurements of the absorption spectrum for a trace gas of CH_4 in a small area are attempted. For a 100-% CH_4 gas trapped in a 1 mm^3 glass container, the absorption peaks of CH_4 are obtained at 1.65 um with a path length of 3 mm, and also the gas pressure is extrapolated from the measured data.Keywords: environmental gases, Near-Infrared Laser Detection, Wavelength-Modulation Spectroscopy, gas pressure
Procedia PDF Downloads 4239622 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection
Authors: Tim Farrelly
Abstract:
In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.Keywords: deep learning, object detection, machine vision applications, sport, network design
Procedia PDF Downloads 1449621 ADCOR © Muscle Damage Rapid Detection Test Based on Skeletal Troponin I Immunochromatography Reaction
Authors: Muhammad Solikhudin Nafi, Wahyu Afif Mufida, Mita Erna Wati, Fitri Setyani Rokim, M. Al-Rizqi Dharma Fauzi
Abstract:
High dose activity without any pre-exercise will impact Delayed Onset Muscle Soreness (DOMS). DOMS known as delayed pain post-exercise and induce skeletal injury which will decrease athletes’ performances. From now on, post-exercise muscle damage can be detected by measuring skeletal troponin I (sTnI) concentration in serum using ELISA but this method needs more time and cost. To prevent decreased athletes performances, screening need to be done rapidly. We want to introduce our new prototype to detect DOMS acutely. Rapid detection tests are based on immunological reaction between skeletal troponin I antibodies and sTnI in human serum or whole blood. Chemical methods that are used in the manufacture of diagnostic test is lateral flow immunoassay. The material used is rat monoclonal antibody sTnI, colloidal gold, anti-mouse IgG, nitrocellulose membrane, conjugate pad, sample pad, wick and backing card. The procedure are made conjugate (colloidal gold and mAb sTnI) and insert into the conjugate pad, gives spray sTnI mAb and anti-mouse IgG into nitrocellulose membrane, and assemble RDT. RDT had been evaluated by measuring the sensitivity of positive human serum (n = 30) and negative human serum (n = 30). Overall sensitivity value was 93% and specificity value was 90%. ADCOR as the first rapid detection test qualitatively showed antigen-antibody reaction and showed good overall performances for screening of muscle damage. Furthermore, these finding still need more improvements to get best results.Keywords: DOMS, sTnI, rapid detection test, ELISA
Procedia PDF Downloads 5139620 Antiglycemic Activity of Raw Plant Materials as Potential Components of Functional Food
Authors: Ewa Flaczyk, Monika Przeor, Joanna Kobus-Cisowska, Józef Korczak
Abstract:
The aim of this paper was to collect the information concerning the most popular raw plant materials of antidiabetic activity, in a context of functional food developing production. The elaboration discusses morphological elements possible for an application in functional food production of the plants such as: common bean, ginger, Ceylon cinnamon, white mulberry, fenugreek, French lilac, ginseng, jambolão, and bitter melon. An activity of bioactive substances contained in these raw plant materials was presented, pointing their antiglycemic and also hypocholesterolemic, antiarthritic, antirheumatic, antibacterial, and antiviral activity in the studies on humans and animals. Also the genesis of functional food definition was presented.Keywords: antiglycemic activity, raw plant materials, functional food, food, nutritional sciences
Procedia PDF Downloads 4709619 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network
Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar
Abstract:
Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network
Procedia PDF Downloads 1099618 Investigation of Surface Electromyograph Signal Acquired from the around Shoulder Muscles of Upper Limb Amputees
Authors: Amanpreet Kaur, Ravinder Agarwal, Amod Kumar
Abstract:
Surface electromyography is a strategy to measure the muscle activity of the skin. Sensors placed on the skin recognize the electrical current or signal generated by active muscles. A lot of the research has focussed on the detection of signal from upper limb amputee with activity of triceps and biceps muscles. The purpose of this study was to correlate phantom movement and sEMG activity in residual stump muscles of transhumeral amputee from the shoulder muscles. Eight non- amputee and seven right hand amputees were recruited for this study. sEMG data were collected for the trapezius, pectoralis and teres muscles for elevation, protraction and retraction of shoulder. Contrast between the amputees and non-amputees muscles action have been investigated. Subsequently, to investigate the impact of class separability for different motions of shoulder, analysis of variance for experimental recorded data was carried out. Results were analyzed to recognize different shoulder movements and represent a step towards the surface electromyography controlled system for amputees. Difference in F ratio (p < 0.05) values indicates the distinction in mean therefore these analysis helps to determine the independent motion. The identified signal would be used to design more accurate and efficient controllers for the upper-limb amputee for researchers.Keywords: around shoulder amputation, surface electromyography, analysis of variance, features
Procedia PDF Downloads 4339617 Intrusion Detection System Based on Peer to Peer
Authors: Alireza Pour Ebrahimi, Vahid Abasi
Abstract:
Recently by the extension of internet usage, Research on the intrusion detection system takes a significant importance. Many of improvement systems prevent internal and external network attacks by providing security through firewalls and antivirus. In recently years, intrusion detection systems gradually turn from host-based systems and depend on O.S to the distributed systems which are running on multiple O.S. In this work, by considering the diversity of computer networks whit respect to structure, architecture, resource, services, users and also security goals requirement a fully distributed collaborative intrusion detection system based on peer to peer architecture is suggested. in this platform each partner device (matched device) considered as a peer-to-peer network. All transmitted information to network are visible only for device that use security scanning of a source. Experimental results show that the distributed architecture is significantly upgradeable in respect to centralized approach.Keywords: network, intrusion detection system, peer to peer, internal and external network
Procedia PDF Downloads 5479616 Elements of Usability and Sociability in Activity Management System for e-Masjid
Authors: Hidayah bt Rahmalan, Marhazli Kipli, Muhammad Suffian Sikandar Ghani, Maisarah Abu, Muhammad Faisal Ashaari, Norlizam Md Sukiban
Abstract:
This study presents an example of activity management system for e-Masjid implementing elements of usability and sociability. It is expected to resolve the shortcomings of the most e-Masjid that provide lot of activities to their community. However, the data on handling a lot of activities or events in which involve a lot of people will be difficult to manipulate. Thus, this paper presents the usability and sociability element on an activity management system that not only eases the job for the user but being practical for future when the community join any events. For the time being, this activity management system was only applied for Sayyidina Abu Bakar Mosque in Utem, Malacca.Keywords: e-masjid, usability, sociability, activity management system
Procedia PDF Downloads 3639615 Rapid and Culture-Independent Detection of Staphylococcus Aureus by PCR Based Protocols
Authors: V. Verma, Syed Riyaz-ul-Hassan
Abstract:
Staphylococcus aureus is one of the most commonly found pathogenic bacteria and is hard to eliminate from the human environment. It is responsible for many nosocomial infections, besides being the main causative agent of food intoxication by virtue of its variety of enterotoxins. Routine detection of S. aureus in food is usually carried out by traditional methods based on morphological and biochemical characterization. These methods are time-consuming and tedious. In addition, misclassifications with automated susceptibility testing systems or commercially available latex agglutination kits have been reported by several workers. Consequently, there is a need for methods to specifically discriminate S. aureus from other staphylococci as quickly as possible. Data on protocols developed using molecular means like PCR technology will be presented for rapid and specific detection of this pathogen in food, clinical and environmental samples, especially milk.Keywords: food Pathogens, PCR technology, rapid and specific detection, staphylococcus aureus
Procedia PDF Downloads 5139614 Fabrication of Immune-Affinity Monolithic Array for Detection of α-Fetoprotein and Carcinoembryonic Antigen
Authors: Li Li, Li-Ru Xia, He-Ye Wang, Xiao-Dong Bi
Abstract:
In this paper, we presented a highly sensitive immune-affinity monolithic array for detection of α-fetoprotein (AFP) and carcinoembryonic antigen (CEA). Firstly, the epoxy functionalized monolith arrays were fabricated using UV initiated copolymerization method. Scanning electron microscopy (SEM) image showed that the poly(BABEA-co-GMA) monolith exhibited a well-controlled skeletal and well-distributed porous structure. Then, AFP and CEA immune-affinity monolithic arrays were prepared by immobilization of AFP and CEA antibodies on epoxy functionalized monolith arrays. With a non-competitive immune response format, the presented AFP and CEA immune-affinity arrays were demonstrated as an inexpensive, flexible, homogeneous and stable array for detection of AFP and CEA.Keywords: chemiluminescent detection, immune-affinity, monolithic copolymer array, UV-initiated copolymerization
Procedia PDF Downloads 3399613 An Optimal Matching Design Method of Space-Based Optical Payload for Typical Aerial Target Detection
Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu
Abstract:
In order to effectively detect aerial targets over long distances, an optimal matching design method of space-based optical payload is proposed. Firstly, main factors affecting optical detectability of small targets under complex environment are analyzed based on the full link of a detection system, including band center, band width and spatial resolution. Then a performance characterization model representing the relationship between image signal-to-noise ratio (SCR) and the above influencing factors is established to describe a detection system. Finally, an optimal matching design example is demonstrated for a typical aerial target by simulating and analyzing its SCR under different scene clutter coupling with multi-scale characteristics, and the optimized detection band and spatial resolution are presented. The method can provide theoretical basis and scientific guidance for space-based detection system design, payload specification demonstration and information processing algorithm optimization.Keywords: space-based detection, aerial targets, optical system design, detectability characterization
Procedia PDF Downloads 1689612 Hand Gesture Detection via EmguCV Canny Pruning
Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae
Abstract:
Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.Keywords: canny pruning, hand recognition, machine learning, skin tracking
Procedia PDF Downloads 1859611 An Improved Two-dimensional Ordered Statistical Constant False Alarm Detection
Authors: Weihao Wang, Zhulin Zong
Abstract:
Two-dimensional ordered statistical constant false alarm detection is a widely used method for detecting weak target signals in radar signal processing applications. The method is based on analyzing the statistical characteristics of the noise and clutter present in the radar signal and then using this information to set an appropriate detection threshold. In this approach, the reference cell of the unit to be detected is divided into several reference subunits. These subunits are used to estimate the noise level and adjust the detection threshold, with the aim of minimizing the false alarm rate. By using an ordered statistical approach, the method is able to effectively suppress the influence of clutter and noise, resulting in a low false alarm rate. The detection process involves a number of steps, including filtering the input radar signal to remove any noise or clutter, estimating the noise level based on the statistical characteristics of the reference subunits, and finally, setting the detection threshold based on the estimated noise level. One of the main advantages of two-dimensional ordered statistical constant false alarm detection is its ability to detect weak target signals in the presence of strong clutter and noise. This is achieved by carefully analyzing the statistical properties of the signal and using an ordered statistical approach to estimate the noise level and adjust the detection threshold. In conclusion, two-dimensional ordered statistical constant false alarm detection is a powerful technique for detecting weak target signals in radar signal processing applications. By dividing the reference cell into several subunits and using an ordered statistical approach to estimate the noise level and adjust the detection threshold, this method is able to effectively suppress the influence of clutter and noise and maintain a low false alarm rate.Keywords: two-dimensional, ordered statistical, constant false alarm, detection, weak target signals
Procedia PDF Downloads 789610 Tool for Fast Detection of Java Code Snippets
Authors: Tomáš Bublík, Miroslav Virius
Abstract:
This paper presents general results on the Java source code snippet detection problem. We propose the tool which uses graph and sub graph isomorphism detection. A number of solutions for all of these tasks have been proposed in the literature. However, although that all these solutions are really fast, they compare just the constant static trees. Our solution offers to enter an input sample dynamically with the Scripthon language while preserving an acceptable speed. We used several optimizations to achieve very low number of comparisons during the matching algorithm.Keywords: AST, Java, tree matching, scripthon source code recognition
Procedia PDF Downloads 4259609 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review
Authors: Agastya Pratap Singh
Abstract:
Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation
Procedia PDF Downloads 209608 In-vitro Antioxidant Activity of Two Selected Herbal Medicines
Authors: S. Vinotha, I. Thabrew, S. Sri Ranjani
Abstract:
Hot aqueous and methanol extracts of the two selected herbal medicines such are Vellarugu Chooranam (V.C) and Amukkirai Chooranam (A.C) were examined for total phenolic and flavonoid contents and in-vitro antioxidant activity using four different methods. The total phenolic and flavonoid contents in methanol extract of V.C were found to be higher (44.41±1.26 mg GAE⁄g; 174.44±9.32 mg QE⁄g) than in the methanol extract of A.C (20.56±0.67 mg GAE⁄g;7.21±0.85 mg QE⁄g). Hot methanol and aqueous extracts of both medicines showed low antioxidant activity in DPPH, ABTS, and FRAP methods and Iron chelating activity not found at highest possible concentration. V.C contains higher concentrations of total phenolic and flavonoid contents than A.C and can also exert greater antioxidant activity than A.C, although the activities demonstrated were lower than the positive control Trolox. The in-vitro antioxidant activity was not related with the total phenolic and flavonoid contents of the methanol and aqueous extracts of both herbal medicines (A.C and V.C).Keywords: activity, different extracts, herbal medicines, in-vitro antioxidant
Procedia PDF Downloads 4059607 A Contribution to Human Activities Recognition Using Expert System Techniques
Authors: Malika Yaici, Soraya Aloui, Sara Semchaoui
Abstract:
This paper deals with human activity recognition from sensor data. It is an active research area, and the main objective is to obtain a high recognition rate. In this work, a recognition system based on expert systems is proposed; the recognition is performed using the objects, object states, and gestures and taking into account the context (the location of the objects and of the person performing the activity, the duration of the elementary actions and the activity). The system recognizes complex activities after decomposing them into simple, easy-to-recognize activities. The proposed method can be applied to any type of activity. The simulation results show the robustness of our system and its speed of decision.Keywords: human activity recognition, ubiquitous computing, context-awareness, expert system
Procedia PDF Downloads 1189606 Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems
Abstract:
Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach.Keywords: artificial life, industrial control system (ICS), IDS, prey predator (PP), SCADA, SDC
Procedia PDF Downloads 301