Search results for: pH sensing
854 Relocation of Livestocks in Rural of Canakkale Province Using Remote Sensing and GIS
Authors: Melis Inalpulat, Tugce Civelek, Unal Kizil, Levent Genc
Abstract:
Livestock production is one of the most important components of rural economy. Due to the urban expansion, rural areas close to expanding cities transform into urban districts during the time. However, the legislations have some restrictions related to livestock farming in such administrative units since they tend to create environmental concerns like odor problems resulted from excessive manure production. Therefore, the existing animal operations should be moved from the settlement areas. This paper was focused on determination of suitable lands for livestock production in Canakkale province of Turkey using remote sensing (RS) data and GIS techniques. To achieve the goal, Formosat 2 and Landsat 8 imageries, Aster DEM, and 1:25000 scaled soil maps, village boundaries, and village livestock inventory records were used. The study was conducted using suitability analysis which evaluates the land in terms of limitations and potentials, and suitability range was categorized as Suitable (S) and Non-Suitable (NS). Limitations included the distances from main and crossroads, water resources and settlements, while potentials were appropriate values for slope, land use capability and land use land cover status. Village-based S land distribution results were presented, and compared with livestock inventories. Results showed that approximately 44230 ha area is inappropriate because of the distance limitations for roads and etc. (NS). Moreover, according to LULC map, 71052 ha area consists of forests, olive and other orchards, and thus, may not be suitable for building such structures (NS). In comparison, it was found that there are a total of 1228 ha S lands within study area. The village-based findings indicated that, in some villages livestock production continues on NS areas. Finally, it was suggested that organized livestock zones may be constructed to serve in more than one village after the detailed analysis complemented considering also political decisions, opinion of the local people, etc.Keywords: GIS, livestock, LULC, remote sensing, suitable lands
Procedia PDF Downloads 298853 Polarimetric Synthetic Aperture Radar Data Classification Using Support Vector Machine and Mahalanobis Distance
Authors: Najoua El Hajjaji El Idrissi, Necip Gokhan Kasapoglu
Abstract:
Polarimetric Synthetic Aperture Radar-based imaging is a powerful technique used for earth observation and classification of surfaces. Forest evolution has been one of the vital areas of attention for the remote sensing experts. The information about forest areas can be achieved by remote sensing, whether by using active radars or optical instruments. However, due to several weather constraints, such as cloud cover, limited information can be recovered using optical data and for that reason, Polarimetric Synthetic Aperture Radar (PolSAR) is used as a powerful tool for forestry inventory. In this [14paper, we applied support vector machine (SVM) and Mahalanobis distance to the fully polarimetric AIRSAR P, L, C-bands data from the Nezer forest areas, the classification is based in the separation of different tree ages. The classification results were evaluated and the results show that the SVM performs better than the Mahalanobis distance and SVM achieves approximately 75% accuracy. This result proves that SVM classification can be used as a useful method to evaluate fully polarimetric SAR data with sufficient value of accuracy.Keywords: classification, synthetic aperture radar, SAR polarimetry, support vector machine, mahalanobis distance
Procedia PDF Downloads 133852 Real-Time Kinetic Analysis of Labor-Intensive Repetitive Tasks Using Depth-Sensing Camera
Authors: Sudip Subedi, Nipesh Pradhananga
Abstract:
The musculoskeletal disorders, also known as MSDs, are common in construction workers. MSDs include lower back injuries, knee injuries, spinal injuries, and joint injuries, among others. Since most construction tasks are still manual, construction workers often need to perform repetitive, labor-intensive tasks. And they need to stay in the same or an awkward posture for an extended time while performing such tasks. It induces significant stress to the joints and spines, increasing the risk of getting into MSDs. Manual monitoring of such tasks is virtually impossible with the handful of safety managers in a construction site. This paper proposes a methodology for performing kinetic analysis of the working postures while performing such tasks in real-time. Skeletal of different workers will be tracked using a depth-sensing camera while performing the task to create training data for identifying the best posture. For this, the kinetic analysis will be performed using a human musculoskeletal model in an open-source software system (OpenSim) to visualize the stress induced by essential joints. The “safe posture” inducing lowest stress on essential joints will be computed for different actions involved in the task. The identified “safe posture” will serve as a basis for real-time monitoring and identification of awkward and unsafe postural behaviors of construction workers. Besides, the temporal simulation will be carried out to find the associated long-term effect of repetitive exposure to such observed postures. This will help to create awareness in workers about potential future health hazards and encourage them to work safely. Furthermore, the collected individual data can then be used to provide need-based personalized training to the construction workers.Keywords: construction workers’ safety, depth sensing camera, human body kinetics, musculoskeletal disorders, real time monitoring, repetitive labor-intensive tasks
Procedia PDF Downloads 130851 F-VarNet: Fast Variational Network for MRI Reconstruction
Authors: Omer Cahana, Maya Herman, Ofer Levi
Abstract:
Magnetic resonance imaging (MRI) is a long medical scan that stems from a long acquisition time. This length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach, such as compress sensing (CS) or parallel imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. In order to achieve that, two properties have to exist: i) the signal must be sparse under a known transform domain, ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm needs to be applied to recover the signal. While the rapid advance in the deep learning (DL) field, which has demonstrated tremendous successes in various computer vision task’s, the field of MRI reconstruction is still in an early stage. In this paper, we present an extension of the state-of-the-art model in MRI reconstruction -VarNet. We utilize VarNet by using dilated convolution in different scales, which extends the receptive field to capture more contextual information. Moreover, we simplified the sensitivity map estimation (SME), for it holds many unnecessary layers for this task. Those improvements have shown significant decreases in computation costs as well as higher accuracy.Keywords: MRI, deep learning, variational network, computer vision, compress sensing
Procedia PDF Downloads 161850 Monitoring of Water Quality Using Wireless Sensor Network: Case Study of Benue State of Nigeria
Authors: Desmond Okorie, Emmanuel Prince
Abstract:
Availability of portable water has been a global challenge especially to the developing continents/nations such as Africa/Nigeria. The World Health Organization WHO has produced the guideline for drinking water quality GDWQ which aims at ensuring water safety from source to consumer. Portable water parameters test include physical (colour, odour, temperature, turbidity), chemical (PH, dissolved solids) biological (algae, plytoplankton). This paper discusses the use of wireless sensor networks to monitor water quality using efficient and effective sensors that have the ability to sense, process and transmit sensed data. The integration of wireless sensor network to a portable sensing device offers the feasibility of sensing distribution capability, on site data measurements and remote sensing abilities. The current water quality tests that are performed in government water quality institutions in Benue State Nigeria are carried out in problematic locations that require taking manual water samples to the institution laboratory for examination, to automate the entire process based on wireless sensor network, a system was designed. The system consists of sensor node containing one PH sensor, one temperature sensor, a microcontroller, a zigbee radio and a base station composed by a zigbee radio and a PC. Due to the advancement of wireless sensor network technology, unexpected contamination events in water environments can be observed continuously. local area network (LAN) wireless local area network (WLAN) and internet web-based also commonly used as a gateway unit for data communication via local base computer using standard global system for mobile communication (GSM). The improvement made on this development show a water quality monitoring system and prospect for more robust and reliable system in the future.Keywords: local area network, Ph measurement, wireless sensor network, zigbee
Procedia PDF Downloads 171849 Channel Estimation for Orthogonal Frequency Division Multiplexing Systems over Doubly Selective Channels Base on DCS-DCSOMP Algorithm
Authors: Linyu Wang, Furui Huo, Jianhong Xiang
Abstract:
The Doppler shift generated by high-speed movement and multipath effects in the channel are the main reasons for the generation of a time-frequency doubly-selective (DS) channel. There is severe inter-carrier interference (ICI) in the DS channel. Channel estimation for an orthogonal frequency division multiplexing (OFDM) system over a DS channel is very difficult. The simultaneous orthogonal matching pursuit algorithm under distributed compressive sensing theory (DCS-SOMP) has been used in channel estimation for OFDM systems over DS channels. However, the reconstruction accuracy of the DCS-SOMP algorithm is not high enough in the low SNR stage. To solve this problem, in this paper, we propose an improved DCS-SOMP algorithm based on the inner product difference comparison operation (DCS-DCSOMP). The reconstruction accuracy is improved by increasing the number of candidate indexes and designing the comparison conditions of inner product difference. We combine the DCS-DCSOMP algorithm with the basis expansion model (BEM) to reduce the complexity of channel estimation. Simulation results show the effectiveness of the proposed algorithm and its advantages over other algorithms.Keywords: OFDM, doubly selective, channel estimation, compressed sensing
Procedia PDF Downloads 95848 Cognitive Radio in Aeronautic: Comparison of Some Spectrum Sensing Technics
Authors: Abdelkhalek Bouchikhi, Elyes Benmokhtar, Sebastien Saletzki
Abstract:
The aeronautical field is experiencing issues with RF spectrum congestion due to the constant increase in the number of flights, aircrafts and telecom systems on board. In addition, these systems are bulky in size, weight and energy consumption. The cognitive radio helps particularly solving the spectrum congestion issue by its capacity to detect idle frequency channels then, allowing an opportunistic exploitation of the RF spectrum. The present work aims to propose a new use case for aeronautical spectrum sharing and to study the performances of three different detection techniques: energy detector, matched filter and cyclostationary detector within the aeronautical use case. The spectrum in the proposed cognitive radio is allocated dynamically where each cognitive radio follows a cognitive cycle. The spectrum sensing is a crucial step. The goal of the sensing is gathering data about the surrounding environment. Cognitive radio can use different sensors: antennas, cameras, accelerometer, thermometer, etc. In IEEE 802.22 standard, for example, a primary user (PU) has always the priority to communicate. When a frequency channel witch used by the primary user is idle, the secondary user (SU) is allowed to transmit in this channel. The Distance Measuring Equipment (DME) is composed of a UHF transmitter/receiver (interrogator) in the aircraft and a UHF receiver/transmitter on the ground. While the future cognitive radio will be used jointly to alleviate the spectrum congestion issue in the aeronautical field. LDACS, for example, is a good candidate; it provides two isolated data-links: ground-to-air and air-to-ground data-links. The first contribution of the present work is a strategy allowing sharing the L-band. The adopted spectrum sharing strategy is as follow: the DME will play the role of PU which is the licensed user and the LDACS1 systems will be the SUs. The SUs could use the L-band channels opportunely as long as they do not causing harmful interference signals which affect the QoS of the DME system. Although the spectrum sensing is a key step, it helps detecting holes by determining whether the primary signal is present or not in a given frequency channel. A missing detection on primary user presence creates interference between PU and SU and will affect seriously the QoS of the legacy radio. In this study, first brief definitions, concepts and the state of the art of cognitive radio will be presented. Then, a study of three communication channel detection algorithms in a cognitive radio context is carried out. The study is made from the point of view of functions, material requirements and signal detection capability in the aeronautical field. Then, we presented a modeling of the detection problem by three different methods (energy, adapted filter, and cyclostationary) as well as an algorithmic description of these detectors is done. Then, we study and compare the performance of the algorithms. Simulations were carried out using MATLAB software. We analyzed the results based on ROCs curves for SNR between -10dB and 20dB. The three detectors have been tested with a synthetics and real world signals.Keywords: aeronautic, communication, navigation, surveillance systems, cognitive radio, spectrum sensing, software defined radio
Procedia PDF Downloads 174847 Assessing the Spatial Distribution of Urban Parks Using Remote Sensing and Geographic Information Systems Techniques
Authors: Hira Jabbar, Tanzeel-Ur Rehman
Abstract:
Urban parks and open spaces play a significant role in improving physical and mental health of the citizens, strengthen the societies and make the cities more attractive places to live and work. As the world’s cities continue to grow, continuing to value green space in cities is vital but is also a challenge, particularly in developing countries where there is pressure for space, resources, and development. Offering equal opportunity of accessibility to parks is one of the important issues of park distribution. The distribution of parks should allow all inhabitants to have close proximity to their residence. Remote sensing and Geographic information systems (GIS) can provide decision makers with enormous opportunities to improve the planning and management of Park facilities. This study exhibits the capability of GIS and RS techniques to provide baseline knowledge about the distribution of parks, level of accessibility and to help in identification of potential areas for such facilities. For this purpose Landsat OLI imagery for year 2016 was acquired from USGS Earth Explorer. Preprocessing models were applied using Erdas Imagine 2014v for the atmospheric correction and NDVI model was developed and applied to quantify the land use/land cover classes including built up, barren land, water, and vegetation. The parks amongst total public green spaces were selected based on their signature in remote sensing image and distribution. Percentages of total green and parks green were calculated for each town of Lahore City and results were then synchronized with the recommended standards. ANGSt model was applied to calculate the accessibility from parks. Service area analysis was performed using Network Analyst tool. Serviceability of these parks has been evaluated by employing statistical indices like service area, service population and park area per capita. Findings of the study may contribute in helping the town planners for understanding the distribution of parks, demands for new parks and potential areas which are deprived of parks. The purpose of present study is to provide necessary information to planners, policy makers and scientific researchers in the process of decision making for the management and improvement of urban parks.Keywords: accessible natural green space standards (ANGSt), geographic information systems (GIS), remote sensing (RS), United States geological survey (USGS)
Procedia PDF Downloads 339846 Applications of Hyperspectral Remote Sensing: A Commercial Perspective
Authors: Tuba Zahra, Aakash Parekh
Abstract:
Hyperspectral remote sensing refers to imaging of objects or materials in narrow conspicuous spectral bands. Hyperspectral images (HSI) enable the extraction of spectral signatures for objects or materials observed. These images contain information about the reflectance of each pixel across the electromagnetic spectrum. It enables the acquisition of data simultaneously in hundreds of spectral bands with narrow bandwidths and can provide detailed contiguous spectral curves that traditional multispectral sensors cannot offer. The contiguous, narrow bandwidth of hyperspectral data facilitates the detailed surveying of Earth's surface features. This would otherwise not be possible with the relatively coarse bandwidths acquired by other types of imaging sensors. Hyperspectral imaging provides significantly higher spectral and spatial resolution. There are several use cases that represent the commercial applications of hyperspectral remote sensing. Each use case represents just one of the ways that hyperspectral satellite imagery can support operational efficiency in the respective vertical. There are some use cases that are specific to VNIR bands, while others are specific to SWIR bands. This paper discusses the different commercially viable use cases that are significant for HSI application areas, such as agriculture, mining, oil and gas, defense, environment, and climate, to name a few. Theoretically, there is n number of use cases for each of the application areas, but an attempt has been made to streamline the use cases depending upon economic feasibility and commercial viability and present a review of literature from this perspective. Some of the specific use cases with respect to agriculture are crop species (sub variety) detection, soil health mapping, pre-symptomatic crop disease detection, invasive species detection, crop condition optimization, yield estimation, and supply chain monitoring at scale. Similarly, each of the industry verticals has a specific commercially viable use case that is discussed in the paper in detail.Keywords: agriculture, mining, oil and gas, defense, environment and climate, hyperspectral, VNIR, SWIR
Procedia PDF Downloads 79845 Estimating PM2.5 Concentrations Based on Landsat 8 Imagery and Historical Field Data over the Metropolitan Area of Mexico City
Authors: Rodrigo T. Sepulveda-Hirose, Ana B. Carrera-Aguilar, Francisco Andree Ramirez-Casas, Alondra Orozco-Gomez, Miguel Angel Sanchez-Caro, Carlos Herrera-Ventosa
Abstract:
High concentrations of particulate matter in the atmosphere pose a threat to human health, especially over areas with high concentrations of population; however, field air pollution monitoring is expensive and time-consuming. In order to achieve reduced costs and global coverage of the whole urban area, remote sensing can be used. This study evaluates PM2.5 concentrations, over the Mexico City´s metropolitan area, are estimated using atmospheric reflectance from LANDSAT 8, satellite imagery and historical PM2.5 measurements of the Automatic Environmental Monitoring Network of Mexico City (RAMA). Through the processing of the available satellite images, a preliminary model was generated to evaluate the optimal bands for the generation of the final model for Mexico City. Work on the final model continues with the results of the preliminary model. It was found that infrared bands have helped to model in other cities, but the effectiveness that these bands could provide for the geographic and climatic conditions of Mexico City is still being evaluated.Keywords: air pollution modeling, Landsat 8, PM2.5, remote sensing
Procedia PDF Downloads 195844 Heater and Substrate Profile Optimization for Low Power Portable Breathalyzer to Diagnose Diabetes Mellitus
Authors: Ramji Kalidoss, Snekhalatha Umapathy, V. Dhinakaran, J. M. Mathana
Abstract:
Chemi-resistive sensors used in breathalyzers have become a hotspot between the international breath research communities. These sensors exhibit a significant change in its resistance depending on the temperature it gets heated thus demanding high power leading to non-portable instrumentation. In this work, numerical simulation to identify the suitable combination of substrate and heater profile using COMSOL multiphysics was studied. Ni-Cr and Pt-100 joule resistive heater with various profiles were studied beneath the square and circular alumina substrates. The temperature distribution was uniform throughout the square substrate with the meander shaped pt100 heater with 48 mW power consumption for 200 oC. Moreover, this heater profile induced minimal stress on the substrate with 0.5 mm thick. A novel Graphene based ternary metal oxide nanocomposite (GO/SnO2/TiO2) was coated on the optimized substrate and heater to elucidate the response of diabetes biomarker (acetone). The sensor exhibited superior gas sensing performance towards acetone in the exhaled breath concentration range for diabetes (0.25 – 3 ppm). These results indicated the importance of substrate and heater properties along with sensing material for low power portable breathalyzers.Keywords: Breath Analysis, Chemical Sensors, Diabetes Mellitus, Graphene Nanocomposites, Heater, Substrate
Procedia PDF Downloads 136843 Vegetation Index-Deduced Crop Coefficient of Wheat (Triticum aestivum) Using Remote Sensing: Case Study on Four Basins of Golestan Province, Iran
Authors: Hoda Zolfagharnejad, Behnam Kamkar, Omid Abdi
Abstract:
Crop coefficient (Kc) is an important factor contributing to estimation of evapotranspiration, and is also used to determine the irrigation schedule. This study investigated and determined the monthly Kc of winter wheat (Triticum aestivum L.) using five vegetation indices (VIs): Normalized Difference Vegetation Index (NDVI), Difference Vegetation Index (DVI), Soil Adjusted Vegetation Index (SAVI), Infrared Percentage Vegetation Index (IPVI), and Ratio Vegetation Index (RVI) of four basins in Golestan province, Iran. 14 Landsat-8 images according to crop growth stage were used to estimate monthly Kc of wheat. VIs were calculated based on infrared and near infrared bands of Landsat 8 images using Geographical Information System (GIS) software. The best VIs were chosen after establishing a regression relationship among these VIs with FAO Kc and Kc that was modified for the study area by the previous research based on R² and Root Mean Square Error (RMSE). The result showed that local modified SAVI with R²= 0.767 and RMSE= 0.174 was the best index to produce monthly wheat Kc maps.Keywords: crop coefficient, remote sensing, vegetation indices, wheat
Procedia PDF Downloads 412842 Study and Calibration of Autonomous UAV Systems with Thermal Sensing Allowing Screening of Environmental Concerns
Authors: Raahil Sheikh, Abhishek Maurya, Priya Gujjar, Himanshu Dwivedi, Prathamesh Minde
Abstract:
UAVs have been an initial member of our environment since it's the first used by Austrian warfare in Venice. At that stage, they were just pilotless balloons equipped with bombs to be dropped on enemy territory. Over time, technological advancements allowed UAVs to be controlled remotely or autonomously. This study shall mainly focus on the intensification of pre-existing manual drones equipping them with a variety of sensors and making them autonomous, and capable, and purposing them for a variety of roles, including thermal sensing, data collection, tracking creatures, forest fires, volcano detection, hydrothermal studies, urban heat, Island measurement, and other environmental research. The system can also be used for reconnaissance, research, 3D mapping, and search and rescue missions. This study mainly focuses on automating tedious tasks and reducing human errors as much as possible, reducing deployment time, and increasing the overall efficiency, efficacy, and reliability of the UAVs. Creation of a comprehensive Ground Control System UI (GCS) enabling less trained professionals to be able to use the UAV with maximum potency. With the inclusion of such an autonomous system, artificially intelligent paths and environmental gusts and concerns can be avoided.Keywords: UAV, drone, autonomous system, thermal imaging
Procedia PDF Downloads 75841 Peptide-Gold Nanocluster as an Optical Biosensor for Glycoconjugate Secreted from Leishmania
Authors: Y. A. Prada, Fanny Guzman, Rafael Cabanzo, John J. Castillo, Enrique Mejia-Ospino
Abstract:
In this work, we show the important results about of synthesis of photoluminiscents gold nanoclusters using a small peptide as template for biosensing applications. Interestingly, we design one peptide (NBC2854) homologue to conservative domain from 215 250 residue of a galactolectin protein which can recognize the proteophosphoglycans (PPG) from Leishmania. Peptide was synthetized by multiple solid phase synthesis using FMoc group methodology in acid medium. Finally, the peptide was purified by High-Performance Liquid Chromatography using a Vydac C-18 preparative column and the detection was at 215 nm using a Photo Diode Array detector. Molecular mass of this peptide was confirmed by MALDI-TOF and to verify the α-helix structure we use Circular Dichroism. By means of the methodology used we obtained a novel fluorescents gold nanoclusters (AuNC) using NBC2854 as a template. In this work, we described an easy and fast microsonic method for the synthesis of AuNC with ≈ 3.0 nm of hydrodynamic size and photoemission at 630 nm. The presence of cysteine residue in the C-terminal of the peptide allows the formation of Au-S bond which confers stability to Peptide-based gold nanoclusters. Interactions between the peptide and gold nanoclusters were confirmed by X-ray Photoemission and Raman Spectroscopy. Notably, from the ultrafine spectra shown in the MALDI-TOF analysis which containing only 3-7 KDa species was assigned to Au₈-₁₈[NBC2854]₂ clusters. Finally, we evaluated the Peptide-gold nanocluster as an optical biosensor based on fluorescence spectroscopy and the fluorescence signal of PPG (0.1 µg-mL⁻¹ to 1000 µg-mL⁻¹) was amplified at the same wavelength emission (≈ 630 nm). This can suggest that there is a strong interaction between PPG and Pep@AuNC, therefore, the increase of the fluorescence intensity can be related to the association mechanism that take place when the target molecule is sensing by the Pep@AuNC conjugate. Further spectroscopic studies are necessary to evaluate the fluorescence mechanism involve in the sensing of the PPG by the Pep@AuNC. To our best knowledge the fabrication of an optical biosensor based on Pep@AuNC for sensing biomolecules such as Proteophosphoglycans which are secreted in abundance by parasites Leishmania.Keywords: biosensing, fluorescence, Leishmania, peptide-gold nanoclusters, proteophosphoglycans
Procedia PDF Downloads 169840 Study and Calibration of Autonomous UAV Systems With Thermal Sensing With Multi-purpose Roles
Authors: Raahil Sheikh, Prathamesh Minde, Priya Gujjar, Himanshu Dwivedi, Abhishek Maurya
Abstract:
UAVs have been an initial member of our environment since it's the first used by Austrian warfare in Venice. At that stage, they were just pilotless balloons equipped with bombs to be dropped on enemy territory. Over time, technological advancements allowed UAVs to be controlled remotely or autonomously. This study shall mainly focus on the intensification of pre-existing manual drones equipping them with a variety of sensors and making them autonomous, and capable, and purposing them for a variety of roles, including thermal sensing, data collection, tracking creatures, forest fires, volcano detection, hydrothermal studies, urban heat, Island measurement, and other environmental research. The system can also be used for reconnaissance, research, 3D mapping, and search and rescue missions. This study mainly focuses on automating tedious tasks and reducing human errors as much as possible, reducing deployment time, and increasing the overall efficiency, efficacy, and reliability of the UAVs. Creation of a comprehensive Ground Control System UI (GCS) enabling less trained professionals to be able to use the UAV with maximum potency. With the inclusion of such an autonomous system, artificially intelligent paths and environmental gusts and concerns can be avoidedKeywords: UAV, autonomous systems, drones, geo thermal imaging
Procedia PDF Downloads 85839 Role of Geomatics in Architectural and Cultural Conservation
Authors: Shweta Lall
Abstract:
The intent of this paper is to demonstrate the role of computerized auxiliary science in advancing the desired and necessary alliance of historians, surveyors, topographers, and analysts of architectural conservation and management. The digital era practice of recording architectural and cultural heritage in view of its preservation, dissemination, and planning developments are discussed in this paper. Geomatics include practices like remote sensing, photogrammetry, surveying, Geographic Information System (GIS), laser scanning technology, etc. These all resources help in architectural and conservation applications which will be identified through various case studies analysed in this paper. The standardised outcomes and the methodologies using relevant case studies are listed and described. The main component of geomatics methodology adapted in conservation is data acquisition, processing, and presentation. Geomatics is used in a wide range of activities involved in architectural and cultural heritage – damage and risk assessment analysis, documentation, 3-D model construction, virtual reconstruction, spatial and structural decision – making analysis and monitoring. This paper will project the summary answers of the capabilities and limitations of the geomatics field in architectural and cultural conservation. Policy-makers, urban planners, architects, and conservationist not only need answers to these questions but also need to practice them in a predictable, transparent, spatially explicit and inexpensive manner.Keywords: architectural and cultural conservation, geomatics, GIS, remote sensing
Procedia PDF Downloads 146838 A Development of Portable Intrinsically Safe Explosion-Proof Type of Dual Gas Detector
Authors: Sangguk Ahn, Youngyu Kim, Jaheon Gu, Gyoutae Park
Abstract:
In this paper, we developed a dual gas leak instrument to detect Hydrocarbon (HC) and Monoxide (CO) gases. To two kinds of gases, it is necessary to design compact structure for sensors. And then it is important to draw sensing circuits such as measuring, amplifying and filtering. After that, it should be well programmed with robust, systematic and module coding methods. In center of them, improvement of accuracy and initial response time are a matter of vital importance. To manufacture distinguished gas leak detector, we applied intrinsically safe explosion-proof structure to lithium ion battery, main circuits, a pump with motor, color LCD interfaces and sensing circuits. On software, to enhance measuring accuracy we used numerical analysis such as Lagrange and Neville interpolation. Performance test result is conducted by using standard Methane with seven different concentrations with three other products. We want raise risk prevention and efficiency of gas safe management through distributing to the field of gas safety. Acknowledgment: This study was supported by Small and Medium Business Administration under the research theme of ‘Commercialized Development of a portable intrinsically safe explosion-proof type dual gas leak detector’, (task number S2456036).Keywords: gas leak, dual gas detector, intrinsically safe, explosion proof
Procedia PDF Downloads 228837 Web and Smart Phone-based Platform Combining Artificial Intelligence and Satellite Remote Sensing Data to Geoenable Villages for Crop Health Monitoring
Authors: Siddhartha Khare, Nitish Kr Boro, Omm Animesh Mishra
Abstract:
Recent food price hikes may signal the end of an era of predictable global grain crop plenty due to climate change, population expansion, and dietary changes. Food consumption will treble in 20 years, requiring enormous production expenditures. Climate and the atmosphere changed owing to rainfall and seasonal cycles in the past decade. India's tropical agricultural relies on evapotranspiration and monsoons. In places with limited resources, the global environmental change affects agricultural productivity and farmers' capacity to adjust to changing moisture patterns. Motivated by these difficulties, satellite remote sensing might be combined with near-surface imaging data (smartphones, UAVs, and PhenoCams) to enable phenological monitoring and fast evaluations of field-level consequences of extreme weather events on smallholder agriculture output. To accomplish this technique, we must digitally map all communities agricultural boundaries and crop kinds. With the improvement of satellite remote sensing technologies, a geo-referenced database may be created for rural Indian agriculture fields. Using AI, we can design digital agricultural solutions for individual farms. Main objective is to Geo-enable each farm along with their seasonal crop information by combining Artificial Intelligence (AI) with satellite and near-surface data and then prepare long term crop monitoring through in-depth field analysis and scanning of fields with satellite derived vegetation indices. We developed an AI based algorithm to understand the timelapse based growth of vegetation using PhenoCam or Smartphone based images. We developed an android platform where user can collect images of their fields based on the android application. These images will be sent to our local server, and then further AI based processing will be done at our server. We are creating digital boundaries of individual farms and connecting these farms with our smart phone application to collect information about farmers and their crops in each season. We are extracting satellite-based information for each farm from Google earth engine APIs and merging this data with our data of tested crops from our app according to their farm’s locations and create a database which will provide the data of quality of crops from their location.Keywords: artificial intelligence, satellite remote sensing, crop monitoring, android and web application
Procedia PDF Downloads 100836 Extraction of Road Edge Lines from High-Resolution Remote Sensing Images Based on Energy Function and Snake Model
Authors: Zuoji Huang, Haiming Qian, Chunlin Wang, Jinyan Sun, Nan Xu
Abstract:
In this paper, the strategy to extract double road edge lines from acquired road stripe image was explored. The workflow is as follows: the road stripes are acquired by probabilistic boosting tree algorithm and morphological algorithm immediately, and road centerlines are detected by thinning algorithm, so the initial road edge lines can be acquired along the road centerlines. Then we refine the results with big variation of local curvature of centerlines. Specifically, the energy function of edge line is constructed by gradient feature and spectral information, and Dijkstra algorithm is used to optimize the initial road edge lines. The Snake model is constructed to solve the fracture problem of intersection, and the discrete dynamic programming algorithm is used to solve the model. After that, we could get the final road network. Experiment results show that the strategy proposed in this paper can be used to extract the continuous and smooth road edge lines from high-resolution remote sensing images with an accuracy of 88% in our study area.Keywords: road edge lines extraction, energy function, intersection fracture, Snake model
Procedia PDF Downloads 338835 Prediction of Embankment Fires at Railway Infrastructure Using Machine Learning, Geospatial Data and VIIRS Remote Sensing Imagery
Authors: Jan-Peter Mund, Christian Kind
Abstract:
In view of the ongoing climate change and global warming, fires along railways in Germany are occurring more frequently, with sometimes massive consequences for railway operations and affected railroad infrastructure. In the absence of systematic studies within the infrastructure network of German Rail, little is known about the causes of such embankment fires. Since a further increase in these hazards is to be expected in the near future, there is a need for a sound knowledge of triggers and drivers for embankment fires as well as methodical knowledge of prediction tools. Two predictable future trends speak for the increasing relevance of the topic: through the intensification of the use of rail for passenger and freight transport (e.g..: doubling of annual passenger numbers by 2030, compared to 2019), there will be more rail traffic and also more maintenance and construction work on the railways. This research project approach uses satellite data to identify historical embankment fires along rail network infrastructure. The team links data from these fires with infrastructure and weather data and trains a machine-learning model with the aim of predicting fire hazards on sections of the track. Companies reflect on the results and use them on a pilot basis in precautionary measures.Keywords: embankment fires, railway maintenance, machine learning, remote sensing, VIIRS data
Procedia PDF Downloads 89834 Assessment of Spectral Indices for Soil Salinity Estimation in Irrigated Land
Authors: R. Lhissou , A. El Harti , K. Chokmani, E. Bachaoui, A. El Ghmari
Abstract:
Soil salinity is a serious environmental hazard in many countries around the world especially the arid and semi-arid countries like Morocco. Salinization causes negative effects on the ground; it affects agricultural production, infrastructure, water resources and biodiversity. Remote sensing can provide soil salinity information for large areas, and in a relatively short time. In addition, remote sensing is not limited by extremes in terrain or hazardous condition. Contrariwise, experimental methods for monitoring soil salinity by direct measurements in situ are very demanding of time and resources, and also very limited in spatial coverage. In the irrigated perimeter of Tadla plain in central Morocco, the increased use of saline groundwater and surface water, coupled with agricultural intensification leads to the deterioration of soil quality especially by salinization. In this study, we assessed several spectral indices of soil salinity cited in the literature using Landsat TM satellite images and field measurements of electrical conductivity (EC). Three Landsat TM satellite images were taken during 3 months in the dry season (September, October and November 2011). Based on field measurement data of EC collected in three field campaigns over the three dates simultaneously with acquisition dates of Landsat TM satellite images, a two assessment techniques are used to validate a soil salinity spectral indices. Firstly, the spectral indices are validated locally by pixel. The second validation technique is made using a window of size 3x3 pixels. The results of the study indicated that the second technique provides getting a more accurate validation and the assessment has shown its limits when it comes to assess across the pixel. In addition, the EC values measured from field have a good correlation with some spectral indices derived from Landsat TM data and the best results show an r² of 0.88, 0.79 and 0.65 for Salinity Index (SI) in the three dates respectively. The results have shown the usefulness of spectral indices as an auxiliary variable in the spatial estimation and mapping salinity in irrigated land.Keywords: remote sensing, spectral indices, soil salinity, irrigated land
Procedia PDF Downloads 391833 Comparison between Simulation and Experimentally Observed Interactions between Two Different Sized Magnetic Beads in a Fluidic System
Authors: Olayinka Oduwole, Steve Sheard
Abstract:
The magnetic separation of biological cells using super-magnetic beads has been used widely for various bioassays. These bioassays can further be integrated with other laboratory components to form a biosensor which can be used for cell sorting, mixing, purification, transport, manipulation etc. These bio-sensing applications have also been facilitated by the wide availability of magnetic beads which range in size and magnetic properties produced by different manufacturers. In order to improve the efficiency and separation capabilities of these biosensors, it is important to determine the magnetic force induced velocities and interaction of beads within the magnetic field; this will help biosensor users choose the desired magnetic bead for their specific application. This study presents for the first time the interaction between a pair of different sized super-paramagnetic beads suspended in a static fluid moving within a uniform magnetic field using a modified finite-time-finite-difference scheme. A captured video was used to record the trajectory pattern and a good agreement was obtained between the simulated trajectories and the video data. The model is, therefore, a good approximation for predicting the velocities as well as the interaction between various magnetic particles which differ in size and magnetic properties for bio-sensing applications requiring a low concentration of magnetic beads.Keywords: biosensor, magnetic field, magnetic separation, super-paramagnetic bead
Procedia PDF Downloads 473832 Household Climate-Resilience Index Development for the Health Sector in Tanzania: Use of Demographic and Health Surveys Data Linked with Remote Sensing
Authors: Heribert R. Kaijage, Samuel N. A. Codjoe, Simon H. D. Mamuya, Mangi J. Ezekiel
Abstract:
There is strong evidence that climate has changed significantly affecting various sectors including public health. The recommended feasible solution is adopting development trajectories which combine both mitigation and adaptation measures for improving resilience pathways. This approach demands a consideration for complex interactions between climate and social-ecological systems. While other sectors such as agriculture and water have developed climate resilience indices, the public health sector in Tanzania is still lagging behind. The aim of this study was to find out how can we use Demographic and Health Surveys (DHS) linked with Remote Sensing (RS) technology and metrological information as tools to inform climate change resilient development and evaluation for the health sector. Methodological review was conducted whereby a number of studies were content analyzed to find appropriate indicators and indices for climate resilience household and their integration approach. These indicators were critically reviewed, listed, filtered and their sources determined. Preliminary identification and ranking of indicators were conducted using participatory approach of pairwise weighting by selected national stakeholders from meeting/conferences on human health and climate change sciences in Tanzania. DHS datasets were retrieved from Measure Evaluation project, processed and critically analyzed for possible climate change indicators. Other sources for indicators of climate change exposure were also identified. For the purpose of preliminary reporting, operationalization of selected indicators was discussed to produce methodological approach to be used in resilience comparative analysis study. It was found that household climate resilient index depends on the combination of three indices namely Household Adaptive and Mitigation Capacity (HC), Household Health Sensitivity (HHS) and Household Exposure Status (HES). It was also found that, DHS alone cannot complement resilient evaluation unless integrated with other data sources notably flooding data as a measure of vulnerability, remote sensing image of Normalized Vegetation Index (NDVI) and Metrological data (deviation from rainfall pattern). It can be concluded that if these indices retrieved from DHS data sets are computed and scientifically integrated can produce single climate resilience index and resilience maps could be generated at different spatial and time scales to enhance targeted interventions for climate resilient development and evaluations. However, further studies are need to test for the sensitivity of index in resilience comparative analysis among selected regions.Keywords: climate change, resilience, remote sensing, demographic and health surveys
Procedia PDF Downloads 165831 Colour Segmentation of Satellite Imagery to Estimate Total Suspended Solid at Rawa Pening Lake, Central Java, Indonesia
Authors: Yulia Chalri, E. T. P. Lussiana, Sarifuddin Madenda, Bambang Trisakti, Yuhilza Hanum
Abstract:
Water is a natural resource needed by humans and other living creatures. The territorial water of Indonesia is 81% of the country area, consisting of inland waters and the sea. The research object is inland waters in the form of lakes and reservoirs, since 90% of inland waters are in them, therefore the water quality should be monitored. One of water quality parameters is Total Suspended Solid (TSS). Most of the earlier research did direct measurement by taking the water sample to get TSS values. This method takes a long time and needs special tools, resulting in significant cost. Remote sensing technology has solved a lot of problems, such as the mapping of watershed and sedimentation, monitoring disaster area, mapping coastline change, and weather analysis. The aim of this research is to estimate TSS of Rawa Pening lake in Central Java by using the Lansat 8 image. The result shows that the proposed method successfully estimates the Rawa Pening’s TSS. In situ TSS shows normal water quality range, and so does estimation result of segmentation method.Keywords: total suspended solid (TSS), remote sensing, image segmentation, RGB value
Procedia PDF Downloads 412830 Streamflow Modeling Using the PyTOPKAPI Model with Remotely Sensed Rainfall Data: A Case Study of Gilgel Ghibe Catchment, Ethiopia
Authors: Zeinu Ahmed Rabba, Derek D Stretch
Abstract:
Remote sensing contributes valuable information to streamflow estimates. Usually, stream flow is directly measured through ground-based hydrological monitoring station. However, in many developing countries like Ethiopia, ground-based hydrological monitoring networks are either sparse or nonexistent, which limits the manage water resources and hampers early flood-warning systems. In such cases, satellite remote sensing is an alternative means to acquire such information. This paper discusses the application of remotely sensed rainfall data for streamflow modeling in Gilgel Ghibe basin in Ethiopia. Ten years (2001-2010) of two satellite-based precipitation products (SBPP), TRMM and WaterBase, were used. These products were combined with the PyTOPKAPI hydrological model to generate daily stream flows. The results were compared with streamflow observations at Gilgel Ghibe Nr, Assendabo gauging station using four statistical tools (Bias, R², NS and RMSE). The statistical analysis indicates that the bias-adjusted SBPPs agree well with gauged rainfall compared to bias-unadjusted ones. The SBPPs with no bias-adjustment tend to overestimate (high Bias and high RMSE) the extreme precipitation events and the corresponding simulated streamflow outputs, particularly during wet months (June-September) and underestimate the streamflow prediction over few dry months (January and February). This shows that bias-adjustment can be important for improving the performance of the SBPPs in streamflow forecasting. We further conclude that the general streamflow patterns were well captured at daily time scales when using SBPPs after bias adjustment. However, the overall results demonstrate that the simulated streamflow using the gauged rainfall is superior to those obtained from remotely sensed rainfall products including bias-adjusted ones.Keywords: Ethiopia, PyTOPKAPI model, remote sensing, streamflow, Tropical Rainfall Measuring Mission (TRMM), waterBase
Procedia PDF Downloads 284829 Smart Material for Bacterial Detection Based on Polydiacetylene/Polyvinyl Butyrate Fiber Composites
Authors: Pablo Vidal, Misael Martinez, Carlos Hernandez, Ananta R. Adhikari, Luis Materon, Yuanbing Mao, Karen Lozano
Abstract:
Conjugated polymers are smart materials that show tremendous practical applications in diverse subjects. Polydiacetylenes are conjugated polymers with special optical properties. In response to the environmental changes such as pH and molecular binding, it changes its color. Such an interesting chromic and emissive behavior of polydiacetylenes make them a highly popular polymer in wide areas, including biomedicine such as a biosensor. In this research, we used polyvinyl butyrate as a matrix to fibrillate polydiacetylenes. We initially prepared polyvinyl butyrate/diacetylene matrix using forcespinning technique. They were then polymerized to form polyvinyl butyrate/polydiacetylene (PVB/PDA). These matrices then studied for their bio-sensing response to gram-positive and gram-negative bacteria. The sensing ability of the PVB/PDA biosensor was observed as early as 30 min in the presence of bacteria at 37°C. Now our effort is to decrease this effective temperature to room temperature to make this device applicable in the general daily life. These chromic biosensors will find extensive application not only alert the infection but also find other promising applications such as wearable sensors and diagnostic systems.Keywords: smart material, conjugated polymers, biosensor, polyvinyl butyrate/polydiacetylene
Procedia PDF Downloads 128828 The MHz Frequency Range EM Induction Device Development and Experimental Study for Low Conductive Objects Detection
Authors: D. Kakulia, L. Shoshiashvili, G. Sapharishvili
Abstract:
The results of the study are related to the direction of plastic mine detection research using electromagnetic induction, the development of appropriate equipment, and the evaluation of expected results. Electromagnetic induction sensing is effectively used in the detection of metal objects in the soil and in the discrimination of unexploded ordnances. Metal objects interact well with a low-frequency alternating magnetic field. Their electromagnetic response can be detected at the low-frequency range even when they are placed in the ground. Detection of plastic things such as plastic mines by electromagnetic induction is associated with difficulties. The interaction of non-conducting bodies or low-conductive objects with a low-frequency alternating magnetic field is very weak. At the high-frequency range where already wave processes take place, the interaction increases. Interactions with other distant objects also increase. A complex interference picture is formed, and extraction of useful information also meets difficulties. Sensing by electromagnetic induction at the intermediate MHz frequency range is the subject of research. The concept of detecting plastic mines in this range can be based on the study of the electromagnetic response of non-conductive cavity in a low-conductivity environment or the detection of small metal components in plastic mines, taking into account constructive features. The detector node based on the amplitude and phase detector 'Analog Devices ad8302' has been developed for experimental studies. The node has two inputs. At one of the inputs, the node receives a sinusoidal signal from the generator, to which a transmitting coil is also connected. The receiver coil is attached to the second input of the node. The additional circuit provides an option to amplify the signal output from the receiver coil by 20 dB. The node has two outputs. The voltages obtained at the output reflect the ratio of the amplitudes and the phase difference of the input harmonic signals. Experimental measurements were performed in different positions of the transmitter and receiver coils at the frequency range 1-20 MHz. Arbitrary/Function Generator Tektronix AFG3052C and the eight-channel high-resolution oscilloscope PICOSCOPE 4824 were used in the experiments. Experimental measurements were also performed with a low-conductive test object. The results of the measurements and comparative analysis show the capabilities of the simple detector node and the prospects for its further development in this direction. The results of the experimental measurements are compared and analyzed with the results of appropriate computer modeling based on the method of auxiliary sources (MAS). The experimental measurements are driven using the MATLAB environment. Acknowledgment -This work was supported by Shota Rustaveli National Science Foundation (SRNSF) (Grant number: NFR 17_523).Keywords: EM induction sensing, detector, plastic mines, remote sensing
Procedia PDF Downloads 149827 UV-Enhanced Room-Temperature Gas-Sensing Properties of ZnO-SnO2 Nanocomposites Obtained by Hydrothermal Treatment
Authors: Luís F. da Silva, Ariadne C. Catto, Osmando F. Lopes, Khalifa Aguir, Valmor R. Mastelaro, Caue Ribeiro, Elson Longo
Abstract:
Gas detection is important for controlling industrial, and vehicle emissions, agricultural residues, and environmental control. In last decades, several semiconducting oxides have been used to detect dangerous or toxic gases. The excellent gas-sensing performance of these devices have been observed at high temperatures (~250 °C), which forbids the use for the detection of flammable and explosive gases. In this way, ultraviolet light activated gas sensors have been a simple and promising alternative to achieve room temperature sensitivity. Among the semiconductor oxides which exhibit a good performance as gas sensor, the zinc oxide (ZnO) and tin oxide (SnO2) have been highlighted. Nevertheless, their poor selectivity is the main disadvantage for application as gas sensor devices. Recently, heterostructures combining these two semiconductors (ZnO-SnO2) have been studied as an alternative way to enhance the gas sensor performance (sensitivity, selectivity, and stability). In this work, we investigated the influence of mass ratio Zn:Sn on the properties of ZnO-SnO2 nanocomposites prepared by hydrothermal treatment for 4 hours at 200 °C. The crystalline phase, surface, and morphological features were characterized by X-ray diffraction (XRD), high-resolution transmission electron (HR-TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The gas sensor measurements were carried out at room-temperature under ultraviolet (UV) light irradiation using different ozone levels (0.06 to 0.61 ppm). The XRD measurements indicate the presence of ZnO and SnO2 crystalline phases, without the evidence of solid solution formation. HR-TEM analysis revealed that a good contact between the SnO2 nanoparticles and the ZnO nanorods, which are very important since interface characteristics between nanostructures are considered as challenge to development new and efficient heterostructures. Electrical measurements proved that the best ozone gas-sensing performance is obtained for ZnO:SnO2 (50:50) nanocomposite under UV light irradiation. Its sensitivity was around 6 times higher when compared to SnO2 pure, a traditional ozone gas sensor. These results demonstrate the potential of ZnO-SnO2 heterojunctions for the detection of ozone gas at room-temperature when irradiated with UV light irradiation.Keywords: hydrothermal, zno-sno2, ozone sensor, uv-activation, room-temperature
Procedia PDF Downloads 284826 Comparing Remote Sensing and in Situ Analyses of Test Wheat Plants as Means for Optimizing Data Collection in Precision Agriculture
Authors: Endalkachew Abebe Kebede, Bojin Bojinov, Andon Vasilev Andonov, Orhan Dengiz
Abstract:
Remote sensing has a potential application in assessing and monitoring the plants' biophysical properties using the spectral responses of plants and soils within the electromagnetic spectrum. However, only a few reports compare the performance of different remote sensing sensors against in-situ field spectral measurement. The current study assessed the potential applications of open data source satellite images (Sentinel 2 and Landsat 9) in estimating the biophysical properties of the wheat crop on a study farm found in the village of OvchaMogila. A Landsat 9 (30 m resolution) and Sentinel-2 (10 m resolution) satellite images with less than 10% cloud cover have been extracted from the open data sources for the period of December 2021 to April 2022. An Unmanned Aerial Vehicle (UAV) has been used to capture the spectral response of plant leaves. In addition, SpectraVue 710s Leaf Spectrometer was used to measure the spectral response of the crop in April at five different locations within the same field. The ten most common vegetation indices have been selected and calculated based on the reflectance wavelength range of remote sensing tools used. The soil samples have been collected in eight different locations within the farm plot. The different physicochemical properties of the soil (pH, texture, N, P₂O₅, and K₂O) have been analyzed in the laboratory. The finer resolution images from the UAV and the Leaf Spectrometer have been used to validate the satellite images. The performance of different sensors has been compared based on the measured leaf spectral response and the extracted vegetation indices using the five sampling points. A scatter plot with the coefficient of determination (R2) and Root Mean Square Error (RMSE) and the correlation (r) matrix prepared using the corr and heatmap python libraries have been used for comparing the performance of Sentinel 2 and Landsat 9 VIs compared to the drone and SpectraVue 710s spectrophotometer. The soil analysis revealed the study farm plot is slightly alkaline (8.4 to 8.52). The soil texture of the study farm is dominantly Clay and Clay Loam.The vegetation indices (VIs) increased linearly with the growth of the plant. Both the scatter plot and the correlation matrix showed that Sentinel 2 vegetation indices have a relatively better correlation with the vegetation indices of the Buteo dronecompared to the Landsat 9. The Landsat 9 vegetation indices somewhat align better with the leaf spectrometer. Generally, the Sentinel 2 showed a better performance than the Landsat 9. Further study with enough field spectral sampling and repeated UAV imaging is required to improve the quality of the current study.Keywords: landsat 9, leaf spectrometer, sentinel 2, UAV
Procedia PDF Downloads 107825 Solid Waste Disposal Site Selection in Thiruvananthapuram Corporation Area by Data Analysis Using GIS and Remote Sensing Tools
Authors: C. Asha Poorna, P. G. Vinod, A. R. R. Menon
Abstract:
Currently increasing population and their activities like urbanization and industrialization generating the greatest environmental, issue called Waste. And the major problem in waste management is selection of an appropriate site for waste disposal. The selection of suitable site have constrains like environmental, economical and political considerations. In this paper we discuss the strategies to be followed while selecting a site for decentralized system for solid waste disposal, using Geographic Information System (GIS), the Analytical Hierarchy Process (AHP) and the remote sensing method for Thiruvananthapuram corporation area. It is located on the west coast of India near the extreme south of the mainland. It lies on the shores of Killiyar and Karamana River. Being on the basin the waste managements must be regulated with the water body. The different criteria considered for waste disposal site selection are lithology, surface water, aquifer, groundwater, land use, contours, aspect, elevation, slope, and distance to road, distance from settlement are examined in relation to land fill site selection. Each criterion was identified and weighted by AHP score and mapped using GIS technique and suitable map is prepared by overlay analysis.Keywords: waste disposal, solid waste management, Geographic Information System (GIS), Analytical Hierarchy Process (AHP)
Procedia PDF Downloads 397