Search results for: non-dominated sorting genetic algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4902

Search results for: non-dominated sorting genetic algorithm

4602 Molecular Analysis of Somaclonal Variation in Tissue Culture Derived Bananas Using MSAP and SSR Marker

Authors: Emma K. Sales, Nilda G. Butardo

Abstract:

The project was undertaken to determine the effects of modified tissue culture protocols e.g. age of culture and hormone levels (2,4-D) in generating somaclonal variation. Moreover, the utility of molecular markers (SSR and MSAP) in sorting off types/somaclones were investigated. Results show that somaclonal variation is in effect due to prolonged subculture and high 2,4-D concentration. The resultant variation was observed to be due to high level of methylation events specifically cytosine methylation either at the internal or external cytosine and was identified by methylation sensitive amplification polymorphism (MSAP). Simple sequence repeats (SSR) on the other hand, was able to associate a marker to a trait of interest. These therefore, show that molecular markers can be an important tool in sorting out variation/mutants at an early stage.

Keywords: methylation, MSAP, somaclones, SSR, subculture, 2, 4-D

Procedia PDF Downloads 301
4601 Morpho-Genetic Assessment of Guava (Psidium guajava L.) Genetic Resources in Pakistan

Authors: Asim Mehmood, Abdul Karim, Muhammad J. Jaskani, Faisal S. Awan, Muhammad W. Sajid

Abstract:

Guava (Psidium guajava L.) is an important commercial fruit crop of Pakistan. It is an allogamous crop having 25-40% cross pollination which on the one hand leads to clonal degradation and on the other hand can add variations to generated new cultivars. Morpho-genetic characterization of 37 guava accessions was carried out for study of the genetic diversity among guava accessions located in province Punjab, Pakistan. For morphological analysis, 17 morphological traits were studied, and strong positive correlation was found among the 7 morphological traits which included thickness of outer flesh in relation to core diameter, fruit length, fruit width, fruit juiciness, fruit size, fruit sweetness and number of seeds. For genetic characterization, 18 microsatellites were used, and the sizes of reproducible and scorable bands ranged from 150 to 320 bp. These 18 primer pairs amplified a total of 85 alleles in P. guajava, with an average total number of 4.7 alleles per locus and no more than two displayed bands (nuclear SSR loci). The phylogenetic tree based on the morphological and genetic traits showed the diversity of these 37 guava genotypes into two major groups. These results indicated that Pakistani guava is quite diverse and a more detail study is needed to define the level of genetic variability.

Keywords: Psidium guajava L, genetic diversity, SSR markers, polymorphism, dendrogram

Procedia PDF Downloads 208
4600 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms

Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager

Abstract:

This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.

Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties

Procedia PDF Downloads 54
4599 Handshake Algorithm for Minimum Spanning Tree Construction

Authors: Nassiri Khalid, El Hibaoui Abdelaaziz et Hajar Moha

Abstract:

In this paper, we introduce and analyse a probabilistic distributed algorithm for a construction of a minimum spanning tree on network. This algorithm is based on the handshake concept. Firstly, each network node is considered as a sub-spanning tree. And at each round of the execution of our algorithm, a sub-spanning trees are merged. The execution continues until all sub-spanning trees are merged into one. We analyze this algorithm by a stochastic process.

Keywords: Spanning tree, Distributed Algorithm, Handshake Algorithm, Matching, Probabilistic Analysis

Procedia PDF Downloads 659
4598 Application of Hybrid Honey Bees Mating Optimization Algorithm in Multiuser Detection of Wireless Communication Systems

Authors: N. Larbi, F. Debbat

Abstract:

Wireless communication systems have changed dramatically and shown spectacular evolution over the past two decades. These radio technologies are engaged in a quest endless high-speed transmission coupled to a constant need to improve transmission quality. Various radio communication systems being developed use code division multiple access (CDMA) technique. This work analyses a hybrid honey bees mating optimization algorithm (HBMO) applied to multiuser detection (MuD) in CDMA communication systems. The HBMO is a swarm-based optimization algorithm, which simulates the mating process of real honey bees. We apply a hybridization of HBMO with simulated annealing (SA) in order to improve the solution generated by the HBMO. Simulation results show that the detection based on Hybrid HBMO, in term of bit error rate (BER), is viable option when compared with the classic detectors from literature under Rayleigh flat fading channel.

Keywords: BER, DS-CDMA multiuser detection, genetic algorithm, hybrid HBMO, simulated annealing

Procedia PDF Downloads 435
4597 Digestion Optimization Algorithm: A Novel Bio-Inspired Intelligence for Global Optimization Problems

Authors: Akintayo E. Akinsunmade

Abstract:

The digestion optimization algorithm is a novel biological-inspired metaheuristic method for solving complex optimization problems. The algorithm development was inspired by studying the human digestive system. The algorithm mimics the process of food ingestion, breakdown, absorption, and elimination to effectively and efficiently search for optimal solutions. This algorithm was tested for optimal solutions on seven different types of optimization benchmark functions. The algorithm produced optimal solutions with standard errors, which were compared with the exact solution of the test functions.

Keywords: bio-inspired algorithm, benchmark optimization functions, digestive system in human, algorithm development

Procedia PDF Downloads 13
4596 Reverse Logistics End of Life Products Acquisition and Sorting

Authors: Badli Shah Mohd Yusoff, Khairur Rijal Jamaludin, Rozetta Dollah

Abstract:

The emerging of reverse logistics and product recovery management is an important concept in reconciling economic and environmental objectives through recapturing values of the end of life product returns. End of life products contains valuable modules, parts, residues and materials that can create value if recovered efficiently. The main objective of this study is to explore and develop a model to recover as much of the economic value as reasonably possible to find the optimality of return acquisition and sorting to meet demand and maximize profits over time. In this study, the benefits that can be obtained for remanufacturer is to develop demand forecasting of used products in the future with uncertainty of returns and quality of products. Formulated based on a generic disassembly tree, the proposed model focused on three reverse logistics activity, namely refurbish, remanufacture and disposal incorporating all plausible means quality levels of the returns. While stricter sorting policy, constitute to the decrease amount of products to be refurbished or remanufactured and increases the level of discarded products. Numerical experiments carried out to investigate the characteristics and behaviour of the proposed model with mathematical programming model using Lingo 16.0 for medium-term planning of return acquisition, disassembly (refurbish or remanufacture) and disposal activities. Moreover, the model seeks an analysis a number of decisions relating to trade off management system to maximize revenue from the collection of use products reverse logistics services through refurbish and remanufacture recovery options. The results showed that full utilization in the sorting process leads the system to obtain less quantity from acquisition with minimal overall cost. Further, sensitivity analysis provides a range of possible scenarios to consider in optimizing the overall cost of refurbished and remanufactured products.

Keywords: core acquisition, end of life, reverse logistics, quality uncertainty

Procedia PDF Downloads 303
4595 Effect of an Interface Defect in a Patch/Layer Joint under Dynamic Time Harmonic Load

Authors: Elisaveta Kirilova, Wilfried Becker, Jordanka Ivanova, Tatyana Petrova

Abstract:

The study is a continuation of the research on the hygrothermal piezoelectric response of a smart patch/layer joint with undesirable interface defect (gap) at dynamic time harmonic mechanical and electrical load and environmental conditions. In order to find the axial displacements, shear stress and interface debond length in a closed analytical form for different positions of the interface gap, the 1D modified shear lag analysis is used. The debond length is represented as a function of many parameters (frequency, magnitude, electric displacement, moisture and temperature, joint geometry, position of the gap along the interface, etc.). Then the Genetic algorithm (GA) is implemented to find this position of the gap along the interface at which a vanishing/minimal debond length is ensured, e.g to find the most harmless position for the safe work of the structure. The illustrative example clearly shows that analytical shear-lag solutions and GA method can be combined successfully to give an effective prognosis of interface shear stress and interface delamination in patch/layer structure at combined loading with existing defects. To show the effect of the position of the interface gap, all obtained results are given in figures and discussed.

Keywords: genetic algorithm, minimal delamination, optimal gap position, shear lag solution

Procedia PDF Downloads 302
4594 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network

Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin

Abstract:

In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network. The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters. Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output. This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc. From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.

Keywords: project profitability, multi-objective optimization, genetic algorithm, Pareto set, neural networks

Procedia PDF Downloads 445
4593 An Improved Data Aided Channel Estimation Technique Using Genetic Algorithm for Massive Multi-Input Multiple-Output

Authors: M. Kislu Noman, Syed Mohammed Shamsul Islam, Shahriar Hassan, Raihana Pervin

Abstract:

With the increasing rate of wireless devices and high bandwidth operations, wireless networking and communications are becoming over crowded. To cope with such crowdy and messy situation, massive MIMO is designed to work with hundreds of low costs serving antennas at a time as well as improve the spectral efficiency at the same time. TDD has been used for gaining beamforming which is a major part of massive MIMO, to gain its best improvement to transmit and receive pilot sequences. All the benefits are only possible if the channel state information or channel estimation is gained properly. The common methods to estimate channel matrix used so far is LS, MMSE and a linear version of MMSE also proposed in many research works. We have optimized these methods using genetic algorithm to minimize the mean squared error and finding the best channel matrix from existing algorithms with less computational complexity. Our simulation result has shown that the use of GA worked beautifully on existing algorithms in a Rayleigh slow fading channel and existence of Additive White Gaussian Noise. We found that the GA optimized LS is better than existing algorithms as GA provides optimal result in some few iterations in terms of MSE with respect to SNR and computational complexity.

Keywords: channel estimation, LMMSE, LS, MIMO, MMSE

Procedia PDF Downloads 191
4592 Non-Destructive Static Damage Detection of Structures Using Genetic Algorithm

Authors: Amir Abbas Fatemi, Zahra Tabrizian, Kabir Sadeghi

Abstract:

To find the location and severity of damage that occurs in a structure, characteristics changes in dynamic and static can be used. The non-destructive techniques are more common, economic, and reliable to detect the global or local damages in structures. This paper presents a non-destructive method in structural damage detection and assessment using GA and static data. Thus, a set of static forces is applied to some of degrees of freedom and the static responses (displacements) are measured at another set of DOFs. An analytical model of the truss structure is developed based on the available specification and the properties derived from static data. The damages in structure produce changes to its stiffness so this method used to determine damage based on change in the structural stiffness parameter. Changes in the static response which structural damage caused choose to produce some simultaneous equations. Genetic Algorithms are powerful tools for solving large optimization problems. Optimization is considered to minimize objective function involve difference between the static load vector of damaged and healthy structure. Several scenarios defined for damage detection (single scenario and multiple scenarios). The static damage identification methods have many advantages, but some difficulties still exist. So it is important to achieve the best damage identification and if the best result is obtained it means that the method is Reliable. This strategy is applied to a plane truss. This method is used for a plane truss. Numerical results demonstrate the ability of this method in detecting damage in given structures. Also figures show damage detections in multiple damage scenarios have really efficient answer. Even existence of noise in the measurements doesn’t reduce the accuracy of damage detections method in these structures.

Keywords: damage detection, finite element method, static data, non-destructive, genetic algorithm

Procedia PDF Downloads 237
4591 A Comparison of South East Asian Face Emotion Classification based on Optimized Ellipse Data Using Clustering Technique

Authors: M. Karthigayan, M. Rizon, Sazali Yaacob, R. Nagarajan, M. Muthukumaran, Thinaharan Ramachandran, Sargunam Thirugnanam

Abstract:

In this paper, using a set of irregular and regular ellipse fitting equations using Genetic algorithm (GA) are applied to the lip and eye features to classify the human emotions. Two South East Asian (SEA) faces are considered in this work for the emotion classification. There are six emotions and one neutral are considered as the output. Each subject shows unique characteristic of the lip and eye features for various emotions. GA is adopted to optimize irregular ellipse characteristics of the lip and eye features in each emotion. That is, the top portion of lip configuration is a part of one ellipse and the bottom of different ellipse. Two ellipse based fitness equations are proposed for the lip configuration and relevant parameters that define the emotions are listed. The GA method has achieved reasonably successful classification of emotion. In some emotions classification, optimized data values of one emotion are messed or overlapped to other emotion ranges. In order to overcome the overlapping problem between the emotion optimized values and at the same time to improve the classification, a fuzzy clustering method (FCM) of approach has been implemented to offer better classification. The GA-FCM approach offers a reasonably good classification within the ranges of clusters and it had been proven by applying to two SEA subjects and have improved the classification rate.

Keywords: ellipse fitness function, genetic algorithm, emotion recognition, fuzzy clustering

Procedia PDF Downloads 546
4590 Optimal Location of Unified Power Flow Controller (UPFC) for Transient Stability: Improvement Using Genetic Algorithm (GA)

Authors: Basheer Idrees Balarabe, Aminu Hamisu Kura, Nabila Shehu

Abstract:

As the power demand rapidly increases, the generation and transmission systems are affected because of inadequate resources, environmental restrictions and other losses. The role of transient stability control in maintaining the steady-state operation in the occurrence of large disturbance and fault is to describe the ability of the power system to survive serious contingency in time. The application of a Unified power flow controller (UPFC) plays a vital role in controlling the active and reactive power flows in a transmission line. In this research, a genetic algorithm (GA) method is applied to determine the optimal location of the UPFC device in a power system network for the enhancement of the power-system Transient Stability. Optimal location of UPFC has Significantly Improved the transient stability, the damping oscillation and reduced the peak over shoot. The GA optimization Technique proposed was iteratively searches the optimal location of UPFC and maintains the unusual bus voltages within the satisfy limits. The result indicated that transient stability is improved and achieved the faster steady state. Simulations were performed on the IEEE 14 Bus test systems using the MATLAB/Simulink platform.

Keywords: UPFC, transient stability, GA, IEEE, MATLAB and SIMULINK

Procedia PDF Downloads 14
4589 Arbitrarily Shaped Blur Kernel Estimation for Single Image Blind Deblurring

Authors: Aftab Khan, Ashfaq Khan

Abstract:

The research paper focuses on an interesting challenge faced in Blind Image Deblurring (BID). It relates to the estimation of arbitrarily shaped or non-parametric Point Spread Functions (PSFs) of motion blur caused by camera handshake. These PSFs exhibit much more complex shapes than their parametric counterparts and deblurring in this case requires intricate ways to estimate the blur and effectively remove it. This research work introduces a novel blind deblurring scheme visualized for deblurring images corrupted by arbitrarily shaped PSFs. It is based on Genetic Algorithm (GA) and utilises the Blind/Reference-less Image Spatial QUality Evaluator (BRISQUE) measure as the fitness function for arbitrarily shaped PSF estimation. The proposed BID scheme has been compared with other single image motion deblurring schemes as benchmark. Validation has been carried out on various blurred images. Results of both benchmark and real images are presented. Non-reference image quality measures were used to quantify the deblurring results. For benchmark images, the proposed BID scheme using BRISQUE converges in close vicinity of the original blurring functions.

Keywords: blind deconvolution, blind image deblurring, genetic algorithm, image restoration, image quality measures

Procedia PDF Downloads 443
4588 Non-Invasive Pre-Implantation Genetic Assessment Using NGS in IVF Clinical Routine

Authors: Katalin Gombos, Bence Gálik, Krisztina Ildikó Kalács, Krisztina Gödöny, Ákos Várnagy, József Bódis, Attila Gyenesei, Gábor L. Kovács

Abstract:

Although non-invasive pre-implantation genetic testing for aneuploidy (NIPGT-A) is potentially appropriate to assess chromosomal ploidy of the embryo, practical application of it in a routine IVF center has not been started in the absence of a recommendation. We developed a comprehensive workflow for a clinically applicable strategy for NIPGT-A based on next-generation sequencing (NGS) technology. We performed MALBAC whole genome amplification and NGS on spent blastocyst culture media of Day 3 embryos fertilized with intra-cytoplasmic sperm injection (ICSI). Spent embryonic culture media of morphologically good quality score embryos were enrolled in further analysis with the blank culture media as background control. Chromosomal abnormalities were identified by an optimized bioinformatics pipeline applying a copy number variation (CNV) detecting algorithm. We demonstrate a comprehensive workflow covering both wet- and dry-lab procedures supporting a clinically applicable strategy for NIPGT-A. It can be carried out within 48 h which is critical for the same-cycle blastocyst transfer, but also suitable for “freeze all” and “elective frozen embryo” strategies. The described integrated approach of non-invasive evaluation of embryonic DNA content of the culture media can potentially supplement existing pre-implantation genetic screening methods.

Keywords: next generation sequencing, in vitro fertilization, embryo assessment, non-invasive pre-implantation genetic testing

Procedia PDF Downloads 156
4587 Genetic Structure of Four Bovine Populations in the Philippines Using Microsatellites

Authors: Peter James C. Icalia, Agapita J. Salces, Loida Valenzuela, Kangseok Seo, Geronima Ludan

Abstract:

This study evaluated polymorphism of 11 microsatellite markers in four local genetic groups of cattle. Batanes cattle which has never been studied using microsatellites is evaluated for its genetic distance from the Ilocos cattle while Brahman and Holstein-Sahiwal are also included as there were insemination programs by the government using these two breeds. PCR products that were genotyped for each marker were analyzed using POPGENEv32. Results showed that 55% (Fst=0.5501) of the genetic variation is due to the differences between populations while the remaining 45% is due to individual variation. The Fst value also indicates that there were very great differences from population to population using the range proposed by Sewall and Wright. The constructed phylogenetic tree based on Nei’s genetic distance using the modified neighboor joining procedure of PHYLIPv3.5 showed the admixture of Brahman and Holstein-Sahiwal having them grouped in the same clade. Batanes and Ilocos cattle were grouped in a different cluster showing that they have descended from a single parental population. This would presumably address the claim that Batanes and Ilocos cattle are genetically distant from other groups and still exist despite the artificial insemination program of the government using Brahman and other imported breeds. The knowledge about the genetic structure of this population supports the development of conservation programs for the smallholder farmers.

Keywords: microsatellites, cattle, Philippines, populations, genetic structure

Procedia PDF Downloads 515
4586 Non-Destructive Evaluation for Physical State Monitoring of an Angle Section Thin-Walled Curved Beam

Authors: Palash Dey, Sudip Talukdar

Abstract:

In this work, a cross-breed approach is presented for obtaining both the amount of the damage intensity and location of damage existing in thin-walled members. This cross-breed approach is developed based on response surface methodology (RSM) and genetic algorithm (GA). Theoretical finite element (FE) model of cracked angle section thin walled curved beam has been linked to the developed approach to carry out trial experiments to generate response surface functions (RSFs) of free, forced and heterogeneous dynamic response data. Subsequently, the error between the computed response surface functions and measured dynamic response data has been minimized using GA to find out the optimum damage parameters (amount of the damage intensity and location). A single crack of varying location and depth has been considered in this study. The presented approach has been found to reveal good accuracy in prediction of crack parameters and possess great potential in crack detection as it requires only the current response of a cracked beam.

Keywords: damage parameters, finite element, genetic algorithm, response surface methodology, thin walled curved beam

Procedia PDF Downloads 248
4585 Measuring Fluctuating Asymmetry in Human Faces Using High-Density 3D Surface Scans

Authors: O. Ekrami, P. Claes, S. Van Dongen

Abstract:

Fluctuating asymmetry (FA) has been studied for many years as an indicator of developmental stability or ‘genetic quality’ based on the assumption that perfect symmetry is ideally the expected outcome for a bilateral organism. Further studies have also investigated the possible link between FA and attractiveness or levels of masculinity or femininity. These hypotheses have been mostly examined using 2D images, and the structure of interest is usually presented using a limited number of landmarks. Such methods have the downside of simplifying and reducing the dimensionality of the structure, which will in return increase the error of the analysis. In an attempt to reach more conclusive and accurate results, in this study we have used high-resolution 3D scans of human faces and have developed an algorithm to measure and localize FA, taking a spatially-dense approach. A symmetric spatially dense anthropometric mask with paired vertices is non-rigidly mapped on target faces using an Iterative Closest Point (ICP) registration algorithm. A set of 19 manually indicated landmarks were used to examine the precision of our mapping step. The protocol’s accuracy in measurement and localizing FA is assessed using simulated faces with known amounts of asymmetry added to them. The results of validation of our approach show that the algorithm is perfectly capable of locating and measuring FA in 3D simulated faces. With the use of such algorithm, the additional captured information on asymmetry can be used to improve the studies of FA as an indicator of fitness or attractiveness. This algorithm can especially be of great benefit in studies of high number of subjects due to its automated and time-efficient nature. Additionally, taking a spatially dense approach provides us with information about the locality of FA, which is impossible to obtain using conventional methods. It also enables us to analyze the asymmetry of a morphological structures in a multivariate manner; This can be achieved by using methods such as Principal Components Analysis (PCA) or Factor Analysis, which can be a step towards understanding the underlying processes of asymmetry. This method can also be used in combination with genome wide association studies to help unravel the genetic bases of FA. To conclude, we introduced an algorithm to study and analyze asymmetry in human faces, with the possibility of extending the application to other morphological structures, in an automated, accurate and multi-variate framework.

Keywords: developmental stability, fluctuating asymmetry, morphometrics, 3D image processing

Procedia PDF Downloads 141
4584 Frequent Pattern Mining for Digenic Human Traits

Authors: Atsuko Okazaki, Jurg Ott

Abstract:

Some genetic diseases (‘digenic traits’) are due to the interaction between two DNA variants. For example, certain forms of Retinitis Pigmentosa (a genetic form of blindness) occur in the presence of two mutant variants, one in the ROM1 gene and one in the RDS gene, while the occurrence of only one of these mutant variants leads to a completely normal phenotype. Detecting such digenic traits by genetic methods is difficult. A common approach to finding disease-causing variants is to compare 100,000s of variants between individuals with a trait (cases) and those without the trait (controls). Such genome-wide association studies (GWASs) have been very successful but hinge on genetic effects of single variants, that is, there should be a difference in allele or genotype frequencies between cases and controls at a disease-causing variant. Frequent pattern mining (FPM) methods offer an avenue at detecting digenic traits even in the absence of single-variant effects. The idea is to enumerate pairs of genotypes (genotype patterns) with each of the two genotypes originating from different variants that may be located at very different genomic positions. What is needed is for genotype patterns to be significantly more common in cases than in controls. Let Y = 2 refer to cases and Y = 1 to controls, with X denoting a specific genotype pattern. We are seeking association rules, ‘X → Y’, with high confidence, P(Y = 2|X), significantly higher than the proportion of cases, P(Y = 2) in the study. Clearly, generally available FPM methods are very suitable for detecting disease-associated genotype patterns. We use fpgrowth as the basic FPM algorithm and built a framework around it to enumerate high-frequency digenic genotype patterns and to evaluate their statistical significance by permutation analysis. Application to a published dataset on opioid dependence furnished results that could not be found with classical GWAS methodology. There were 143 cases and 153 healthy controls, each genotyped for 82 variants in eight genes of the opioid system. The aim was to find out whether any of these variants were disease-associated. The single-variant analysis did not lead to significant results. Application of our FPM implementation resulted in one significant (p < 0.01) genotype pattern with both genotypes in the pattern being heterozygous and originating from two variants on different chromosomes. This pattern occurred in 14 cases and none of the controls. Thus, the pattern seems quite specific to this form of substance abuse and is also rather predictive of disease. An algorithm called Multifactor Dimension Reduction (MDR) was developed some 20 years ago and has been in use in human genetics ever since. This and our algorithms share some similar properties, but they are also very different in other respects. The main difference seems to be that our algorithm focuses on patterns of genotypes while the main object of inference in MDR is the 3 × 3 table of genotypes at two variants.

Keywords: digenic traits, DNA variants, epistasis, statistical genetics

Procedia PDF Downloads 122
4583 Genetic Diversity and Variation of Nigerian Pigeon (Columba livia domestica) Populations Based on the Mitochondrial Coi Gene

Authors: Foluke E. Sola-Ojo, Ibraheem A. Abubakar, Semiu F. Bello, Isiaka H. Fatima, Sule Bisola, Adesina M. Olusegun, Adeniyi C. Adeola

Abstract:

The domesticated pigeon, Columba livia domestica, has many valuable characteristics, including high nutritional value and fast growth rate. There is a lack of information on its genetic diversity in Nigeria; thus, the genetic variability in mitochondrial cytochrome oxidase subunit I (COI) sequences of 150 domestic pigeons from four different locations was examined. Three haplotypes (HT) were identified in Nigerian populations; the most common haplotype, HT1, was shared with wild and domestic pigeons from Europe, America, and Asia, while HT2 and HT3 were unique to Nigeria. The overall haplotype diversity was 0.052± 0.025, and nucleotide diversity was 0.026± 0.068 across the four investigated populations. The phylogenetic tree showed significant clustering and genetic relationship of Nigerian domestic pigeons with other global pigeons. The median-joining network showed a star-like pattern suggesting population expansion. AMOVA results indicated that genetic variations in Nigerian pigeons mainly occurred within populations (99.93%), while the Neutrality tests results suggested that the Nigerian domestic pigeons’ population experienced recent expansion. This study showed a low genetic diversity and population differentiation among Nigerian domestic pigeons consistent with a relatively conservative COI sequence with few polymorphic sites. Furthermore, the COI gene could serve as a candidate molecular marker to investigate the genetic diversity and origin of pigeon species. The current data is insufficient for further conclusions; therefore, more research evidence from multiple molecular markers is required.

Keywords: Nigeria pigeon, COI, genetic diversity, genetic variation, conservation

Procedia PDF Downloads 197
4582 Application of Molecular Markers for Crop Improvement

Authors: Monisha Isaac

Abstract:

Use of molecular markers for selecting plants with desired traits has been started long back. Due to their heritable characteristics, they are useful for identification and characterization of specific genotypes. The study involves various types of molecular markers used to select multiple desired characters in plants, their properties, and advantages to improve crop productivity in adverse climatological conditions for the purpose of providing food security to fast-growing global population. The study shows that genetic similarities obtained from molecular markers provide more accurate information and the genetic diversity can be better estimated from the genetic relationship obtained from the dendrogram. The information obtained from markers assisted characterization is more suitable for the crops of economic importance like sugarcane.

Keywords: molecular markers, crop productivity, genetic diversity, genotype

Procedia PDF Downloads 518
4581 Genomic Adaptation to Local Climate Conditions in Native Cattle Using Whole Genome Sequencing Data

Authors: Rugang Tian

Abstract:

In this study, we generated whole-genome sequence (WGS) data from110 native cattle. Together with whole-genome sequences from world-wide cattle populations, we estimated the genetic diversity and population genetic structure of different cattle populations. Our findings revealed clustering of cattle groups in line with their geographic locations. We identified noticeable genetic diversity between indigenous cattle breeds and commercial populations. Among all studied cattle groups, lower genetic diversity measures were found in commercial populations, however, high genetic diversity were detected in some local cattle, particularly in Rashoki and Mongolian breeds. Our search for potential genomic regions under selection in native cattle revealed several candidate genes related with immune response and cold shock protein on multiple chromosomes such as TRPM8, NMUR1, PRKAA2, SMTNL2 and OXR1 that are involved in energy metabolism and metabolic homeostasis.

Keywords: cattle, whole-genome, population structure, adaptation

Procedia PDF Downloads 74
4580 Improving the Performance of Back-Propagation Training Algorithm by Using ANN

Authors: Vishnu Pratap Singh Kirar

Abstract:

Artificial Neural Network (ANN) can be trained using backpropagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a two-term algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.

Keywords: neural network, backpropagation, local minima, fast convergence rate

Procedia PDF Downloads 498
4579 Genetics, Law and Society: Regulating New Genetic Technologies

Authors: Aisling De Paor

Abstract:

Scientific and technological developments are driving genetics and genetic technologies into the public sphere. Scientists are making genetic discoveries as to the make up of the human body and the cause and effect of disease, diversity and disability amongst individuals. Technological innovation in the field of genetics is also advancing, with the development of genetic testing, and other emerging genetic technologies, including gene editing (which offers the potential for genetic modification). In addition to the benefits for medicine, health care and humanity, these genetic advances raise a range of ethical, legal and societal concerns. From an ethical perspective, such advances may, for example, change the concept of humans and what it means to be human. Science may take over in conceptualising human beings, which may push the boundaries of existing human rights. New genetic technologies, particularly gene editing techniques create the potential to stigmatise disability, by highlighting disability or genetic difference as something that should be eliminated or anticipated. From a disability perspective, use (and misuse) of genetic technologies raise concerns about discrimination and violations to the dignity and integrity of the individual. With an acknowledgement of the likely future orientation of genetic science, and in consideration of the intersection of genetics and disability, this paper highlights the main concerns raised as genetic science and technology advances (particularly with gene editing developments), and the consequences for disability and human rights. Through the use of traditional doctrinal legal methodologies, it investigates the use (and potential misuse) of gene editing as creating the potential for a unique form of discrimination and stigmatization to develop, as well as a potential gateway to a form of new, subtle eugenics. This article highlights the need to maintain caution as to the use, application and the consequences of genetic technologies. With a focus on the law and policy position in Europe, it examines the need to control and regulate these new technologies, particularly gene editing. In addition to considering the need for regulation, this paper highlights non-normative approaches to address this area, including awareness raising and education, public discussion and engagement with key stakeholders in the field and the development of a multifaceted genetics advisory network.

Keywords: disability, gene-editing, genetics, law, regulation

Procedia PDF Downloads 360
4578 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery

Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene

Abstract:

Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.

Keywords: multi-objective, analysis, data flow, freight delivery, methodology

Procedia PDF Downloads 180
4577 Tabu Random Algorithm for Guiding Mobile Robots

Authors: Kevin Worrall, Euan McGookin

Abstract:

The use of optimization algorithms is common across a large number of diverse fields. This work presents the use of a hybrid optimization algorithm applied to a mobile robot tasked with carrying out a search of an unknown environment. The algorithm is then applied to the multiple robots case, which results in a reduction in the time taken to carry out the search. The hybrid algorithm is a Random Search Algorithm fused with a Tabu mechanism. The work shows that the algorithm locates the desired points in a quicker time than a brute force search. The Tabu Random algorithm is shown to work within a simulated environment using a validated mathematical model. The simulation was run using three different environments with varying numbers of targets. As an algorithm, the Tabu Random is small, clear and can be implemented with minimal resources. The power of the algorithm is the speed at which it locates points of interest and the robustness to the number of robots involved. The number of robots can vary with no changes to the algorithm resulting in a flexible algorithm.

Keywords: algorithms, control, multi-agent, search and rescue

Procedia PDF Downloads 239
4576 Genomic Diversity of Clostridium perfringens Strains in Food and Human Sources

Authors: Asma Afshari, Abdollah Jamshidi, Jamshid Razmyar, Mehrnaz Rad

Abstract:

Clostridium perfringens is a serious pathogen which causes enteric diseases in domestic animals and food poisoning in humans. Spores can survive cooking processes and play an important role in the possible onset of disease. In this study RAPD-PCR and REP-PCR were used to examine the genetic diversity of 49isolates ofC. Perfringens type A from 3 different sources. The results of RAPD-PCR revealed the most genetic diversity among poultry isolates, while human isolates showed the least genetic diversity. Cluster analysis obtained from RAPD_PCR and based on the genetic distances split the 49 strains into five distinct major clusters (A, B, C, D, and E). Cluster A and C were composed of isolates from poultry meat, cluster B was composed of isolates from human feces, cluster D was composed of isolates from minced meat, poultry meat and human feces and cluster E was composed of isolates from minced meat. Further characterization of these strains by using (GTG) 5 fingerprint repetitive sequence-based PCR analysis did not show further differentiation between various types of strains. To our knowledge, this is the first study in which the genetic diversity of C. perfringens isolates from different types of meats and human feces has been investigated.

Keywords: C. perfringens, genetic diversity, RAPD-PCR, REP-PCR

Procedia PDF Downloads 493
4575 Optimizing Emergency Rescue Center Layouts: A Backpropagation Neural Networks-Genetic Algorithms Method

Authors: Xiyang Li, Qi Yu, Lun Zhang

Abstract:

In the face of natural disasters and other emergency situations, determining the optimal location of rescue centers is crucial for improving rescue efficiency and minimizing impact on affected populations. This paper proposes a method that integrates genetic algorithms (GA) and backpropagation neural networks (BPNN) to address the site selection optimization problem for emergency rescue centers. We utilize BPNN to accurately estimate the cost of delivering supplies from rescue centers to each temporary camp. Moreover, a genetic algorithm with a special partially matched crossover (PMX) strategy is employed to ensure that the number of temporary camps assigned to each rescue center adheres to predetermined limits. Using the population distribution data during the 2022 epidemic in Jiading District, Shanghai, as an experimental case, this paper verifies the effectiveness of the proposed method. The experimental results demonstrate that the BPNN-GA method proposed in this study outperforms existing algorithms in terms of computational efficiency and optimization performance. Especially considering the requirements for computational resources and response time in emergency situations, the proposed method shows its ability to achieve rapid convergence and optimal performance in the early and mid-stages. Future research could explore incorporating more real-world conditions and variables into the model to further improve its accuracy and applicability.

Keywords: emergency rescue centers, genetic algorithms, back-propagation neural networks, site selection optimization

Procedia PDF Downloads 86
4574 M-Machine Assembly Scheduling Problem to Minimize Total Tardiness with Non-Zero Setup Times

Authors: Harun Aydilek, Asiye Aydilek, Ali Allahverdi

Abstract:

Our objective is to minimize the total tardiness in an m-machine two-stage assembly flowshop scheduling problem. The objective is an important performance measure because of the fact that the fulfillment of due dates of customers has to be taken into account while making scheduling decisions. In the literature, the problem is considered with zero setup times which may not be realistic and appropriate for some scheduling environments. Considering separate setup times from processing times increases machine utilization by decreasing the idle time and reduces total tardiness. We propose two new algorithms and adapt four existing algorithms in the literature which are different versions of simulated annealing and genetic algorithms. Moreover, a dominance relation is developed based on the mathematical formulation of the problem. The developed dominance relation is incorporated in our proposed algorithms. Computational experiments are conducted to investigate the performance of the newly proposed algorithms. We find that one of the proposed algorithms performs significantly better than the others, i.e., the error of the best algorithm is less than those of the other algorithms by minimum 50%. The newly proposed algorithm is also efficient for the case of zero setup times and performs better than the best existing algorithm in the literature.

Keywords: algorithm, assembly flowshop, scheduling, simulation, total tardiness

Procedia PDF Downloads 330
4573 Optimisation of Structural Design by Integrating Genetic Algorithms in the Building Information Modelling Environment

Authors: Tofigh Hamidavi, Sepehr Abrishami, Pasquale Ponterosso, David Begg

Abstract:

Structural design and analysis is an important and time-consuming process, particularly at the conceptual design stage. Decisions made at this stage can have an enormous effect on the entire project, as it becomes ever costlier and more difficult to alter the choices made early on in the construction process. Hence, optimisation of the early stages of structural design can provide important efficiencies in terms of cost and time. This paper suggests a structural design optimisation (SDO) framework in which Genetic Algorithms (GAs) may be used to semi-automate the production and optimisation of early structural design alternatives. This framework has the potential to leverage conceptual structural design innovation in Architecture, Engineering and Construction (AEC) projects. Moreover, this framework improves the collaboration between the architectural stage and the structural stage. It will be shown that this SDO framework can make this achievable by generating the structural model based on the extracted data from the architectural model. At the moment, the proposed SDO framework is in the process of validation, involving the distribution of an online questionnaire among structural engineers in the UK.

Keywords: building information, modelling, BIM, genetic algorithm, GA, architecture-engineering-construction, AEC, optimisation, structure, design, population, generation, selection, mutation, crossover, offspring

Procedia PDF Downloads 242