Search results for: tree identification
3472 An Examination of the Moderating Effect of Team Identification on Attitude and Buying Intention of Jersey Sponsorship
Authors: Young Ik Suh, Taewook Chung, Glaucio Scremin, Tywan Martin
Abstract:
In May of 2016, the Philadelphia 76ers announced that StubHub, the ticket resale company, will have advertising on the team’s jerseys beginning in the 2017-18 season. The 76ers and National Basketball Association (NBA) became the first team and league which embraced jersey sponsorships in the four major U.S. professional sports. Even though many professional teams and leagues in Europe, Asia, Africa, and South America have adopted jersey sponsorship actively, this phenomenon is relatively new in America. While the jersey sponsorship provides economic gains for the professional leagues and franchises, sport fans can have different points of view for the phenomenon of jersey sponsorship. For instance, since many sport fans in U.S. are not familiar with ads on jerseys, this movement can possibly cause negative reaction such as the decrease in ticket and merchandise sales. They also concern the small size of ads on jersey become bigger ads, like in the English Premier League (EPL). However, some sport fans seem they do not mind too much about jersey sponsorship because the ads on jersey will not affect their loyalty and fanship. Therefore, the assumption of this study was that the sport fans’ reaction about jersey sponsorship can be possibly different, especially based on different levels of the sport fans’ team identification and various sizes of ads on jersey. Unlike general sponsorship in sport industry, jersey sponsorship has received little attention regarding its potential impact on sport fans attitudes and buying intentions. Thus, the current study sought to identify how the various levels of team identification influence brand attitude and buying intention in terms of jersey sponsorship. In particular, this study examined the effect of team identification on brand attitude and buying intention when there are no ads, small size ads, and large size ads on jersey. 3 (large, small, and no ads) X 3 (Team Identification: high, moderate, low) between subject factorial design was conducted on attitude toward the brand and buying intention of jersey sponsorship. The ads on Philadelphia 76ers jersey were used. The sample of this study was selected from message board users provided by different sports websites (i.e., forums.realgm.com and phillysportscentral.com). A total of 275 respondents participated in this study by responding to an online survey questionnaire. The results showed that there were significant differences between fans with high identification and fans with low identification. The findings of this study are expected to have many theoretical and practical contributions and implications by extending the research and literature pertaining to the relationship between team identification and brand strategy based upon different levels of team identification.Keywords: brand attitude, buying intention, Jersey sponsorship, team identification
Procedia PDF Downloads 2483471 Risk Analysis of Leaks from a Subsea Oil Facility Based on Fuzzy Logic Techniques
Authors: Belén Vinaixa Kinnear, Arturo Hidalgo López, Bernardo Elembo Wilasi, Pablo Fernández Pérez, Cecilia Hernández Fuentealba
Abstract:
The expanded use of risk assessment in legislative and corporate decision-making has increased the role of expert judgement in giving data for security-related decision-making. Expert judgements are required in most steps of risk assessment: danger recognizable proof, hazard estimation, risk evaluation, and examination of choices. This paper presents a fault tree analysis (FTA), which implies a probabilistic failure analysis applied to leakage of oil in a subsea production system. In standard FTA, the failure probabilities of items of a framework are treated as exact values while evaluating the failure probability of the top event. There is continuously insufficiency of data for calculating the failure estimation of components within the drilling industry. Therefore, fuzzy hypothesis can be used as a solution to solve the issue. The aim of this paper is to examine the leaks from the Zafiro West subsea oil facility by using fuzzy fault tree analysis (FFTA). As a result, the research has given theoretical and practical contributions to maritime safety and environmental protection. It has been also an effective strategy used traditionally in identifying hazards in nuclear installations and power industries.Keywords: expert judgment, probability assessment, fault tree analysis, risk analysis, oil pipelines, subsea production system, drilling, quantitative risk analysis, leakage failure, top event, off-shore industry
Procedia PDF Downloads 1903470 Discerning Divergent Nodes in Social Networks
Authors: Mehran Asadi, Afrand Agah
Abstract:
In data mining, partitioning is used as a fundamental tool for classification. With the help of partitioning, we study the structure of data, which allows us to envision decision rules, which can be applied to classification trees. In this research, we used online social network dataset and all of its attributes (e.g., Node features, labels, etc.) to determine what constitutes an above average chance of being a divergent node. We used the R statistical computing language to conduct the analyses in this report. The data were found on the UC Irvine Machine Learning Repository. This research introduces the basic concepts of classification in online social networks. In this work, we utilize overfitting and describe different approaches for evaluation and performance comparison of different classification methods. In classification, the main objective is to categorize different items and assign them into different groups based on their properties and similarities. In data mining, recursive partitioning is being utilized to probe the structure of a data set, which allow us to envision decision rules and apply them to classify data into several groups. Estimating densities is hard, especially in high dimensions, with limited data. Of course, we do not know the densities, but we could estimate them using classical techniques. First, we calculated the correlation matrix of the dataset to see if any predictors are highly correlated with one another. By calculating the correlation coefficients for the predictor variables, we see that density is strongly correlated with transitivity. We initialized a data frame to easily compare the quality of the result classification methods and utilized decision trees (with k-fold cross validation to prune the tree). The method performed on this dataset is decision trees. Decision tree is a non-parametric classification method, which uses a set of rules to predict that each observation belongs to the most commonly occurring class label of the training data. Our method aggregates many decision trees to create an optimized model that is not susceptible to overfitting. When using a decision tree, however, it is important to use cross-validation to prune the tree in order to narrow it down to the most important variables.Keywords: online social networks, data mining, social cloud computing, interaction and collaboration
Procedia PDF Downloads 1573469 Isolation, Characterization, and Antibacterial Activity of Endophytic Bacteria from Iranian Medicinal Plants
Authors: Maryam Beiranvand, Sajad Yaghoubi
Abstract:
Background: Some microbes can colonize plants’ inner tissues without causing obvious damage and can even produce useful bioactive substances. In the present study, the diversity of the endophytic bacteria associated with medicinal plants from Iran was investigated by culturing techniques, molecular gene identification, as well as measuring them for antibacterial activity. Results: In the spring season from 2013 to 2014, 35 herb pharmacology samples were collected, sterilized, meshed, and then cultured on selective media culture. A total of 199 endophytic bacteria were successfully isolated from 35 tissue cultures of medical plants, and sixty-seven out of 199 bacterial isolates were subjected to identification by the 16S rRNA gene sequence analysis method. Based on the sequence similarity gene and phylogenetic analyses, these isolates were grouped into five classes, fourteen orders, seventeen families, twenty-one genera, and forty strains. The most abundant group of endophytic bacteria was actinobacterial, consisting of thirty-two (47%) out of 67 bacterial isolates. Ten (22.3%) out of 67 bacterial isolates remained unidentified and classified at the genus level. The signature of the 16S rRNA gene formed a distinct line in a phylogenetic tree showing that they might be new species of bacteria. One (5.2%) out of 67 bacterial isolates was still not well categorized. Forty-two out of 67 strains were candidates for antimicrobial activity tests. Nineteen (45%) out of 42 strains showed antimicrobial activity multidrug-resistance (MDR); thirteen (68%) out of 19 strains were allocated to classes actinobacteria. Four (21%) out of 19 strains belonged to the Bacillaceae family, one (5.2%) out of 19 strains was the Paenibacillaceae family, and one (5.2%) out of 19 strains belonged to the Pseudomonadaceae family. The other twenty-three strains did not show inhibitory activities. Conclusions: Our research showed a high-level phylogenetic diversity and the intoxicating antibiotic activity of endophytic bacteria in the herb pharmacology of Iran.Keywords: medical plant, endophytic bacteria, antimicrobial activity, whole genome sequencing analysis
Procedia PDF Downloads 1243468 A Comprehensive Method of Fault Detection and Isolation based on Testability Modeling Data
Authors: Junyou Shi, Weiwei Cui
Abstract:
Testability modeling is a commonly used method in testability design and analysis of system. A dependency matrix will be obtained from testability modeling, and we will give a quantitative evaluation about fault detection and isolation. Based on the dependency matrix, we can obtain the diagnosis tree. The tree provides the procedures of the fault detection and isolation. But the dependency matrix usually includes built-in test (BIT) and manual test in fact. BIT runs the test automatically and is not limited by the procedures. The method above cannot give a more efficient diagnosis and use the advantages of the BIT. A Comprehensive method of fault detection and isolation is proposed. This method combines the advantages of the BIT and Manual test by splitting the matrix. The result of the case study shows that the method is effective.Keywords: fault detection, fault isolation, testability modeling, BIT
Procedia PDF Downloads 3343467 Self-Congruence and Oppositional Brand Loyalty: The Role of Consumer Engagement, Consumer Brand Identification and Gender
Authors: Muhammad Sheeraz, Mehwish Ejaz
Abstract:
This study endeavors to enhance the understanding of the determinants of oppositional brand loyalty, particularly within the context of fans of a sports brand. The primary focus is on investigating how oppositional brand loyalty fosters rivalry among the fans and exploring the interplay between various variables, namely self-congruence, consumer brand identification, consumer brand engagement, and narcissism, in influencing the likelihood of endorsing a rival team. The research adopts a cross-sectional survey methodology, employing a structured questionnaire distributed both online and onsite to gather responses from a representative sample of 460 PSL fans in Pakistan. The data collection process involved obtaining responses from diverse settings, including universities, shopping malls, and other public spaces frequented by PSL enthusiasts. Participants were prompted to indicate their allegiance to a specific PSL team and subsequently respond to the questionnaire based on their preferences. The findings of the study reveal that narcissism, as a moderating factor, exhibits no significant influence on consumer brand identification, consumer brand engagement, and oppositional brand loyalty. However, it does emerge as a significant moderator in the relationship between self-congruence and consumer brand identification. Particularly, consumers express brand identification through self-congruence, elucidating the existence of oppositional sentiments among PSL fans and their counterparts supporting rival teams. The implications of these results underscore the importance for marketers to establish a brand identity that resonates with consumers on a personal level. Such an approach fosters a strong sense of identification with the brand, prompting consumers to vigorously defend and support their favored brands, even in the face of opposition from rival teams. Marketers are encouraged to focus on cultivating long-term consumer loyalty, as it proves pivotal in maintaining a competitive advantage over industry counterparts.Keywords: oppositional brand loyalty, consumer brand identification, consumer brand engagement, narcissism, self-congruence
Procedia PDF Downloads 723466 PDDA: Priority-Based, Dynamic Data Aggregation Approach for Sensor-Based Big Data Framework
Authors: Lutful Karim, Mohammed S. Al-kahtani
Abstract:
Sensors are being used in various applications such as agriculture, health monitoring, air and water pollution monitoring, traffic monitoring and control and hence, play the vital role in the growth of big data. However, sensors collect redundant data. Thus, aggregating and filtering sensors data are significantly important to design an efficient big data framework. Current researches do not focus on aggregating and filtering data at multiple layers of sensor-based big data framework. Thus, this paper introduces (i) three layers data aggregation and framework for big data and (ii) a priority-based, dynamic data aggregation scheme (PDDA) for the lowest layer at sensors. Simulation results show that the PDDA outperforms existing tree and cluster-based data aggregation scheme in terms of overall network energy consumptions and end-to-end data transmission delay.Keywords: big data, clustering, tree topology, data aggregation, sensor networks
Procedia PDF Downloads 3453465 Molecular Cloning and Identification of a Double WAP Domain–Containing Protein 3 Gene from Chinese Mitten Crab Eriocheir sinensis
Authors: Fengmei Li, Li Xu, Guoliang Xia
Abstract:
Whey acidic proteins (WAP) domain-containing proteins in crustacean are involved in innate immune response against microbial invasion. In the present study, a novel double WAP domain (DWD)-containing protein gene 3 was identified from Chinese mitten crab Eriocheir sinensis (designated EsDWD3) by expressed sequence tag (EST) analysis and PCR techniques. The full-length cDNA of EsDWD3 was of 1223 bp, consisting of a 5′-terminal untranslated region (UTR) of 74 bp, a 3′ UTR of 727 bp with a polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) of 423 bp. The ORF encoded a polypeptide of 140 amino acids with a signal peptide of 22 amino acids. The deduced protein sequence EsDWD3 showed 96.4 % amino acid similar to other reported EsDWD1 from E. sinensis, and phylogenetic tree analysis revealed that EsDWD3 had closer relationships with the reported two double WAP domain-containing proteins of E. sinensis species.Keywords: Chinese mitten crab, Eriocheir sinensis, cloning, double WAP domain-containing protein
Procedia PDF Downloads 3543464 Application of Biometrics in Patient Identification Card: Case Study of Saudi Arabia
Authors: Sarah Aldhalaan, Tanzila Saba
Abstract:
Healthcare sectors are increasing rapidly to fulfill patient’s needs across the world. A patient identification is considered as the main aspect for a patient to be served in healthcare institutes. Nowadays, people are presenting their insurance card along with their identification card in order to get the needed treatment in hospitals however, this process lack security preferences. The aim of this research paper is to reveal a solution to introduce and use biometrics in healthcare hospitals. The findings show that the people know biometrics since they are interacting with them through different channels and that the need for biometrics techniques to identify patients is essential. Also, the survey relevant questions are used to analyze and add insights on what is are the suitable biometrics to be used in such cases. Moreover, results are presented to exhibit the effectiveness of the used methodology and in analyzing usage of biometrics in hospitals in an enhancing way. Finally, an interesting conclusion of overall work is presented at the end of paper.Keywords: biometrics, healthcare, fingerprint, Saudi Arabia
Procedia PDF Downloads 2473463 Isolation and Identification of Fungal Pathogens in Palm Groves of Oued Righ
Authors: Lakhdari Wassima, Ouffroukh Ammar, Dahliz Abderrahmène, Soud Adila, Hammi Hamida, M’lik Randa
Abstract:
Prospected palm groves of Oued Righ regions (Ouargla, Algeria) allowed us to observe sudden death of palm trees aged between 05 and 70 years. Field examinations revealed abnormal clinical signs with sometimes a quick death of affected trees. Entomologic investigations have confirmed the absence of phytophagous insects on dead trees. Further investigations by questioning farmers on the global management of palm groves visited (Irrigation, water quality used, soil type, etc.) did not establish any relationship between these aspects and the death of palm trees, which naturally pushed us to focus our investigations for research on fungal pathogens. Thus, laboratory studies were conducted to know the real causes of this phenomenon, 13 fungi were found on different parts of the dead palm trees. The flowing fungal types were identified: 1-Diplodia phoenicum, 2-Theilaviopsis paradoxa, 3-Phytophthora sp, 4-Helminthosporium sp, 5-Stemphylium botryosum, 6-Alternaria sp, 7-Aspergillus niger, 8-Aspergillus sp.Keywords: palm tree, death, fungal pathogens, Oued Righ
Procedia PDF Downloads 4113462 A Deep Learning Approach to Subsection Identification in Electronic Health Records
Authors: Nitin Shravan, Sudarsun Santhiappan, B. Sivaselvan
Abstract:
Subsection identification, in the context of Electronic Health Records (EHRs), is identifying the important sections for down-stream tasks like auto-coding. In this work, we classify the text present in EHRs according to their information, using machine learning and deep learning techniques. We initially describe briefly about the problem and formulate it as a text classification problem. Then, we discuss upon the methods from the literature. We try two approaches - traditional feature extraction based machine learning methods and deep learning methods. Through experiments on a private dataset, we establish that the deep learning methods perform better than the feature extraction based Machine Learning Models.Keywords: deep learning, machine learning, semantic clinical classification, subsection identification, text classification
Procedia PDF Downloads 2173461 Predictive Analysis of the Stock Price Market Trends with Deep Learning
Authors: Suraj Mehrotra
Abstract:
The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.Keywords: machine learning, testing set, artificial intelligence, stock analysis
Procedia PDF Downloads 953460 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 733459 Identity Verification Using k-NN Classifiers and Autistic Genetic Data
Authors: Fuad M. Alkoot
Abstract:
DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN).Keywords: biometrics, genetic data, identity verification, k nearest neighbor
Procedia PDF Downloads 2573458 Estimating Tree Height and Forest Classification from Multi Temporal Risat-1 HH and HV Polarized Satellite Aperture Radar Interferometric Phase Data
Authors: Saurav Kumar Suman, P. Karthigayani
Abstract:
In this paper the height of the tree is estimated and forest types is classified from the multi temporal RISAT-1 Horizontal-Horizontal (HH) and Horizontal-Vertical (HV) Polarised Satellite Aperture Radar (SAR) data. The novelty of the proposed project is combined use of the Back-scattering Coefficients (Sigma Naught) and the Coherence. It uses Water Cloud Model (WCM). The approaches use two main steps. (a) Extraction of the different forest parameter data from the Product.xml, BAND-META file and from Grid-xxx.txt file come with the HH & HV polarized data from the ISRO (Indian Space Research Centre). These file contains the required parameter during height estimation. (b) Calculation of the Vegetation and Ground Backscattering, Coherence and other Forest Parameters. (c) Classification of Forest Types using the ENVI 5.0 Tool and ROI (Region of Interest) calculation.Keywords: RISAT-1, classification, forest, SAR data
Procedia PDF Downloads 4063457 Efficient Neural and Fuzzy Models for the Identification of Dynamical Systems
Authors: Aouiche Abdelaziz, Soudani Mouhamed Salah, Aouiche El Moundhe
Abstract:
The present paper addresses the utilization of Artificial Neural Networks (ANNs) and Fuzzy Inference Systems (FISs) for the identification and control of dynamical systems with some degree of uncertainty. Because ANNs and FISs have an inherent ability to approximate functions and to adapt to changes in input and parameters, they can be used to control systems too complex for linear controllers. In this work, we show how ANNs and FISs can be put in order to form nets that can learn from external data. In sequence, it is presented structures of inputs that can be used along with ANNs and FISs to model non-linear systems. Four systems were used to test the identification and control of the structures proposed. The results show the ANNs and FISs (Back Propagation Algorithm) used were efficient in modeling and controlling the non-linear plants.Keywords: non-linear systems, fuzzy set Models, neural network, control law
Procedia PDF Downloads 2123456 Identification of Vehicle Dynamic Parameters by Using Optimized Exciting Trajectory on 3- DOF Parallel Manipulator
Authors: Di Yao, Gunther Prokop, Kay Buttner
Abstract:
Dynamic parameters, including the center of gravity, mass and inertia moments of vehicle, play an essential role in vehicle simulation, collision test and real-time control of vehicle active systems. To identify the important vehicle dynamic parameters, a systematic parameter identification procedure is studied in this work. In the first step of the procedure, a conceptual parallel manipulator (virtual test rig), which possesses three rotational degrees-of-freedom, is firstly proposed. To realize kinematic characteristics of the conceptual parallel manipulator, the kinematic analysis consists of inverse kinematic and singularity architecture is carried out. Based on the Euler's rotation equations for rigid body dynamics, the dynamic model of parallel manipulator and derivation of measurement matrix for parameter identification are presented subsequently. In order to reduce the sensitivity of parameter identification to measurement noise and other unexpected disturbances, a parameter optimization process of searching for optimal exciting trajectory of parallel manipulator is conducted in the following section. For this purpose, the 321-Euler-angles defined by parameterized finite-Fourier-series are primarily used to describe the general exciting trajectory of parallel manipulator. To minimize the condition number of measurement matrix for achieving better parameter identification accuracy, the unknown coefficients of parameterized finite-Fourier-series are estimated by employing an iterative algorithm based on MATLAB®. Meanwhile, the iterative algorithm will ensure the parallel manipulator still keeps in an achievable working status during the execution of optimal exciting trajectory. It is showed that the proposed procedure and methods in this work can effectively identify the vehicle dynamic parameters and could be an important application of parallel manipulator in the fields of parameter identification and test rig development.Keywords: parameter identification, parallel manipulator, singularity architecture, dynamic modelling, exciting trajectory
Procedia PDF Downloads 2653455 Unveiling Vegetation Composition and Dynamics Along Urbanization Gradient in Ranchi, Eastern India
Authors: Purabi Saikia
Abstract:
The present study was carried out across 84 vegetated grids (>10% vegetation cover) along an urbanization gradient, ranging from the urban core to peri-urban and natural vegetation in and around Ranchi, Eastern India, aiming to examine the phytosociological attributes by belt transect (167 transects each of 0.5 ha) method. Overall, plant species richness was highest in natural vegetation (242 spp.), followed by peri-urban (198 spp.) and urban (182 spp.). Similarly, H’, CD, E, Dmg, Dmn, and ENS showed significant differences in the tree layer (H’: 0.45-3.36; CD: 0.04-1.00; E: 0.25-0.96; Dmg: 0.18-7.15; Dmn: 0.03-4.24, and ENS: 1-29) in the entire urbanization gradient. Various α-diversity indices of the adult trees (H’: 3.98, Dmg: 14.32, Dmn: 2.38, ENS: 54) were comparatively better in urban vegetation compared to peri-urban (H’: 2.49, Dmg: 10.37, Dmn: 0.81, ENS: 12) and natural vegetation (H’: 2.89, Dmg: 13.46, Dmn: 0.85, ENS: 18). Tree communities have shown better response and adaptability in urban vegetation than shrubs and herbs. The prevalence of rare (41%), very rare (29%), and exotic species (39%) in urban vegetation may be due to the intentional introduction of a number of fast-growing exotic tree species in different social forestry plantations that have created a diverse and heterogeneous habitat. Despite contagious distribution, the majority of trees (36.14%) have shown no regeneration in the entire urbanization gradient. Additionally, a quite high percentage of IUCN red-listed plant species (51% and 178 spp.), including endangered (01 sp.), vulnerable (03 spp.), near threatened (04 spp.), least concern (163 spp.), and data deficient (07 spp.), warrant immediate policy interventions. Overall, the study witnessed subsequent transformations in floristic composition and structure from urban to natural vegetation in Eastern India. The outcomes are crucial for fostering resilient ecosystems, biodiversity conservation, and sustainable development in the region that supports diverse plant communities.Keywords: floristic communities, urbanization gradients, exotic species, regeneration
Procedia PDF Downloads 193454 Smart Unmanned Parking System Based on Radio Frequency Identification Technology
Authors: Yu Qin
Abstract:
In order to tackle the ever-growing problem of the lack of parking space, this paper presents the design and implementation of a smart unmanned parking system that is based on RFID (radio frequency identification) technology and Wireless communication technology. This system uses RFID technology to achieve the identification function (transmitted by 2.4 G wireless module) and is equipped with an STM32L053 micro controller as the main control chip of the smart vehicle. This chip can accomplish automatic parking (in/out), charging and other functions. On this basis, it can also help users easily query the information that is stored in the database through the Internet. Experimental tests have shown that the system has the features of low power consumption and stable operation, among others. It can effectively improve the level of automation control of the parking lot management system and has enormous application prospects.Keywords: RFID, embedded system, unmanned, parking management
Procedia PDF Downloads 3333453 The Role of Agroforestry Practices in Climate Change Mitigation in Western Kenya
Authors: Humphrey Agevi, Harrison Tsingalia, Richard Onwonga, Shem Kuyah
Abstract:
Most of the world ecosystems have been affected by the effects of climate change. Efforts have been made to mitigate against climate change effects. While most studies have been done in forest ecosystems and pure plant plantations, trees on farms including agroforestry have only received attention recently. Agroforestry systems and tree cover on agricultural lands make an important contribution to climate change mitigation but are not systematically accounted for in the global carbon budgets. This study sought to: (i) determine tree diversity in different agroforestry practices; (ii) determine tree biomass in different agroforestry practices. Study area was determined according to the Land degradation surveillance framework (LSDF). Two study sites were established. At each of the site, a 5km x 10km block was established on a map using Google maps and satellite images. Way points were then uploaded in a GPS helped locate the blocks on the ground. In each of the blocks, Nine (8) sentinel clusters measuring 1km x 1km were randomized. Randomization was done in a common spreadsheet program and later be downloaded to a Global Positioning System (GPS) so that during surveys the researchers were able to navigate to the sampling points. In each of the sentinel cluster, two farm boundaries were randomly identified for convenience and to avoid bias. This led to 16 farms in Kakamega South and 16 farms in Kakamega North totalling to 32 farms in Kakamega Site. Species diversity was determined using Shannon wiener index. Tree biomass was determined using allometric equation. Two agroforestry practices were found; homegarden and hedgerow. Species diversity ranged from 0.25-2.7 with a mean of 1.8 ± 0.10. Species diversity in homegarden ranged from 1-2.7 with a mean of 1.98± 0.14. Hedgerow species diversity ranged from 0.25-2.52 with a mean of 1.74± 0.11. Total Aboveground Biomass (AGB) determined was 13.96±0.37 Mgha-1. Homegarden with the highest abundance of trees had higher above ground biomass (AGB) compared to hedgerow agroforestry. This study is timely as carbon budgets in the agroforestry can be incorporated in the global carbon budgets and improve the accuracy of national reporting of greenhouse gases.Keywords: agroforestry, allometric equations, biomass, climate change
Procedia PDF Downloads 3633452 Distribution of Epiphytic Lichen Biodiversity and Comparision with Their Preferred Tree Species around the Şeker Canyon, Karabük, Turkey
Authors: Hatice Esra Akgül, Celaleddin Öztürk
Abstract:
Lichen biodiversity in forests is controlled by environmental conditions. Epiphytic lichens have some degree of substrate specificity. Diversity and distribution of epiphytic lichens are affected by humidity, light, altitude, temperature, bark pH of the trees.This study describes the epiphytic lichen communities with comparing their preferred tree species. 34 epiphytic lichen taxa are reported on Pinus sp. L., Quercus sp. L., Fagus sp. L., Carpinus sp. L., Abies sp. Mill., Fraxinus sp. Tourn. ex L. from different altitudes around the Şeker Canyon (Karabük, Turkey). 11 of these taxa are growing on Quercus sp., 10 of them are growing on Fagus sp., 7 of them are growing on Pinus sp., 4 of them are on Carpinus sp., 2 of them are on Abies sp. and one of them is on Fraxinus sp. Evernia prunastri (L.) Ach. is growing on both of Fagus sp. and Quercus sp. Lecanora pulicaris (Pers.) Ach. is growing on both of Abies sp. and Quercus sp.Keywords: biodiversity, epiphytic lichen, forest, Turkey
Procedia PDF Downloads 3383451 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification
Authors: Megha Gupta, Nupur Prakash
Abstract:
Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network (CNN) architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification
Procedia PDF Downloads 1983450 Predicting Resistance of Commonly Used Antimicrobials in Urinary Tract Infections: A Decision Tree Analysis
Authors: Meera Tandan, Mohan Timilsina, Martin Cormican, Akke Vellinga
Abstract:
Background: In general practice, many infections are treated empirically without microbiological confirmation. Understanding susceptibility of antimicrobials during empirical prescribing can be helpful to reduce inappropriate prescribing. This study aims to apply a prediction model using a decision tree approach to predict the antimicrobial resistance (AMR) of urinary tract infections (UTI) based on non-clinical features of patients over 65 years. Decision tree models are a novel idea to predict the outcome of AMR at an initial stage. Method: Data was extracted from the database of the microbiological laboratory of the University Hospitals Galway on all antimicrobial susceptibility testing (AST) of urine specimens from patients over the age of 65 from January 2011 to December 2014. The primary endpoint was resistance to common antimicrobials (Nitrofurantoin, trimethoprim, ciprofloxacin, co-amoxiclav and amoxicillin) used to treat UTI. A classification and regression tree (CART) model was generated with the outcome ‘resistant infection’. The importance of each predictor (the number of previous samples, age, gender, location (nursing home, hospital, community) and causative agent) on antimicrobial resistance was estimated. Sensitivity, specificity, negative predictive (NPV) and positive predictive (PPV) values were used to evaluate the performance of the model. Seventy-five percent (75%) of the data were used as a training set and validation of the model was performed with the remaining 25% of the dataset. Results: A total of 9805 UTI patients over 65 years had their urine sample submitted for AST at least once over the four years. E.coli, Klebsiella, Proteus species were the most commonly identified pathogens among the UTI patients without catheter whereas Sertia, Staphylococcus aureus; Enterobacter was common with the catheter. The validated CART model shows slight differences in the sensitivity, specificity, PPV and NPV in between the models with and without the causative organisms. The sensitivity, specificity, PPV and NPV for the model with non-clinical predictors was between 74% and 88% depending on the antimicrobial. Conclusion: The CART models developed using non-clinical predictors have good performance when predicting antimicrobial resistance. These models predict which antimicrobial may be the most appropriate based on non-clinical factors. Other CART models, prospective data collection and validation and an increasing number of non-clinical factors will improve model performance. The presented model provides an alternative approach to decision making on antimicrobial prescribing for UTIs in older patients.Keywords: antimicrobial resistance, urinary tract infection, prediction, decision tree
Procedia PDF Downloads 2553449 The Cases Studies of Eyewitness Misidentifications during Criminal Investigation in Taiwan
Authors: Chih Hung Shih
Abstract:
Eyewitness identification is one of the efficient information to identify suspects during criminal investigation. However eyewitness identification is improved frequently, inaccurate and plays vital roles in wrongful convictions. Most eyewitness misidentifications are made during police criminal investigation stage and then accepted by juries. Four failure investigation case studies in Taiwan are conduct to demonstrate how misidentifications are caused during the police investigation context. The result shows that there are several common grounds among these cases: (1) investigators lacked for knowledge about eyewitness memory so that they couldn’t evaluate the validity of the eyewitnesses’ accounts and identifications, (2) eyewitnesses were always asked to filter out several suspects during the investigation, and received investigation information which contaminated the eyewitnesses’ memory, (3) one to one live individual identifications were made in most of cases, (4) eyewitness identifications were always used to support the hypotheses of investigators, and exaggerated theirs powers when conform with the investigation lines, (5) the eyewitnesses’ confidence didn’t t reflect the validity of their identifications , but always influence the investigators’ beliefs for the identifications, (6) the investigators overestimated the power of the eyewitness identifications and ignore the inconsistency with other evidence. Recommendations have been proposed for future academic research and police practice of eyewitness identification in Taiwan.Keywords: criminal investigation, eyewitness identification, investigative bias, investigative failures
Procedia PDF Downloads 2443448 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line
Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez
Abstract:
Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.Keywords: deep-learning, image classification, image identification, industrial engineering.
Procedia PDF Downloads 1603447 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.Keywords: BART, Bayesian, predict, stock
Procedia PDF Downloads 1303446 Mosquito Repellent Finishing of Cotton Using Pepper Tree (Schinus molle) Seed Oil Extract
Authors: Granch Berhe Tseghai, Tekalgn Gebremedhin Belay, Abrehaley Hagos Gebremariam
Abstract:
Mosquito repellent textiles are one of the most growing ways to advance the textile field by providing the needed characteristics of protecting against mosquitoes, especially in the tropical areas. These types of textiles ensure the protection of human beings from the mosquitoes and the mosquito-borne disease includes malaria, filariasis and dengue fever. In this work Schinus Molle oil (pepper tree oil) was used for mosquito repellent finish as a preformatted thing. This study focused on the penetration of mosquito repellent finish in textile applications as well as nature based alternatives to commercial chemical mosquito repellents in the market. Suitable techniques and materials to achieve mosquito repellency are discussed and pointed out according to our project. In this study textile, sample was treated with binder and schinus oil. The different property has been studied for effective mosquito repellency.Keywords: cotton, Schinus molle seed oil, mosquito repellent, mosquito-borne diseases
Procedia PDF Downloads 2833445 Polymorphism of HMW-GS in Collection of Wheat Genotypes
Authors: M. Chňapek, M. Tomka, R. Peroutková, Z. Gálová
Abstract:
Processes of plant breeding, testing and licensing of new varieties, patent protection in seed production, relations in trade and protection of copyright are dependent on identification, differentiation and characterization of plant genotypes. Therefore, we focused our research on utilization of wheat storage proteins as genetic markers suitable not only for differentiation of individual genotypes, but also for identification and characterization of their considerable properties. We analyzed a collection of 102 genotypes of bread wheat (Triticum aestivum L.), 41 genotypes of spelt wheat (Triticum spelta L.), and 35 genotypes of durum wheat (Triticum durum Desf.), in this study. Our results show, that genotypes of bread wheat and durum wheat were homogenous and single line, but spelt wheat genotypes were heterogenous. We observed variability of HMW-GS composition according to environmental factors and level of breeding and predict technological quality on the basis of Glu-score calculation.Keywords: genotype identification, HMW-GS, wheat quality, polymorphism
Procedia PDF Downloads 4633444 Mycorrhizal Autochthonous Consortium Induced Defense-Related Mechanisms of Olive Trees against Verticillium dahliae
Authors: Hanane Boutaj, Abdelilah Meddich, Said Wahbi, Zainab El Alaoui-Talibi, Allal Douira, Abdelkarim Filali-Maltouf, Cherkaoui El Modafar
Abstract:
The present work aims to investigate the effect of arbuscular mycorrhizal fungi (AMF) in improving the olive tree resistance to Verticillium wilt caused by Verticillium dahliae. Inoculated plants with a mycorrhizal autochthonous consortium 'Rhizolive consortium' and pure strain 'Glomus irregulare' were infected after three months with V. dahliae. The improving of olive tree resistance was determined through disease severity, incidence, and defoliation. On the other hand, the defense mechanisms of olive plants were evaluated through lignin content, phenylalanine ammonia lyase (PAL) activity, and polyphenol content. The results revealed that both AMF significantly (p < 0.05) reduced disease development and the rate of defoliation in infected olive plants. Moreover, the contents of lignin were boosted after mycorrhizal inoculation in both the roots and the stems of olive plants, which remained significantly (p < 0.001) higher after the 90th days of V. dahliae inoculation. PAL activity was increased after V. dahliae inoculation in the stems of 'Rhizolive consortium' treatment that were 17 times higher than those in the roots of olive plants. The polyphenol content in the stems was about twice higher than those in the roots. The reduction of disease severity was accompanied by increased levels of lignin content, PAL activity, and polyphenol content, particularly in the stems of olive plants, indicating the strengthening of the olive plant immune system against V. dahliae.Keywords: olive tree, Mycorrhizal autochthonous consortium, Glomus irregulare, Verticillium dahliae, defense mechanisms
Procedia PDF Downloads 1173443 Composite Kernels for Public Emotion Recognition from Twitter
Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang
Abstract:
The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.Keywords: emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining
Procedia PDF Downloads 218