Search results for: path tracking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1990

Search results for: path tracking

1690 Visibility Measurements Using a Novel Open-Path Optical Extinction Analyzer

Authors: Nabil Saad, David Morgan, Manish Gupta

Abstract:

Visibility has become a key component of air quality and is regulated in many areas by environmental laws such as the EPA Clean Air Act and Regional Haze Rule. Typically, visibility is calculated by estimating the optical absorption and scattering of both gases and aerosols. A major component of the aerosols’ climatic effect is due to their scattering and absorption of solar radiation, which are governed by their optical and physical properties. However, the accurate assessment of this effect on global warming, climate change, and air quality is made difficult due to uncertainties in the calculation of single scattering albedo (SSA). Experimental complications arise in the determination of the single scattering albedo of an aerosol particle since it requires the simultaneous measurement of both scattering and extinction. In fact, aerosol optical absorption, in particular, is a difficult measurement to perform, and it’s often associated with large uncertainties when using filter methods or difference methods. In this presentation, we demonstrate the use of a new open-path Optical Extinction Analyzer (OEA) in conjunction with a nephelometer and two particle sizers, emphasizing the benefits that co-employment of the OEA offers to derive the complex refractive index of aerosols and their single scattering albedo parameter. Various use cases, data reproducibility, and instrument calibration will also be presented to highlight the value proposition of this novel Open-Path OEA.

Keywords: aerosols, extinction, visibility, albedo

Procedia PDF Downloads 69
1689 Real-Time Path Planning for Unmanned Air Vehicles Using Improved Rapidly-Exploring Random Tree and Iterative Trajectory Optimization

Authors: A. Ramalho, L. Romeiro, R. Ventura, A. Suleman

Abstract:

A real-time path planning framework for Unmanned Air Vehicles, and in particular multi-rotors is proposed. The framework is designed to provide feasible trajectories from the current UAV position to a goal state, taking into account constraints such as obstacle avoidance, problem kinematics, and vehicle limitations such as maximum speed and maximum acceleration. The framework computes feasible paths online, allowing to avoid new, unknown, dynamic obstacles without fully re-computing the trajectory. These features are achieved using an iterative process in which the robot computes and optimizes the trajectory while performing the mission objectives. A first trajectory is computed using a modified Rapidly-Exploring Random Tree (RRT) algorithm, that provides trajectories that respect a maximum curvature constraint. The trajectory optimization is accomplished using the Interior Point Optimizer (IPOPT) as a solver. The framework has proven to be able to compute a trajectory and optimize to a locally optimal with computational efficiency making it feasible for real-time operations.

Keywords: interior point optimization, multi-rotors, online path planning, rapidly exploring random trees, trajectory optimization

Procedia PDF Downloads 119
1688 Design and Implementation of a Control System for a Walking Robot with Color Sensing and Line following Using PIC and ATMEL Microcontrollers

Authors: Ibraheem K. Ibraheem

Abstract:

The aim of this research is to design and implement line-tracking mobile robot. The robot must follow a line drawn on the floor with different color, avoids hitting moving object like another moving robot or walking people and achieves color sensing. The control system reacts by controlling each of the motors to keep the tracking sensor over the middle of the line. Proximity sensors used to avoid hitting moving objects that may pass in front of the robot. The programs have been written using micro c instructions, then converted into PIC16F887 ATmega48/88/168 microcontrollers counterparts. Practical simulations show that the walking robot accurately achieves line following action and exactly recognizes the colors and avoids any obstacle in front of it.

Keywords: color sensing, H-bridge, line following, mobile robot, PIC microcontroller, obstacle avoidance, phototransistor

Procedia PDF Downloads 368
1687 Design and Simulation of Low Cost Boost-Half- Bridge Microinverter with Grid Connection

Authors: P. Bhavya, P. R. Jayasree

Abstract:

This paper presents a low cost transformer isolated boost half bridge micro-inverter for single phase grid connected PV system. Since the output voltage of a single PV panel is as low as 20~50V, a high voltage gain inverter is required for the PV panel to connect to the single-phase grid. The micro-inverter has two stages, an isolated dc-dc converter stage and an inverter stage with a dc link. To achieve MPPT and to step up the PV voltage to the dc link voltage, a transformer isolated boost half bridge dc-dc converter is used. To output the synchronised sinusoidal current with unity power factor to the grid, a pulse width modulated full bridge inverter with LCL filter is used. Variable step size Maximum Power Point Tracking (MPPT) method is adopted such that fast tracking and high MPPT efficiency are both obtained. AC voltage as per grid requirement is obtained at the output of the inverter. High power factor (>0.99) is obtained at both heavy and light loads. This paper gives the results of computer simulation program of a grid connected solar PV system using MATLAB/Simulink and SIM Power System tool.

Keywords: boost-half-bridge, micro-inverter, maximum power point tracking, grid connection, MATLAB/Simulink

Procedia PDF Downloads 317
1686 ISAR Imaging and Tracking Algorithm for Maneuvering Non-ellipsoidal Extended Objects Using Jump Markov Systems

Authors: Mohamed Barbary, Mohamed H. Abd El-azeem

Abstract:

Maneuvering non-ellipsoidal extended object tracking (M-NEOT) using high-resolution inverse synthetic aperture radar (ISAR) observations is gaining momentum recently. This work presents a new robust implementation of the Jump Markov (JM) multi-Bernoulli (MB) filter for M-NEOT, where the M-NEOT’s ISAR observations are characterized using a skewed (SK) non-symmetrically normal distribution. To cope with the possible abrupt change of kinematic state, extension, and observation distribution over an extended object when a target maneuvers, a multiple model technique is represented based on an MB-track-before-detect (TBD) filter supported by SK-sub-random matrix model (RMM) or sub-ellipses framework. Simulation results demonstrate this remarkable impact.

Keywords: maneuvering extended objects, ISAR, skewed normal distribution, sub-RMM, JM-MB-TBD filter

Procedia PDF Downloads 34
1685 A Flute Tracking System for Monitoring the Wear of Cutting Tools in Milling Operations

Authors: Hatim Laalej, Salvador Sumohano-Verdeja, Thomas McLeay

Abstract:

Monitoring of tool wear in milling operations is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Although there are numerous statistical models and artificial intelligence techniques available for monitoring the wear of cutting tools, these techniques cannot pin point which cutting edge of the tool, or which insert in the case of indexable tooling, is worn or broken. Currently, the task of monitoring the wear on the tool cutting edges is carried out by the operator who performs a manual inspection, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from lost productivity. The present study is concerned with the development of a flute tracking system to segment signals related to each physical flute of a cutter with three flutes used in an end milling operation. The purpose of the system is to monitor the cutting condition for individual flutes separately in order to determine their progressive wear rates and to predict imminent tool failure. The results of this study clearly show that signals associated with each flute can be effectively segmented using the proposed flute tracking system. Furthermore, the results illustrate that by segmenting the sensor signal by flutes it is possible to investigate the wear in each physical cutting edge of the cutting tool. These findings are significant in that they facilitate the online condition monitoring of a cutting tool for each specific flute without the need for operators/engineers to perform manual inspections of the tool.

Keywords: machining, milling operation, tool condition monitoring, tool wear prediction

Procedia PDF Downloads 282
1684 Q-Learning of Bee-Like Robots Through Obstacle Avoidance

Authors: Jawairia Rasheed

Abstract:

Modern robots are often used for search and rescue purpose. One of the key areas of interest in such cases is learning complex environments. One of the key methodologies for robots in such cases is reinforcement learning. In reinforcement learning robots learn to move the path to reach the goal while avoiding obstacles. Q-learning, one of the most advancement of reinforcement learning is used for making the robots to learn the path. Robots learn by interacting with the environment to reach the goal. In this paper simulation model of bee-like robots is implemented in NETLOGO. In the start the learning rate was less and it increased with the passage of time. The bees successfully learned to reach the goal while avoiding obstacles through Q-learning technique.

Keywords: reinforlearning of bee like robots for reaching the goalcement learning for randomly placed obstacles, obstacle avoidance through q-learning, q-learning for obstacle avoidance,

Procedia PDF Downloads 71
1683 Ageing Deterioration of High-Density Polyethylene Cable Spacer under Salt Water Dip Wheel Test

Authors: P. Kaewchanthuek, R. Rawonghad, B. Marungsri

Abstract:

This paper presents the experimental results of high-density polyethylene cable spacers for 22 kV distribution systems under salt water dip wheel test based on IEC 62217. The strength of anti-tracking and anti-erosion of cable spacer surface was studied in this study. During the test, dry band arc and corona discharge were observed on cable spacer surface. After 30,000 cycles of salt water dip wheel test, obviously surface erosion and tracking were observed especially on the ground end. Chemical analysis results by fourier transforms infrared spectroscopy showed chemical changed from oxidation and carbonization reaction on tested cable spacer. Increasing of C=O and C=C bonds confirmed occurrence of these reactions.

Keywords: cable spacer, HDPE, ageing of cable spacer, salt water dip wheel test

Procedia PDF Downloads 360
1682 Aerodynamic Analysis of Vehicles in the Wind Tunnel and Water Tunnel

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

The simulation in wind tunnel is used thoroughly to model real situations of drainages of air. Besides the automotive industry, a great number of applications can be numbered: dispersion of pollutant, studies of pedestrians comfort and dispersion of particles. This work had the objective of visualizing the characteristics aerodynamics of two automobiles in different ways. To accomplish that drainage of air a fan that generated a speed exists (measured with anemometer of hot thread) of 4,1m/s and 4,95m/s. To visualize the path of the air through the cars, in the wind tunnel, smoke was used, obtained with it burns of vegetable oil. For “to do smoke” vegetable oil was used, that was burned for a tension of 20 V generated by a thread of 2,5 mm. The cars were placed inside of the wind tunnel with the drainage of “air-smoke” and photographed, registering like this the path lines around them, in the 3 different speeds.

Keywords: aerodynamics, vehicle drag, vegetable oil, wind tunnel

Procedia PDF Downloads 575
1681 Application of the DTC Control in the Photovoltaic Pumping System

Authors: M. N. Amrani, H. Abanou, A. Dib

Abstract:

In this paper, we proposed a strategy for optimizing the performance for a pumping structure constituted by an induction motor coupled to a centrifugal pump and improving existing results in this context. The considered system is supplied by a photovoltaic generator (GPV) through two static converters piloted in an independent manner. We opted for a maximum power point tracking (MPPT) control method based on the Neuro - Fuzzy, which is well known for its stability and robustness. To improve the induction motor performance, we use the concept of Direct Torque Control (DTC) and PID controller for motor speed to pilot the working of the induction motor. Simulations of the proposed approach give interesting results compared to the existing control strategies in this field. The model of the proposed system is simulated by MATLAB/Simulink.

Keywords: solar energy, pumping photovoltaic system, maximum power point tracking, direct torque Control (DTC), PID regulator

Procedia PDF Downloads 525
1680 Integrated Gas Turbine Performance Diagnostics and Condition Monitoring Using Adaptive GPA

Authors: Yi-Guang Li, Suresh Sampath

Abstract:

Gas turbine performance degrades over time, and the degradation is greatly affected by environmental, ambient, and operating conditions. The engines may degrade slowly under favorable conditions and result in a waste of engine life if a scheduled maintenance scheme is followed. They may also degrade fast and fail before a scheduled overhaul if the conditions are unfavorable, resulting in serious secondary damage, loss of engine availability, and increased maintenance costs. To overcome these problems, gas turbine owners are gradually moving from scheduled maintenance to condition-based maintenance, where condition monitoring is one of the key supporting technologies. This paper presents an integrated adaptive GPA diagnostics and performance monitoring system developed at Cranfield University for gas turbine gas path condition monitoring. It has the capability to predict the performance degradation of major gas path components of gas turbine engines, such as compressors, combustors, and turbines, using gas path measurement data. It is also able to predict engine key performance parameters for condition monitoring, such as turbine entry temperature that cannot be directly measured. The developed technology has been implemented into digital twin computer Software, Pythia, to support the condition monitoring of gas turbine engines. The capabilities of the integrated GPA condition monitoring system are demonstrated in three test cases using a model gas turbine engine similar to the GE aero-derivative LM2500 engine widely used in power generation and marine propulsion. It shows that when the compressor of the model engine degrades, the Adaptive GPA is able to predict the degradation and the changing engine performance accurately using gas path measurements. Such a presented technology and software are generic, can be applied to different types of gas turbine engines, and provide crucial engine health and performance parameters to support condition monitoring and condition-based maintenance.

Keywords: gas turbine, adaptive GPA, performance, diagnostics, condition monitoring

Procedia PDF Downloads 57
1679 Lateral Control of Electric Vehicle Based on Fuzzy Logic Control

Authors: Hartani Kada, Merah Abdelkader

Abstract:

Aiming at the high nonlinearities and unmatched uncertainties of the intelligent electric vehicles’ dynamic system, this paper presents a lateral motion control algorithm for intelligent electric vehicles with four in-wheel motors. A fuzzy logic procedure is presented and formulated to realize lateral control in lane change. The vehicle dynamics model and a desired target tracking model were established in this paper. A fuzzy logic controller was designed for integrated active front steering (AFS) and direct yaw moment control (DYC) in order to improve vehicle handling performance and stability, and a fuzzy controller for the automatic steering problem. The simulation results demonstrate the strong robustness and excellent tracking performance of the control algorithm that is proposed.

Keywords: fuzzy logic, lateral control, AFS, DYC, electric car technology, longitudinal control, lateral motion

Procedia PDF Downloads 580
1678 A Simulated Scenario of WikiGIS to Support the Iteration and Traceability Management of the Geodesign Process

Authors: Wided Batita, Stéphane Roche, Claude Caron

Abstract:

Geodesign is an emergent term related to a new and complex process. Hence, it needs to rethink tools, technologies and platforms in order to efficiently achieve its goals. A few tools have emerged since 2010 such as CommunityViz, GeoPlanner, etc. In the era of Web 2.0 and collaboration, WikiGIS has been proposed as a new category of tools. In this paper, we present WikiGIS functionalities dealing mainly with the iteration and traceability management to support the collaboration of the Geodesign process. Actually, WikiGIS is built on GeoWeb 2.0 technologies —and primarily on wiki— and aims at managing the tracking of participants’ editing. This paper focuses on a simplified simulation to illustrate the strength of WikiGIS in the management of traceability and in the access to history in a Geodesign process. Indeed, a cartographic user interface has been implemented, and then a hypothetical use case has been imagined as proof of concept.

Keywords: geodesign, history, traceability, tracking of participants’ editing, WikiGIS

Procedia PDF Downloads 225
1677 Investigation on the Acoustical Transmission Path of Additive Printed Metals

Authors: Raphael Rehmet, Armin Lohrengel, Prof Dr-Ing

Abstract:

In terms of making machines more silent and convenient, it is necessary to analyze the transmission path of mechanical vibrations and structure-bone noise. A typical solution for the elimination of structure-bone noise would be to simply add stiffeners or additional masses to change the transmission behavior and, thereby, avoid the propagation of vibrations. Another solution could be to use materials with a different damping behavior, such as elastomers, to isolate the machine dynamically. This research approach investigates the damping behavior of additive printed components made from structural steel or titanium, which have been manufactured in the “Laser Powder Bed Fusion“-process. By using the design flexibility which this process comes with, it will be investigated how a local impedance difference will affect the transmission behavior of the specimens.

Keywords: 3D-printed, acoustics, dynamics, impedance

Procedia PDF Downloads 184
1676 The Mathematics of Fractal Art: Using a Derived Cubic Method and the Julia Programming Language to Make Fractal Zoom Videos

Authors: Darsh N. Patel, Eric Olson

Abstract:

Fractals can be found everywhere, whether it be the shape of a leaf or a system of blood vessels. Fractals are used to help study and understand different physical and mathematical processes; however, their artistic nature is also beautiful to simply explore. This project explores fractals generated by a cubically convergent extension to Newton's method. With this iteration as a starting point, a complex plane spanning from -2 to 2 is created with a color wheel mapped onto it. Next, the polynomial whose roots the fractal will generate from is established. From the Fundamental Theorem of Algebra, it is known that any polynomial has as many roots (counted by multiplicity) as its degree. When generating the fractals, each root will receive its own color. The complex plane can then be colored to indicate the basins of attraction that converge to each root. From a computational point of view, this project’s code identifies which points converge to which roots and then obtains fractal images. A zoom path into the fractal was implemented to easily visualize the self-similar structure. This path was obtained by selecting keyframes at different magnifications through which a path is then interpolated. Using parallel processing, many images were generated and condensed into a video. This project illustrates how practical techniques used for scientific visualization can also have an artistic side.

Keywords: fractals, cubic method, Julia programming language, basin of attraction

Procedia PDF Downloads 236
1675 A Comparative Study of Various Control Methods for Rendezvous of a Satellite Couple

Authors: Hasan Basaran, Emre Unal

Abstract:

Formation flying of satellites is a mission that involves a relative position keeping of different satellites in the constellation. In this study, different control algorithms are compared with one another in terms of ΔV, velocity increment, and tracking error. Various control methods, covering continuous and impulsive approaches are implemented and tested for satellites flying in low Earth orbit. Feedback linearization, sliding mode control, and model predictive control are designed and compared with an impulsive feedback law, which is based on mean orbital elements. Feedback linearization and sliding mode control approaches have identical mathematical models that include second order Earth oblateness effects. The model predictive control, on the other hand, does not include any perturbations and assumes circular chief orbit. The comparison is done with 4 different initial errors and achieved with velocity increment, root mean square error, maximum steady state error, and settling time. It was observed that impulsive law consumed the least ΔV, while produced the highest maximum error in the steady state. The continuous control laws, however, consumed higher velocity increments and produced lower amounts of tracking errors. Finally, the inversely proportional relationship between tracking error and velocity increment was established.

Keywords: chief-deputy satellites, feedback linearization, follower-leader satellites, formation flight, fuel consumption, model predictive control, rendezvous, sliding mode

Procedia PDF Downloads 79
1674 The On-Board Critical Message Transmission Design for Navigation Satellite Delay/Disruption Tolerant Network

Authors: Ji-yang Yu, Dan Huang, Guo-ping Feng, Xin Li, Lu-yuan Wang

Abstract:

The navigation satellite network, especially the Beidou MEO Constellation, can relay data effectively with wide coverage and is applied in navigation, detection, and position widely. But the constellation has not been completed, and the amount of satellites on-board is not enough to cover the earth, which makes the data-relay disrupted or delayed in the transition process. The data-relay function needs to tolerant the delay or disruption in some extension, which make the Beidou MEO Constellation a delay/disruption-tolerant network (DTN). The traditional DTN designs mainly employ the relay table as the basic of data path schedule computing. But in practical application, especially in critical condition, such as the war-time or the infliction heavy losses on the constellation, parts of the nodes may become invalid, then the traditional DTN design could be useless. Furthermore, when transmitting the critical message in the navigation system, the maximum priority strategy is used, but the nodes still inquiry the relay table to design the path, which makes the delay more than minutes. Under this circumstances, it needs a function which could compute the optimum data path on-board in real-time according to the constellation states. The on-board critical message transmission design for navigation satellite delay/disruption-tolerant network (DTN) is proposed, according to the characteristics of navigation satellite network. With the real-time computation of parameters in the network link, the least-delay transition path is deduced to retransmit the critical message in urgent conditions. First, the DTN model for constellation is established based on the time-varying matrix (TVM) instead of the time-varying graph (TVG); then, the least transition delay data path is deduced with the parameters of the current node; at last, the critical message transits to the next best node. For the on-board real-time computing, the time delay and misjudges of constellation states in ground stations are eliminated, and the residual information channel for each node can be used flexibly. Compare with the minute’s delay of traditional DTN; the proposed transmits the critical message in seconds, which improves the re-transition efficiency. The hardware is implemented in FPGA based on the proposed model, and the tests prove the validity.

Keywords: critical message, DTN, navigation satellite, on-board, real-time

Procedia PDF Downloads 318
1673 Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems using a Doubly Fed Induction Generator

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 532
1672 Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator with Active Disturbance Rejection Control

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 478
1671 The Effect of Physical Guidance on Learning a Tracking Task in Children with Cerebral Palsy

Authors: Elham Azimzadeh, Hamidollah Hassanlouei, Hadi Nobari, Georgian Badicu, Jorge Pérez-Gómez, Luca Paolo Ardigò

Abstract:

Children with cerebral palsy (CP) have weak physical abilities and their limitations may have an effect on performing everyday motor activities. One of the most important and common debilitating factors in CP is the malfunction in the upper extremities to perform motor skills and there is strong evidence that task-specific training may lead to improve general upper limb function among this population. However, augmented feedback enhances the acquisition and learning of a motor task. Practice conditions may alter the difficulty, e.g., the reduced frequency of PG could be more challenging for this population to learn a motor task. So, the purpose of this study was to investigate the effect of physical guidance (PG) on learning a tracking task in children with cerebral palsy (CP). Twenty-five independently ambulant children with spastic hemiplegic CP aged 7-15 years were assigned randomly to five groups. After the pre-test, experimental groups participated in an intervention for eight sessions, 12 trials during each session. The 0% PG group received no PG; the 25% PG group received PG for three trials; the 50% PG group received PG for six trials; the 75% PG group received PG for nine trials; and the 100% PG group, received PG for all 12 trials. PG consisted of placing the experimenter's hand around the children's hand, guiding them to stay on track and complete the task. Learning was inferred by acquisition and delayed retention tests. The tests involved two blocks of 12 trials of the tracking task without any PG being performed by all participants. They were asked to make the movement as accurate as possible (i.e., fewer errors) and the number of total touches (errors) in 24 trials was calculated as the scores of the tests. The results showed that the higher frequency of PG led to more accurate performance during the practice phase. However, the group that received 75% PG had significantly better performance compared to the other groups in the retention phase. It is concluded that the optimal frequency of PG played a critical role in learning a tracking task in children with CP and likely this population may benefit from an optimal level of PG to get the appropriate amount of information confirming the challenge point framework (CPF), which state that too much or too little information will retard learning a motor skill. Therefore, an optimum level of PG may help these children to identify appropriate patterns of motor skill using extrinsic information they receive through PG and improve learning by activating the intrinsic feedback mechanisms.

Keywords: cerebral palsy, challenge point framework, motor learning, physical guidance, tracking task

Procedia PDF Downloads 52
1670 The Different Learning Path Analysis of Students with Different Learning Attitudes and Styles in Arts Creation

Authors: Tracy Ho, Huann-Shyang Lin, Mina Lin

Abstract:

This study investigated the different learning path of students with different learning attitude and learning styles in Arts Creation. Based on direct instruction, guided-discovery learning, and discovery learning theories, a tablet app including the following three learning areas were developed for students: (1) replication and remix practice area, (2) guided creation area, and (3) free creation area. Thirty. students with different learning attitude and learning styles were invited to use this app. Students’ learning behaviors were categorized and defined. The results will provide both educators and researchers with insights that can form a useful foundation for designing different content and strategy with the application of new technologies in school teaching. It also sheds light on how an educational App can be designed to enhance Arts Creation.

Keywords: App, arts creation, learning attitude, learning style, tablet

Procedia PDF Downloads 249
1669 Exploring the Growth Path under Coupling Relationship between Space and Economy of Mountain Village and Townlets: Case Study of Southwest China

Authors: Runlin Liu, Shilong Li

Abstract:

China is a mountainous country, with two-thirds of its territory covered by plateaus, hills, and mountains, and nearly half of the cities and towns are distributed in mountainous areas. Compared with the environmental constraints in the development path of cities and towns in the plains, there are heterogeneities in aspects such as spatial characteristics, growth mode, and ecological protection and so on for mountain village and townlets, and the development path of mountain village and townlets has a bidirectional relationship between mountain space and economic growth. Based on classical growth theory, this article explores the two-dimensional coupling relation between space and economy in mountain village and townlets under background of rural rejuvenation. GIS technology is adopted in the study to analyze spatial trends and patterns, economical spatial differentiation characteristics of village and townlets. This powerful tool can also help differentiate and analyze limiting factors and assessment systems in the economic growth of village and townlets under spatial dimension of mountainous space. To make the research more specific, this article selects mountain village and townlets in Southwest China as the object of study; this provides good cases for analyzing parallel coupling mechanism of the duality structure system between economic growth and spatial expansion and discussing the path selection of spatial economic growth of mountain village and towns with multiple constraints. The research results can provide quantitative references for the spatial and economic development paths of mountain villages and towns, which is helpful in realizing efficient and high-quality development mode with equal emphasis on spatial and economic benefits for these type of towns.

Keywords: coupling mechanism, geographic information technology, mountainous town, synergetic development, spatial economy

Procedia PDF Downloads 124
1668 The Presence of Investor Overconfidence in the South African Exchange Traded Fund Market

Authors: Damien Kunjal, Faeezah Peerbhai

Abstract:

Despite the increasing popularity of exchange-traded funds (ETFs), ETF investment choices may not always be rational. Excess trading volume, misevaluations of securities, and excess return volatility present in financial markets can be attributed to the influence of the overconfidence bias. Whilst previous research has explored the overconfidence bias in stock markets; this study focuses on trading in ETF markets. Therefore, the objective of this study is to investigate the presence of investor overconfidence in the South African ETF market. Using vector autoregressive models, the lead-lag relationship between market turnover and the market return is examined for the market of South African ETFs tracking domestic benchmarks and for the market of South African ETFs tracking international benchmarks over the period November 2000 till August 2019. Consistent with the overconfidence hypothesis, a positive relationship between current market turnover and lagged market return is found for both markets, even after controlling for market volatility and cross-sectional dispersion. This relationship holds for both market and individual ETF turnover suggesting that investors are overconfident when trading in South African ETFs tracking domestic benchmarks and South African ETFs tracking international benchmarks since trading activity depends on past market returns. Additionally, using the global recession as a structural break, this study finds that investor overconfidence is more pronounced after the global recession suggesting that investors perceive ETFs as risk-reducing assets due to their diversification benefits. Overall, the results of this study indicate that the overconfidence bias has a significant influence on ETF investment choices, therefore, suggesting that the South African ETF market is inefficient since investors’ decisions are based on their biases. As a result, the effect of investor overconfidence can account for the difference between the fair value of ETFs and its current market price. This finding has implications for policymakers whose responsibility is to promote the efficiency of the South African ETF market as well as ETF investors and traders who trade in the South African ETF market.

Keywords: exchange-traded fund, market return, market turnover, overconfidence, trading activity

Procedia PDF Downloads 135
1667 A Linear Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using MATLAB simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 506
1666 The Design, Control and Dynamic Performance of an Interior Permanent Magnet Synchronous Generator for Wind Power System

Authors: Olusegun Solomon

Abstract:

This paper describes the concept for the design and maximum power point tracking control for an interior permanent magnet synchronous generator wind turbine system. Two design concepts are compared to outline the effect of magnet design on the performance of the interior permanent magnet synchronous generator. An approximate model that includes the effect of core losses has been developed for the machine to simulate the dynamic performance of the wind energy system. An algorithm for Maximum Power Point Tracking control is included to describe the process for maximum power extraction.

Keywords: permanent magnet synchronous generator, wind power system, wind turbine

Procedia PDF Downloads 194
1665 Challenges and Recommendations for Medical Device Tracking and Traceability in Singapore: A Focus on Nursing Practices

Authors: Zhuang Yiwen

Abstract:

The paper examines the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. One of the major challenges identified is the lack of a standard coding system for medical devices, which makes it difficult to track them effectively. The paper suggests the use of the Unique Device Identifier (UDI) as a single standard for medical devices to improve tracking and reduce errors. The paper also explores the use of barcoding and image recognition to identify and document medical devices in nursing practices. In nursing practices, the use of barcodes for identifying medical devices is common. However, the information contained in these barcodes is often inconsistent, making it challenging to identify which segment contains the model identifier. Moreover, the use of barcodes may be improved with the use of UDI, but many subsidized accessories may still lack barcodes. The paper suggests that the readiness for UDI and barcode standardization requires standardized information, fields, and logic in electronic medical record (EMR), operating theatre (OT), and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. Nursing workflow and data flow also need to be taken into account. The paper also explores the use of image recognition, specifically the Tesseract OCR engine, to identify and document implants in public hospitals due to limitations in barcode scanning. The study found that the solution requires an implant information database and checking output against the database. The solution also requires customization of the algorithm, cropping out objects affecting text recognition, and applying adjustments. The solution requires additional resources and costs for a mobile/hardware device, which may pose space constraints and require maintenance of sterile criteria. The integration with EMR is also necessary, and the solution require changes in the user's workflow. The paper suggests that the long-term use of Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) as a supporting terminology to improve clinical documentation and data exchange in healthcare. SNOMED CT provides a standardized way of documenting and sharing clinical information with respect to procedure, patient and device documentation, which can facilitate interoperability and data exchange. In conclusion, the paper highlights the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. The paper suggests the use of UDI and barcode standardization to improve tracking and reduce errors. It also explores the use of image recognition to identify and document medical devices in nursing practices. The paper emphasizes the importance of standardized information, fields, and logic in EMR, OT, and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. These recommendations could help the Singapore healthcare system to improve tracking and traceability of medical devices and ultimately enhance patient safety.

Keywords: medical device tracking, unique device identifier, barcoding and image recognition, systematized nomenclature of medicine clinical terms

Procedia PDF Downloads 57
1664 User Experience in Relation to Eye Tracking Behaviour in VR Gallery

Authors: Veslava Osinska, Adam Szalach, Dominik Piotrowski

Abstract:

Contemporary VR technologies allow users to explore virtual 3D spaces where they can work, socialize, learn, and play. User's interaction with GUI and the pictures displayed implicate perceptual and also cognitive processes which can be monitored due to neuroadaptive technologies. These modalities provide valuable information about the users' intentions, situational interpretations, and emotional states, to adapt an application or interface accordingly. Virtual galleries outfitted by specialized assets have been designed using the Unity engine BITSCOPE project in the frame of CHIST-ERA IV program. Users interaction with gallery objects implies the questions about his/her visual interests in art works and styles. Moreover, an attention, curiosity, and other emotional states are possible to be monitored and analyzed. Natural gaze behavior data and eye position were recorded by built-in eye-tracking module within HTC Vive headset gogle for VR. Eye gaze results are grouped due to various users’ behavior schemes and the appropriate perpetual-cognitive styles are recognized. Parallelly usability tests and surveys were adapted to identify the basic features of a user-centered interface for the virtual environments across most of the timeline of the project. A total of sixty participants were selected from the distinct faculties of University and secondary schools. Users’ primary knowledge about art and was evaluated during pretest and this way the level of art sensitivity was described. Data were collected during two months. Each participant gave written informed consent before participation. In data analysis reducing the high-dimensional data into a relatively low-dimensional subspace ta non linear algorithms were used such as multidimensional scaling and novel technique technique t-Stochastic Neighbor Embedding. This way it can classify digital art objects by multi modal time characteristics of eye tracking measures and reveal signatures describing selected artworks. Current research establishes the optimal place on aesthetic-utility scale because contemporary interfaces of most applications require to be designed in both functional and aesthetical ways. The study concerns also an analysis of visual experience for subsamples of visitors, differentiated, e.g., in terms of frequency of museum visits, cultural interests. Eye tracking data may also show how to better allocate artefacts and paintings or increase their visibility when possible.

Keywords: eye tracking, VR, UX, visual art, virtual gallery, visual communication

Procedia PDF Downloads 18
1663 Using Dynamic Bayesian Networks to Characterize and Predict Job Placement

Authors: Xupin Zhang, Maria Caterina Bramati, Enrest Fokoue

Abstract:

Understanding the career placement of graduates from the university is crucial for both the qualities of education and ultimate satisfaction of students. In this research, we adapt the capabilities of dynamic Bayesian networks to characterize and predict students’ job placement using data from various universities. We also provide elements of the estimation of the indicator (score) of the strength of the network. The research focuses on overall findings as well as specific student groups including international and STEM students and their insight on the career path and what changes need to be made. The derived Bayesian network has the potential to be used as a tool for simulating the career path for students and ultimately helps universities in both academic advising and career counseling.

Keywords: dynamic bayesian networks, indicator estimation, job placement, social networks

Procedia PDF Downloads 347
1662 Optimization Based Obstacle Avoidance

Authors: R. Dariani, S. Schmidt, R. Kasper

Abstract:

Based on a non-linear single track model which describes the dynamics of vehicle, an optimal path planning strategy is developed. Real time optimization is used to generate reference control values to allow leading the vehicle alongside a calculated lane which is optimal for different objectives such as energy consumption, run time, safety or comfort characteristics. Strict mathematic formulation of the autonomous driving allows taking decision on undefined situation such as lane change or obstacle avoidance. Based on position of the vehicle, lane situation and obstacle position, the optimization problem is reformulated in real-time to avoid the obstacle and any car crash.

Keywords: autonomous driving, obstacle avoidance, optimal control, path planning

Procedia PDF Downloads 347
1661 Parameters Influencing the Output Precision of a Lens-Lens Beam Generator Solar Concentrator

Authors: M. Tawfik, X. Tonnellier, C. Sansom

Abstract:

The Lens-Lens Beam Generator (LLBG) is a Fresnel-based optical concentrating technique which provides flexibility in selecting the solar receiver location compared to conventional techniques through generating a powerful concentrated collimated solar beam. In order to achieve that, two successive lenses are used and followed by a flat mirror. Hence the generated beam emerging from the LLBG has a high power flux which impinges on the target receiver, it is important to determine the precision of the system output. In this present work, mathematical investigation of different parameters affecting the precision of the output beam is carried out. These parameters include: Deflection in sun-facing lens and its holding arm, delay in updating the solar tracking system, and the flat mirror surface flatness. Moreover, relationships that describe the power lost due to the effect of each parameter are derived in this study.

Keywords: Fresnel lens, LLBG, solar concentrator, solar tracking

Procedia PDF Downloads 195