Search results for: temporal data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25680

Search results for: temporal data

25380 Processing Big Data: An Approach Using Feature Selection

Authors: Nikat Parveen, M. Ananthi

Abstract:

Big data is one of the emerging technology, which collects the data from various sensors and those data will be used in many fields. Data retrieval is one of the major issue where there is a need to extract the exact data as per the need. In this paper, large amount of data set is processed by using the feature selection. Feature selection helps to choose the data which are actually needed to process and execute the task. The key value is the one which helps to point out exact data available in the storage space. Here the available data is streamed and R-Center is proposed to achieve this task.

Keywords: big data, key value, feature selection, retrieval, performance

Procedia PDF Downloads 341
25379 Spatial and Temporal Variability of Meteorological Drought Including Atmospheric Circulation in Central Europe

Authors: Andrzej Wałęga, Marta Cebulska, Agnieszka Ziernicka-Wojtaszek, Wojciech Młocek, Agnieszka Wałęga, Tommaso Caloiero

Abstract:

Drought is one of the natural phenomena influencing many aspects of human activities like food production, agriculture, industry, and the ecological conditions of the environment. In the area of the Polish Carpathians, there are periods with a deficit of rainwater and an increasing frequency in dry months, especially in the cold half of the year. The aim of this work is a spatial and temporal analysis of drought, expressed as SPI in a heterogenous area of the Polish Carpathian and of the highland Region in the Central part of Europe based on long-term precipitation data. Also, to our best knowledge, for the first time in this work, drought characteristics analyzed via the SPI were discussed based on the atmospheric circulation calendar. The study region is the Upper Vistula Basin, located in the southern and south-eastern part of Poland. In this work, monthly precipitation from 56 rainfall stations was analysed from 1961 to 2022. The 3-, 6-, 9-, and 12-month Standardized Precipitation Index (SPI) were used as indicators of meteorological drought. For the 3-month SPI, the main climatic mechanisms determining extreme droughts were defined based on the calendar of synoptic circulations. The Mann-Kendall test was used to detect the trend of extreme droughts. Statistically significant trends of SPI were observed on 52.7% of all analyzed stations, and in most cases, a positive trend was observed. Statistically significant trends were more frequently observed in stations located in the western part of the analyzed region. Long-term droughts, represented by the 12-month SPI, occurred in all stations but not in all years. Short-term droughts (3-month SPI) were most frequent in the winter season, 6 and 9-month SPI in winter and spring, and 12-month SPI in winter and autumn, respectively. The spatial distribution of drought was highly diverse. The most intensive drought occurred in 1984, with the 6-month SPI covering 98% of the analyzed region and the 9 and 12-month SPI covering 90% of the entire region. Droughts exhibit a seasonal pattern, with a dominant 10-year periodicity for all analyzed variants of SPI. Additionally, Fourier analysis revealed a 2-year periodicity for the 3-, 6-, and 9-month SPI and a 31-year periodicity for the 12-month SPI. The results provide insights into the typical climatic conditions in Poland, with strong seasonality in precipitation. The study highlighted that short-term extreme droughts, represented by the 3-month SPI, are often caused by anticyclonic situations with high-pressure wedges Ka and Wa, and anticyclonic West as observed in 52.3% of cases. These findings are crucial for understanding the spatial and temporal variability of short and long-term extreme droughts in Central Europe, particularly for the agriculture sector dominant in the northern part of the analyzed region, where drought frequency is highest.

Keywords: atmospheric circulation, drought, precipitation, SPI, the Upper Vistula Basin

Procedia PDF Downloads 74
25378 Contribution of Remote Sensing and GIS to the Study of the Impact of the Salinity of Sebkhas on the Quality of Groundwater: Case of Sebkhet Halk El Menjel (Sousse)

Authors: Gannouni Sonia, Hammami Asma, Saidi Salwa, Rebai Noamen

Abstract:

Water resources in Tunisia have experienced quantitative and qualitative degradation, especially when talking about wetlands and Sbekhas. Indeed, the objective of this work is to study the spatio-temporal evolution of salinity for 29 years (from 1987 to 2016). A study of the connection between surface water and groundwater is necessary to know the degree of influence of the Sebkha brines on the water table. The evolution of surface salinity is determined by remote sensing based on Landsat TM and OLI/TIRS satellite images of the years 1987, 2007, 2010, and 2016. The processing of these images allowed us to determine the NDVI(Normalized Difference Vegetation Index), the salinity index, and the surface temperature around Sebkha. In addition, through a geographic information system(GIS), we could establish a map of the distribution of salinity in the subsurface of the water table of Chott Mariem and Hergla/SidiBouAli/Kondar. The results of image processing and the calculation of the index and surface temperature show an increase in salinity downstream of in addition to the sebkha and the development of vegetation cover upstream and the western part of the sebkha. This richness may be due both to contamination by seawater infiltration from the barrier beach of Hergla as well as the passage of groundwater to the sebkha.

Keywords: spatio-temporal monitoring, salinity, satellite images, NDVI, sebkha

Procedia PDF Downloads 132
25377 Fractal Behaviour of Earthquake Sequences in Himalaya

Authors: Kamal, Adil Ahmad

Abstract:

Earthquakes are among the most versatile natural and dynamic processes, and hence a fractal model is considered to be the best representative of the same. We present a novel method to process and analyse information hidden in earthquake sequences using Fractal Dimensions and Iterative Function Systems (IFS). Spatial and temporal variations in the fractal dimensions of seismicity observed around the Indian peninsula in last 30 years are studied. This was used as a possible precursor before large earthquakes in the region. IFS images for observed seismicity in the Himalayan belt were also obtained. We scan the whole data set and coarse grain of a selected window to reduce it to four bins. A critical analysis of four-cornered chaos-game clearly shows that the spatial variation in earthquake occurrences in Himalayan range is not random. Two subzones of Himalaya have a tendency to follow each other in time.

Keywords: earthquakes, fractals, Himalaya, iterated function systems

Procedia PDF Downloads 299
25376 A Ground Observation Based Climatology of Winter Fog: Study over the Indo-Gangetic Plains, India

Authors: Sanjay Kumar Srivastava, Anu Rani Sharma, Kamna Sachdeva

Abstract:

Every year, fog formation over the Indo-Gangetic Plains (IGPs) of Indian region during the winter months of December and January is believed to create numerous hazards, inconvenience, and economic loss to the inhabitants of this densely populated region of Indian subcontinent. The aim of the paper is to analyze the spatial and temporal variability of winter fog over IGPs. Long term ground observations of visibility and other meteorological parameters (1971-2010) have been analyzed to understand the formation of fog phenomena and its relevance during the peak winter months of January and December over IGP of India. In order to examine the temporal variability, time series and trend analysis were carried out by using the Mann-Kendall Statistical test. Trend analysis performed by using the Mann-Kendall test, accepts the alternate hypothesis with 95% confidence level indicating that there exists a trend. Kendall tau’s statistics showed that there exists a positive correlation between time series and fog frequency. Further, the Theil and Sen’s median slope estimate showed that the magnitude of trend is positive. Magnitude is higher during January compared to December for the entire IGP except in December when it is high over the western IGP. Decade wise time series analysis revealed that there has been continuous increase in fog days. The net overall increase of 99 % was observed over IGP in last four decades. Diurnal variability and average daily persistence were computed by using descriptive statistical techniques. Geo-statistical analysis of fog was carried out to understand the spatial variability of fog. Geo-statistical analysis of fog revealed that IGP is a high fog prone zone with fog occurrence frequency of more than 66% days during the study period. Diurnal variability indicates the peak occurrence of fog is between 06:00 and 10:00 local time and average daily fog persistence extends to 5 to 7 hours during the peak winter season. The results would offer a new perspective to take proactive measures in reducing the irreparable damage that could be caused due to changing trends of fog.

Keywords: fog, climatology, Mann-Kendall test, trend analysis, spatial variability, temporal variability, visibility

Procedia PDF Downloads 242
25375 Analyzing of the Urban Landscape Configurations and Expansion of Dire Dawa City, Ethiopia Using Satellite Data and Landscape Metrics Approaches

Authors: Berhanu Keno Terfa

Abstract:

To realize the consequences of urbanization, accurate, and up-to-date representation of the urban landscape patterns is critical for urban planners and policymakers. Thus, the study quantitatively characterized the spatiotemporal composition and configuration of the urban landscape and urban expansion process in Dire Dawa City, Ethiopia, form the year 2006 to 2018. The integrated approaches of various sensors satellite data, Spot (2006) and Sentinel 2 (2018) combined with landscape metrics analysis was employed to explore the pattern, process, and overall growth status in the city. The result showed that the built-up area had increased by 62% between 2006 and 2018, at an average annual increment of 3.6%, while the other land covers were lost significantly due to urban expansion. The highest urban expansion has occurred in the northwest direction, whereas the most fragmented landscape pattern was recorded in the west direction. Overall, the analysis showed that Dire Dawa City experienced accelerated urban expansion with a fragmented and complicated spatiotemporal urban landscape patterns, suggesting a strong tendency towards sprawl over the past 12 years. The findings in the study could help planners and policy developers to insight the historical dynamics of the urban region for sustainable development.

Keywords: zonal metrics, multi-temporal, multi-resolution, urban growth, remote sensing data

Procedia PDF Downloads 199
25374 Temporal Estimation of Hydrodynamic Parameter Variability in Constructed Wetlands

Authors: Mohammad Moezzibadi, Isabelle Charpentier, Adrien Wanko, Robert Mosé

Abstract:

The calibration of hydrodynamic parameters for subsurface constructed wetlands (CWs) is a sensitive process since highly non-linear equations are involved in unsaturated flow modeling. CW systems are engineered systems designed to favour natural treatment processes involving wetland vegetation, soil, and their microbial flora. Their significant efficiency at reducing the ecological impact of urban runoff has been recently proved in the field. Numerical flow modeling in a vertical variably saturated CW is here carried out by implementing the Richards model by means of a mixed hybrid finite element method (MHFEM), particularly well adapted to the simulation of heterogeneous media, and the van Genuchten-Mualem parametrization. For validation purposes, MHFEM results were compared to those of HYDRUS (a software based on a finite element discretization). As van Genuchten-Mualem soil hydrodynamic parameters depend on water content, their estimation is subject to considerable experimental and numerical studies. In particular, the sensitivity analysis performed with respect to the van Genuchten-Mualem parameters reveals a predominant influence of the shape parameters α, n and the saturated conductivity of the filter on the piezometric heads, during saturation and desaturation. Modeling issues arise when the soil reaches oven-dry conditions. A particular attention should also be brought to boundary condition modeling (surface ponding or evaporation) to be able to tackle different sequences of rainfall-runoff events. For proper parameter identification, large field datasets would be needed. As these are usually not available, notably due to the randomness of the storm events, we thus propose a simple, robust and low-cost numerical method for the inverse modeling of the soil hydrodynamic properties. Among the methods, the variational data assimilation technique introduced by Le Dimet and Talagrand is applied. To that end, a variational data assimilation technique is implemented by applying automatic differentiation (AD) to augment computer codes with derivative computations. Note that very little effort is needed to obtain the differentiated code using the on-line Tapenade AD engine. Field data are collected for a three-layered CW located in Strasbourg (Alsace, France) at the water edge of the urban water stream Ostwaldergraben, during several months. Identification experiments are conducted by comparing measured and computed piezometric head by means of the least square objective function. The temporal variability of hydrodynamic parameter is then assessed and analyzed.

Keywords: automatic differentiation, constructed wetland, inverse method, mixed hybrid FEM, sensitivity analysis

Procedia PDF Downloads 163
25373 Natural Factors of Interannual Variability of Winter Precipitation over the Altai Krai

Authors: Sukovatov K.Yu., Bezuglova N.N.

Abstract:

Winter precipitation variability over the Altai Krai was investigated by retrieving temporal patterns. The spectral singular analysis was used to describe the variance distribution and to reduce the precipitation data into a few components (modes). The associated time series were related to large-scale atmospheric and oceanic circulation indices by using lag cross-correlation and wavelet-coherence analysis. GPCC monthly precipitation data for rectangular field limited by 50-550N, 77-880E and monthly climatological circulation index data for the cold season were used to perform SSA decomposition and retrieve statistics for analyzed parameters on the time period 1951-2017. Interannual variability of winter precipitation over the Altai Krai are mostly caused by three natural factors: intensity variations of momentum exchange between mid and polar latitudes over the North Atlantic (explained variance 11.4%); wind speed variations in equatorial stratosphere (quasi-biennial oscillation, explained variance 15.3%); and surface temperature variations for equatorial Pacific sea (ENSO, explained variance 2.8%). It is concluded that under the current climate conditions (Arctic amplification and increasing frequency of meridional processes in mid-latitudes) the second and the third factors are giving more significant contribution into explained variance of interannual variability for cold season atmospheric precipitation over the Altai Krai than the first factor.

Keywords: interannual variability, winter precipitation, Altai Krai, wavelet-coherence

Procedia PDF Downloads 188
25372 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 150
25371 Assessment and Adaptation Strategy of Climate Change to Water Quality in the Erren River and Its Impact to Health

Authors: Pei-Chih Wu, Hsin-Chih Lai, Yung-Lung Lee, Yun-Yao Chi, Ching-Yi Horng, Hsien-Chang Wang

Abstract:

The impact of climate change to health has always been well documented. Amongst them, water-borne infectious diseases, chronic adverse effects or cancer risks due to chemical contamination in flooding or drought events are especially important in river basin. This study therefore utilizes GIS and different models to integrate demographic, land use, disaster prevention, social-economic factors, and human health assessment in the Erren River basin. Therefore, through the collecting of climatic, demographic, health surveillance, water quality and other water monitoring data, potential risks associated with the Erren River Basin are established and to understand human exposure and vulnerability in response to climate extremes. This study assesses the temporal and spatial patterns of melioidosis (2000-2015) and various cancer incidents in Tainan and Kaohsiung cities. The next step is to analyze the spatial association between diseases incidences, climatic factors, land uses, and other demographic factors by using ArcMap and GeoDa. The study results show that amongst all melioidosis cases in Taiwan, 24% cases (115) residence occurred in the Erren River basin. The relationship between the cases and in Tainan and Kaohsiung cities are associated with population density, aging indicator, and residence in Erren River basin. Risks from flooding due to heavy rainfall and fish farms in spatial lag regression are also related. Through liver cancer, the preliminary analysis in temporal and spatial pattern shows an increases pattern in annual incidence without clusters in Erren River basin. Further analysis of potential cancers connected to heavy metal contamination from water pollution in Erren River is established. The final step is to develop an assessment tool for human exposure from water contamination and vulnerability in response to climate extremes for the second year.

Keywords: climate change, health impact, health adaptation, Erren River Basin

Procedia PDF Downloads 304
25370 Neural Correlates of Diminished Humor Comprehension in Schizophrenia: A Functional Magnetic Resonance Imaging Study

Authors: Przemysław Adamczyk, Mirosław Wyczesany, Aleksandra Domagalik, Artur Daren, Kamil Cepuch, Piotr Błądziński, Tadeusz Marek, Andrzej Cechnicki

Abstract:

The present study aimed at evaluation of neural correlates of humor comprehension impairments observed in schizophrenia. To investigate the nature of this deficit in schizophrenia and to localize cortical areas involved in humor processing we used functional magnetic resonance imaging (fMRI). The study included chronic schizophrenia outpatients (SCH; n=20), and sex, age and education level matched healthy controls (n=20). The task consisted of 60 stories (setup) of which 20 had funny, 20 nonsensical and 20 neutral (not funny) punchlines. After the punchlines were presented, the participants were asked to indicate whether the story was comprehensible (yes/no) and how funny it was (1-9 Likert-type scale). fMRI was performed on a 3T scanner (Magnetom Skyra, Siemens) using 32-channel head coil. Three contrasts in accordance with the three stages of humor processing were analyzed in both groups: abstract vs neutral stories - incongruity detection; funny vs abstract - incongruity resolution; funny vs neutral - elaboration. Additionally, parametric modulation analysis was performed using both subjective ratings separately in order to further differentiate the areas involved in incongruity resolution processing. Statistical analysis for behavioral data used U Mann-Whitney test and Bonferroni’s correction, fMRI data analysis utilized whole-brain voxel-wise t-tests with 10-voxel extent threshold and with Family Wise Error (FWE) correction at alpha = 0.05, or uncorrected at alpha = 0.001. Between group comparisons revealed that the SCH subjects had attenuated activation in: the right superior temporal gyrus in case of irresolvable incongruity processing of nonsensical puns (nonsensical > neutral); the left medial frontal gyrus in case of incongruity resolution processing of funny puns (funny > nonsensical) and the interhemispheric ACC in case of elaboration of funny puns (funny > neutral). Additionally, the SCH group revealed weaker activation during funniness ratings in the left ventro-medial prefrontal cortex, the medial frontal gyrus, the angular and the supramarginal gyrus, and the right temporal pole. In comprehension ratings the SCH group showed suppressed activity in the left superior and medial frontal gyri. Interestingly, these differences were accompanied by protraction of time in both types of rating responses in the SCH group, a lower level of comprehension for funny punchlines and a higher funniness for absurd punchlines. Presented results indicate that, in comparison to healthy controls, schizophrenia is characterized by difficulties in humor processing revealed by longer reaction times, impairments of understanding jokes and finding nonsensical punchlines more funny. This is accompanied by attenuated brain activations, especially in the left fronto-parietal and the right temporal cortices. Disturbances of the humor processing seem to be impaired at the all three stages of the humor comprehension process, from incongruity detection, through its resolution to elaboration. The neural correlates revealed diminished neural activity of the schizophrenia brain, as compared with the control group. The study was supported by the National Science Centre, Poland (grant no 2014/13/B/HS6/03091).

Keywords: communication skills, functional magnetic resonance imaging, humor, schizophrenia

Procedia PDF Downloads 213
25369 Spatiotemporal Propagation and Pattern of Epileptic Spike Predict Seizure Onset Zone

Authors: Mostafa Mohammadpour, Christoph Kapeller, Christy Li, Josef Scharinger, Christoph Guger

Abstract:

Interictal spikes provide valuable information on electrocorticography (ECoG), which aids in surgical planning for patients who suffer from refractory epilepsy. However, the shape and temporal dynamics of these spikes remain unclear. The purpose of this work was to analyze the shape of interictal spikes and measure their distance to the seizure onset zone (SOZ) to use in epilepsy surgery. Thirteen patients' data from the iEEG portal were retrospectively studied. For analysis, half an hour of ECoG data was used from each patient, with the data being truncated before the onset of a seizure. Spikes were first detected and grouped in a sequence, then clustered into interictal epileptiform discharges (IEDs) and non-IED groups using two-step clustering. The distance of the spikes from IED and non-IED groups to SOZ was quantified and compared using the Wilcoxon rank-sum test. Spikes in the IED group tended to be in SOZ or close to it, while spikes in the non-IED group were in distance of SOZ or non-SOZ area. At the group level, the distribution for sharp wave, positive baseline shift, slow wave, and slow wave to sharp wave ratio was significantly different for IED and non-IED groups. The distance of the IED cluster was 10.00mm and significantly closer to the SOZ than the 17.65mm for non-IEDs. These findings provide insights into the shape and spatiotemporal dynamics of spikes that could influence the network mechanisms underlying refractory epilepsy.

Keywords: spike propagation, spike pattern, clustering, SOZ

Procedia PDF Downloads 63
25368 Speech Enhancement Using Wavelet Coefficients Masking with Local Binary Patterns

Authors: Christian Arcos, Marley Vellasco, Abraham Alcaim

Abstract:

In this paper, we present a wavelet coefficients masking based on Local Binary Patterns (WLBP) approach to enhance the temporal spectra of the wavelet coefficients for speech enhancement. This technique exploits the wavelet denoising scheme, which splits the degraded speech into pyramidal subband components and extracts frequency information without losing temporal information. Speech enhancement in each high-frequency subband is performed by binary labels through the local binary pattern masking that encodes the ratio between the original value of each coefficient and the values of the neighbour coefficients. This approach enhances the high-frequency spectra of the wavelet transform instead of eliminating them through a threshold. A comparative analysis is carried out with conventional speech enhancement algorithms, demonstrating that the proposed technique achieves significant improvements in terms of PESQ, an international recommendation of objective measure for estimating subjective speech quality. Informal listening tests also show that the proposed method in an acoustic context improves the quality of speech, avoiding the annoying musical noise present in other speech enhancement techniques. Experimental results obtained with a DNN based speech recognizer in noisy environments corroborate the superiority of the proposed scheme in the robust speech recognition scenario.

Keywords: binary labels, local binary patterns, mask, wavelet coefficients, speech enhancement, speech recognition

Procedia PDF Downloads 229
25367 Temporal Transformation of Built-up Area and its Impact on Urban Flooding in Hyderabad, India

Authors: Subbarao Pichuka, Amar Balakrishna Tej, Vikas Vemula

Abstract:

In recent years, the frequency and intensity of urban floods have increased due to climate change all over the world provoking a significant loss in terms of human lives and property. This study investigates the effect of Land Use and Land Cover (LULC) changes and population growth on the urban environmental conditions in the Indian metropolitan city namely Hyderabad. The centennial built-up area data have been downloaded from the Global Human Settlement Layer (GHSL) web portal for various periods (1975 to 2014). The ArcGIS version 10.8 software is employed to convert the GHSL data into shape files and also to calculate the amount of built-up area in the study locations. The decadal population data are obtained from the Census from 1971 to 2011 and forecasted for the required years (1975 and 2014) utilizing the Geometric Increase Method. Next, the analysis has been carried out with respect to the increase in population and the corresponding rise in the built-up area. Further the effects of extreme rainfall events, which exacerbate urban flooding have also been reviewed. Results demonstrate that the population growth was the primary cause of the increase in impervious surfaces in the urban regions. It in turn leads to the intensification of surface runoff and thereby leads to Urban flooding. The built-up area has been doubled from 1975 to 2014 and the population growth has been observed between 109.24% to 400% for the past four decades (1971 to 2014) in the study area (Hyderabad). Overall, this study provides the hindsight on the current urban flooding scenarios, and the findings of this study can be used in the future planning of cities.

Keywords: urban LULC change, urban flooding, GHSL built-up data, climate change, ArcGIS

Procedia PDF Downloads 81
25366 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN

Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo

Abstract:

This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.

Keywords: PM2.5 forecast, machine learning, convLSTM, DNN

Procedia PDF Downloads 54
25365 A Decadal Flood Assessment Using Time-Series Satellite Data in Cambodia

Authors: Nguyen-Thanh Son

Abstract:

Flood is among the most frequent and costliest natural hazards. The flood disasters especially affect the poor people in rural areas, who are heavily dependent on agriculture and have lower incomes. Cambodia is identified as one of the most climate-vulnerable countries in the world, ranked 13th out of 181 countries most affected by the impacts of climate change. Flood monitoring is thus a strategic priority at national and regional levels because policymakers need reliable spatial and temporal information on flood-prone areas to form successful monitoring programs to reduce possible impacts on the country’s economy and people’s likelihood. This study aims to develop methods for flood mapping and assessment from MODIS data in Cambodia. We processed the data for the period from 2000 to 2017, following three main steps: (1) data pre-processing to construct smooth time-series vegetation and water surface indices, (2) delineation of flood-prone areas, and (3) accuracy assessment. The results of flood mapping were verified with the ground reference data, indicating the overall accuracy of 88.7% and a Kappa coefficient of 0.77, respectively. These results were reaffirmed by close agreement between the flood-mapping area and ground reference data, with the correlation coefficient of determination (R²) of 0.94. The seasonally flooded areas observed for 2010, 2015, and 2016 were remarkably smaller than other years, mainly attributed to the El Niño weather phenomenon exacerbated by impacts of climate change. Eventually, although several sources potentially lowered the mapping accuracy of flood-prone areas, including image cloud contamination, mixed-pixel issues, and low-resolution bias between the mapping results and ground reference data, our methods indicated the satisfactory results for delineating spatiotemporal evolutions of floods. The results in the form of quantitative information on spatiotemporal flood distributions could be beneficial to policymakers in evaluating their management strategies for mitigating the negative effects of floods on agriculture and people’s likelihood in the country.

Keywords: MODIS, flood, mapping, Cambodia

Procedia PDF Downloads 126
25364 Human Behavior Modeling in Video Surveillance of Conference Halls

Authors: Nour Charara, Hussein Charara, Omar Abou Khaled, Hani Abdallah, Elena Mugellini

Abstract:

In this paper, we present a human behavior modeling approach in videos scenes. This approach is used to model the normal behaviors in the conference halls. We exploited the Probabilistic Latent Semantic Analysis technique (PLSA), using the 'Bag-of-Terms' paradigm, as a tool for exploring video data to learn the model by grouping similar activities. Our term vocabulary consists of 3D spatio-temporal patch groups assigned by the direction of motion. Our video representation ensures the spatial information, the object trajectory, and the motion. The main importance of this approach is that it can be adapted to detect abnormal behaviors in order to ensure and enhance human security.

Keywords: activity modeling, clustering, PLSA, video representation

Procedia PDF Downloads 394
25363 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force

Authors: L. Parisi

Abstract:

In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.

Keywords: kinemic gait data, neural networks, hip joint implant, hip arthroplasty, rehabilitation engineering

Procedia PDF Downloads 354
25362 Possible Impact of Shunt Surgeries on the Spatial Learning of Congenitally-Blind Children

Authors: Waleed Jarjoura

Abstract:

In various cases of visual impairments, the individuals are referred to expert Ophthalmologists in order to establish a correct diagnosis. Children with visual-impairments confront various challenging experiences in life since early childhood throughout lifespan. In some cases, blind infants, especially due to congenital hydrocephalus, suffer from high intra-cranial pressure and, consequently, go through a ventriculo-peritoneal shunt surgery in order to limit the neurological symptoms or decrease the cognitive impairments. In this article, a detailed description of numerous crucial implications of the V/P shunt surgery, through the right posterior-inferior parieto-temporal cortex, on the observed preliminary capabilities that are pre-requisites for the acquisition of literacy skills in braille, basic Math competencies, braille printing which suggest Gerstmann syndrome in the blind. In addition, significant difficultiesorientation and mobility skills using the Cane, in general, organizational skills, and social interactions were observed. The primary conclusion of this report focuses on raising awareness among neuro-surgeons towards the need for alternative intracranial routes for V/P shunt implantation in blind infants that preserve the right posterior-inferior parieto-temporal cortex that is hypothesized to modulate the tactual-spatial cues in braille discrimination. A second conclusion targets educators and therapists that address the acquired dysfunctionsin blind individuals due to V/P shunt surgeries.

Keywords: congenital blindness, hydrocephalus, shunt surgery, spatial orientation

Procedia PDF Downloads 89
25361 The Efficacy of Clobazam for Landau-Kleffner Syndrome

Authors: Nino Gogatishvili, Davit Kvernadze, Giorgi Japharidze

Abstract:

Background and aims: Landau Kleffner syndrome (LKS) is a rare disorder with epileptic seizures and acquired aphasia. It usually starts in initially healthy children. The first symptoms are language regression and behavioral disturbances, and the sleep EEG reveals abnormal epileptiform activity. The aim was to discuss the efficacy of Clobazam for Landau Kleffner syndrome. Case report: We report a case of an 11-year-old boy with an uneventful pregnancy and delivery. He began to walk at 11 months and speak with simple phrases at the age of 2,5 years. At the age of 18 months, he had febrile convulsions; at the age of 5 years, the parents noticed language regression, stuttering, and serious behavioral dysfunction, including hyperactivity, temper outbursts. The epileptic seizure was not noticed. MRI was without any abnormality. Neuropsychological testing revealed verbal auditory agnosia. Sleep EEG showed abundant left fronto-temporal spikes, reaching over 85% during non-rapid eye movement sleep (non-REM sleep). Treatment was started with Clobazam. After ten weeks, EEG was improved. Stuttering and behavior also improved. Results: Since the start of Clobazam treatment, stuttering and behavior improved. Now, he is 11 years old, without antiseizure medication. Sleep EEG shows fronto-temporal spikes on the left side, over 10-49 % of non-REM sleep, bioccipital spikes, and slow-wave discharges and spike-waves. Conclusions: This case provides further support for the efficacy of Clobazam in patients with LKS.

Keywords: Landau-Kleffner syndrome, antiseizure medication, stuttering, aphasia

Procedia PDF Downloads 66
25360 Integration of Artificial Neural Network with Geoinformatics Technology to Predict Land Surface Temperature within Sun City Jodhpur, Rajasthan, India

Authors: Avinash Kumar Ranjan, Akash Anand

Abstract:

The Land Surface Temperature (LST) is an essential factor accompanying to rise urban heat and climate warming within a city in micro level. It is also playing crucial role in global change study as well as radiation budgets measuring in heat balance studies. The information of LST is very substantial to recognize the urban climatology, ecological changes, anthropological and environmental interactions etc. The Chief motivation of present study focus on time series of ANN model that taken a sequence of LST values of 2000, 2008 and 2016, realize the pattern of variation within the data set and predict the LST values for 2024 and 2032. The novelty of this study centers on evaluation of LST using series of multi-temporal MODIS (MOD 11A2) satellite data by Maximum Value Composite (MVC) techniques. The results derived from this study endorse the proficiency of Geoinformatics Technology with integration of ANN to gain knowledge, understanding and building of precise forecast from the complex physical world database. This study will also focus on influence of Land Use/ Land Cover (LU/LC) variation on Land Surface Temperature.

Keywords: LST, geoinformatics technology, ANN, MODIS satellite imagery, MVC

Procedia PDF Downloads 240
25359 Spatial-Temporal Characteristics of Bacterioplankton in the Upper Part of Taktakorpu Water Complex

Authors: Fidan Z. Aliyeva

Abstract:

In the presented article, the formation of the microbiological regime in the Takhtakorpu water complex, as well as spatial-temporal changes in the quantitative indicators of bacterioplankton, were studied. Taktakorpu water complex was built as a continuation of the reconstruction and expansion project of the Samur-Absheron irrigation system in Shabran on the northeastern slope of our republic. It should be noted that with the implementation of the project, the water supply of up to 150 thousand ha of useful land in the northern region has been improved, and the drinking, technical, and irrigation water needs of the population of Baku, Sumgayit and also the Absheron Peninsula, and industrial and agricultural areas, joining the agricultural circulation of new soil areas, Takhtakorpu reservoir with a volume of 238.4 million m³, connected with them -Valvalachay- Takhtakorpu and Takhtakorpu-Jeyranbatan canals have been created, conditions have been created to increase the resources of the Jeyranbatan reservoir. Special attention is paid to the study of saprophytic bacteria in order to determine the development dynamics and biochemical activity of the microbiological regime in the Takhtakorpu Water Complex, which is of great strategic importance for our republic, to evaluate changes under the influence of anthropogenic factors, as well as to evaluate the properties of self-cleaning, mineralization features of organic substances of allochthon and autochthonous origin. One of the main goals of our research is to determine the main structural indicators of bacterioplankton in the upper part of Takhtakorpu water complex in the first three stations and analyzing their quantitative values in a certain time aspect.

Keywords: water, irrigation, sewage, wastewater

Procedia PDF Downloads 73
25358 Supplementing Aerial-Roving Surveys with Autonomous Optical Cameras: A High Temporal Resolution Approach to Monitoring and Estimating Effort within a Recreational Salmon Fishery in British Columbia, Canada

Authors: Ben Morrow, Patrick O'Hara, Natalie Ban, Tunai Marques, Molly Fraser, Christopher Bone

Abstract:

Relative to commercial fisheries, recreational fisheries are often poorly understood and pose various challenges for monitoring frameworks. In British Columbia (BC), Canada, Pacific salmon are heavily targeted by recreational fishers while also being a key source of nutrient flow and crucial prey for a variety of marine and terrestrial fauna, including endangered Southern Resident killer whales (Orcinus orca). Although commercial fisheries were historically responsible for the majority of salmon retention, recreational fishing now comprises both greater effort and retention. The current monitoring scheme for recreational salmon fisheries involves aerial-roving creel surveys. However, this method has been identified as costly and having low predictive power as it is often limited to sampling fragments of fluid and temporally dynamic fisheries. This study used imagery from two shore-based autonomous cameras in a highly active recreational fishery around Sooke, BC, and evaluated their efficacy in supplementing existing aerial-roving surveys for monitoring a recreational salmon fishery. This study involved continuous monitoring and high temporal resolution (over one million images analyzed in a single fishing season), using a deep learning-based vessel detection algorithm and a custom image annotation tool to efficiently thin datasets. This allowed for the quantification of peak-season effort from a busy harbour, species-specific retention estimates, high levels of detected fishing events at a nearby popular fishing location, as well as the proportion of the fishery management area represented by cameras. Then, this study demonstrated how it could substantially enhance the temporal resolution of a fishery through diel activity pattern analyses, scaled monthly to visualize clusters of activity. This work also highlighted considerable off-season fishing detection, currently unaccounted for in the existing monitoring framework. These results demonstrate several distinct applications of autonomous cameras for providing enhanced detail currently unavailable in the current monitoring framework, each of which has important considerations for the managerial allocation of resources. Further, the approach and methodology can benefit other studies that apply shore-based camera monitoring, supplement aerial-roving creel surveys to improve fine-scale temporal understanding, inform the optimal timing of creel surveys, and improve the predictive power of recreational stock assessments to preserve important and endangered fish species.

Keywords: cameras, monitoring, recreational fishing, stock assessment

Procedia PDF Downloads 122
25357 Spatially Distributed Rainfall Prediction Based on Automated Kriging for Landslide Early Warning Systems

Authors: Ekrem Canli, Thomas Glade

Abstract:

The precise prediction of rainfall in space and time is a key element to most landslide early warning systems. Unfortunately, the spatial variability of rainfall in many early warning applications is often disregarded. A common simplification is to use uniformly distributed rainfall to characterize aerial rainfall intensity. With spatially differentiated rainfall information, real-time comparison with rainfall thresholds or the implementation in process-based approaches might form the basis for improved landslide warnings. This study suggests an automated workflow from the hourly, web-based collection of rain gauge data to the generation of spatially differentiated rainfall predictions based on kriging. Because the application of kriging is usually a labor intensive task, a simplified and consequently automated variogram modeling procedure was applied to up-to-date rainfall data. The entire workflow was carried out purely with open source technology. Validation results, albeit promising, pointed out the challenges that are involved in pure distance based, automated geostatistical interpolation techniques for ever-changing environmental phenomena over short temporal and spatial extent.

Keywords: kriging, landslide early warning system, spatial rainfall prediction, variogram modelling, web scraping

Procedia PDF Downloads 280
25356 Applications of Big Data in Education

Authors: Faisal Kalota

Abstract:

Big Data and analytics have gained a huge momentum in recent years. Big Data feeds into the field of Learning Analytics (LA) that may allow academic institutions to better understand the learners’ needs and proactively address them. Hence, it is important to have an understanding of Big Data and its applications. The purpose of this descriptive paper is to provide an overview of Big Data, the technologies used in Big Data, and some of the applications of Big Data in education. Additionally, it discusses some of the concerns related to Big Data and current research trends. While Big Data can provide big benefits, it is important that institutions understand their own needs, infrastructure, resources, and limitation before jumping on the Big Data bandwagon.

Keywords: big data, learning analytics, analytics, big data in education, Hadoop

Procedia PDF Downloads 425
25355 Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach

Authors: Muhammad Ahnaf Zahin, Yaw Adu-Gyamfi

Abstract:

Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model.

Keywords: gated recurrent unit, mean absolute percentage error, single-step forecasting, travel time prediction.

Procedia PDF Downloads 72
25354 Potential of Detailed Environmental Data, Produced by Information and Communication Technology Tools, for Better Consideration of Microclimatology Issues in Urban Planning to Promote Active Mobility

Authors: Živa Ravnikar, Alfonso Bahillo Martinez, Barbara Goličnik Marušić

Abstract:

Climate change mitigation has been formally adopted and announced by countries over the globe, where cities are targeting carbon neutrality through various more or less successful, systematic, and fragmentary actions. The article is based on the fact that environmental conditions affect human comfort and the usage of space. Urban planning can, with its sustainable solutions, not only support climate mitigation in terms of a planet reduction of global warming but as well enabling natural processes that in the immediate vicinity produce environmental conditions that encourage people to walk or cycle. However, the article draws attention to the importance of integrating climate consideration into urban planning, where detailed environmental data play a key role, enabling urban planners to improve or monitor environmental conditions on cycle paths. In a practical aspect, this paper tests a particular ICT tool, a prototype used for environmental data. Data gathering was performed along the cycling lanes in Ljubljana (Slovenia), where the main objective was to assess the tool's data applicable value within the planning of comfortable cycling lanes. The results suggest that such transportable devices for in-situ measurements can help a researcher interpret detailed environmental information, characterized by fine granularity and precise data spatial and temporal resolution. Data can be interpreted within human comfort zones, where graphical representation is in the form of a map, enabling the link of the environmental conditions with a spatial context. The paper also provides preliminary results in terms of the potential of such tools for identifying the correlations between environmental conditions and different spatial settings, which can help urban planners to prioritize interventions in places. The paper contributes to multidisciplinary approaches as it demonstrates the usefulness of such fine-grained data for better consideration of microclimatology in urban planning, which is a prerequisite for creating climate-comfortable cycling lanes promoting active mobility.

Keywords: information and communication technology tools, urban planning, human comfort, microclimate, cycling lanes

Procedia PDF Downloads 134
25353 The Relationship between the Content of Inner Human Experience and Well-Being: An Experience Sampling Study

Authors: Xinqi Guo, Karen R. Dobkins

Abstract:

Background and Objectives: Humans are probably the only animals whose minds are constantly filled with thoughts, feelings and emotions. Previous studies have investigated human minds from different dimensions, including its proportion of time for not being present, its representative format, its personal relevance, its temporal locus, and affect valence. The current study aims at characterizing human mind by employing Experience Sampling Methods (ESM), a self-report research procedure for studying daily experience. This study emphasis on answering the following questions: 1) How does the contents of the inner experience vary across demographics, 2) Are certain types of inner experiences correlated with level of mindfulness and mental well-being (e.g., are people who spend more time being present happier, and are more mindful people more at-present?), 3) Will being prompted to report one’s inner experience increase mindfulness and mental well-being? Methods: Participants were recruited from the subject pool of UC San Diego or from the social media. They began by filling out two questionnaires: 1) Five Facet Mindfulness Questionnaire-Short Form, and 2) Warwick-Edinburgh Mental Well-being Scale, and demographic information. Then they participated in the ESM part by responding to the prompts which contained questions about their real-time inner experience: if they were 'at-present', 'mind-wandering', or 'zoned-out'. The temporal locus, the clarity, and the affect valence, and the personal importance of the thought they had the moment before the prompt were also assessed. A mobile app 'RealLife Exp' randomly delivered these prompts 3 times/day for 6 days during wake-time. After the 6 days, participants completed questionnaire (1) and (2) again. Their changes of score were compared to a control group who did not participate in the ESM procedure (yet completed (1) and (2) one week apart). Results: Results are currently preliminary as we continue to collect data. So far, there is a trend that participants are present, mind-wandering and zoned-out, about 53%, 23% and 24% during wake-time, respectively. The thoughts of participants are ranked to be clearer and more neutral if they are present vs. mind-wandering. Mind-wandering thoughts are 66% about the past, consisting 80% of inner speech. Discussion and Conclusion: This study investigated the subjective account of human mind by a tool with high ecological validity. And it broadens the understanding of the relationship between contents of mind and well-being.

Keywords: experience sampling method, meta-memory, mindfulness, mind-wandering

Procedia PDF Downloads 132
25352 Modelling Dengue Disease With Climate Variables Using Geospatial Data For Mekong River Delta Region of Vietnam

Authors: Thi Thanh Nga Pham, Damien Philippon, Alexis Drogoul, Thi Thu Thuy Nguyen, Tien Cong Nguyen

Abstract:

Mekong River Delta region of Vietnam is recognized as one of the most vulnerable to climate change due to flooding and seawater rise and therefore an increased burden of climate change-related diseases. Changes in temperature and precipitation are likely to alter the incidence and distribution of vector-borne diseases such as dengue fever. In this region, the peak of the dengue epidemic period is around July to September during the rainy season. It is believed that climate is an important factor for dengue transmission. This study aims to enhance the capacity of dengue prediction by the relationship of dengue incidences with climate and environmental variables for Mekong River Delta of Vietnam during 2005-2015. Mathematical models for vector-host infectious disease, including larva, mosquito, and human being were used to calculate the impacts of climate to the dengue transmission with incorporating geospatial data for model input. Monthly dengue incidence data were collected at provincial level. Precipitation data were extracted from satellite observations of GSMaP (Global Satellite Mapping of Precipitation), land surface temperature and land cover data were from MODIS. The value of seasonal reproduction number was estimated to evaluate the potential, severity and persistence of dengue infection, while the final infected number was derived to check the outbreak of dengue. The result shows that the dengue infection depends on the seasonal variation of climate variables with the peak during the rainy season and predicted dengue incidence follows well with this dynamic for the whole studied region. However, the highest outbreak of 2007 dengue was not captured by the model reflecting nonlinear dependences of transmission on climate. Other possible effects will be discussed to address the limitation of the model. This suggested the need of considering of both climate variables and another variability across temporal and spatial scales.

Keywords: infectious disease, dengue, geospatial data, climate

Procedia PDF Downloads 383
25351 Spatio-Temporal Analysis of Land Use Land Cover Change Using Remote Sensing and Multispectral Satellite Imagery of Islamabad Pakistan

Authors: Basit Aftab, Feng Zhongke

Abstract:

The land use/land cover change (LULCC) is a significant indicator sensitive to an area's environmental changes. As a rapidly developing capital city near the Himalayas Mountains, the city area of Islamabad, Pakistan, has expanded dramatically over the past 20 years. In order to precisely measure the impact of urbanization on the forest and agricultural lands, the Spatio-temporal analysis of LULCC was utilized, which helped us to know the impacts of urbanization, especially on ecosystem processes, biological cycles, and biodiversity. The Islamabad region's Multispectral Satellite Images (MSI) for 2000, 2010, and 2020 were employed as the remote sensing data source. Local documents of city planning, forest inventory and archives in the agriculture management departments were included to verify the image-derived result. The results showed that from 2000 to 2020, the built-up area increased to 48.3% (505.02 Km2). Meanwhile, the forest, agricultural, and barre land decreased to 28.9% (305.64 Km2), 10.04% (104.87 Km2), and 11.61% (121.30 Km2). The overall percentage change in land area between 2000 – 2020 was recorded maximum for the built-up (227.04%). Results revealed that the increase in the built-up area decreased forestland, barren, and agricultural lands (-0.36, -1.00 & -0.34). The association of built-up with respective years was positively linear (R2 = 0.96), whereas forestland, agricultural, and barren lands association with years were recorded as negatively linear (R2 = -0.29, R2 = -0.02, and R2 = -0.96). Large-scale deforestation leads to multiple negative impacts on the local environment, e.g., water degradation and climate change. It would finally affect the environment of the greater Himalayan region in some way. We further analyzed the driving forces of urbanization. It was determined by economic expansion, climate change, and population growth. We hope our study could be utilized to develop efforts to mitigate the consequences of deforestation and agricultural land damage, reducing greenhouse gas emissions while preserving the area's biodiversity.

Keywords: urbanization, Himalaya mountains, landuse landcover change (LULCC), remote sensing., multi-spectral satellite imagery

Procedia PDF Downloads 46