Search results for: meteorological prediction data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25577

Search results for: meteorological prediction data

25277 A Prediction Method for Large-Size Event Occurrences in the Sandpile Model

Authors: S. Channgam, A. Sae-Tang, T. Termsaithong

Abstract:

In this research, the occurrences of large size events in various system sizes of the Bak-Tang-Wiesenfeld sandpile model are considered. The system sizes (square lattice) of model considered here are 25×25, 50×50, 75×75 and 100×100. The cross-correlation between the ratio of sites containing 3 grain time series and the large size event time series for these 4 system sizes are also analyzed. Moreover, a prediction method of the large-size event for the 50×50 system size is also introduced. Lastly, it can be shown that this prediction method provides a slightly higher efficiency than random predictions.

Keywords: Bak-Tang-Wiesenfeld sandpile model, cross-correlation, avalanches, prediction method

Procedia PDF Downloads 361
25276 Assessment of Modern RANS Models for the C3X Vane Film Cooling Prediction

Authors: Mikhail Gritskevich, Sebastian Hohenstein

Abstract:

The paper presents the results of a detailed assessment of several modern Reynolds Averaged Navier-Stokes (RANS) turbulence models for prediction of C3X vane film cooling at various injection regimes. Three models are considered, namely the Shear Stress Transport (SST) model, the modification of the SST model accounting for the streamlines curvature (SST-CC), and the Explicit Algebraic Reynolds Stress Model (EARSM). It is shown that all the considered models face with a problem in prediction of the adiabatic effectiveness in the vicinity of the cooling holes; however, accounting for the Reynolds stress anisotropy within the EARSM model noticeably increases the solution accuracy. On the other hand, further downstream all the models provide a reasonable agreement with the experimental data for the adiabatic effectiveness and among the considered models the most accurate results are obtained with the use EARMS.

Keywords: discrete holes film cooling, Reynolds Averaged Navier-Stokes (RANS), Reynolds stress tensor anisotropy, turbulent heat transfer

Procedia PDF Downloads 407
25275 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue

Authors: Rachel Y. Zhang, Christopher K. Anderson

Abstract:

A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.

Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine

Procedia PDF Downloads 115
25274 Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS

Authors: A. Daftari, W. Kudla

Abstract:

Liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid cyclic loading. Liquefaction and related phenomena have been responsible for huge amounts of damage in historical earthquakes around the world. Modelling of soil behaviour is the main step in soil liquefaction prediction process. Nowadays, several constitutive models for sand have been presented. Nevertheless, only some of them can satisfy this mechanism. One of the most useful models in this term is UBCSAND model. In this research, the capability of this model is considered by using PLAXIS software. The real data of superstition hills earthquake 1987 in the Imperial Valley was used. The results of the simulation have shown resembling trend of the UBC3D-PLM model.

Keywords: liquefaction, plaxis, pore-water pressure, UBC3D-PLM

Procedia PDF Downloads 295
25273 Prediction of Dubai Financial Market Stocks Movement Using K-Nearest Neighbor and Support Vector Regression

Authors: Abdulla D. Alblooshi

Abstract:

The stock market is a representation of human behavior and psychology, such as fear, greed, and discipline. Those are manifested in the form of price movements during the trading sessions. Therefore, predicting the stock movement and prices is a challenging effort. However, those trading sessions produce a large amount of data that can be utilized to train an AI agent for the purpose of predicting the stock movement. Predicting the stock market price action will be advantageous. In this paper, the stock movement data of three DFM listed stocks are studied using historical price movements and technical indicators value and used to train an agent using KNN and SVM methods to predict the future price movement. MATLAB Toolbox and a simple script is written to process and classify the information and output the prediction. It will also compare the different learning methods and parameters s using metrics like RMSE, MAE, and R².

Keywords: KNN, ANN, style, SVM, stocks, technical indicators, RSI, MACD, moving averages, RMSE, MAE

Procedia PDF Downloads 152
25272 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models

Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti

Abstract:

In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.

Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics

Procedia PDF Downloads 29
25271 Resale Housing Development Board Price Prediction Considering Covid-19 through Sentiment Analysis

Authors: Srinaath Anbu Durai, Wang Zhaoxia

Abstract:

Twitter sentiment has been used as a predictor to predict price values or trends in both the stock market and housing market. The pioneering works in this stream of research drew upon works in behavioural economics to show that sentiment or emotions impact economic decisions. Latest works in this stream focus on the algorithm used as opposed to the data used. A literature review of works in this stream through the lens of data used shows that there is a paucity of work that considers the impact of sentiments caused due to an external factor on either the stock or the housing market. This is despite an abundance of works in behavioural economics that show that sentiment or emotions caused due to an external factor impact economic decisions. To address this gap, this research studies the impact of Twitter sentiment pertaining to the Covid-19 pandemic on resale Housing Development Board (HDB) apartment prices in Singapore. It leverages SNSCRAPE to collect tweets pertaining to Covid-19 for sentiment analysis, lexicon based tools VADER and TextBlob are used for sentiment analysis, Granger Causality is used to examine the relationship between Covid-19 cases and the sentiment score, and neural networks are leveraged as prediction models. Twitter sentiment pertaining to Covid-19 as a predictor of HDB price in Singapore is studied in comparison with the traditional predictors of housing prices i.e., the structural and neighbourhood characteristics. The results indicate that using Twitter sentiment pertaining to Covid19 leads to better prediction than using only the traditional predictors and performs better as a predictor compared to two of the traditional predictors. Hence, Twitter sentiment pertaining to an external factor should be considered as important as traditional predictors. This paper demonstrates the real world economic applications of sentiment analysis of Twitter data.

Keywords: sentiment analysis, Covid-19, housing price prediction, tweets, social media, Singapore HDB, behavioral economics, neural networks

Procedia PDF Downloads 91
25270 A Wall Law for Two-Phase Turbulent Boundary Layers

Authors: Dhahri Maher, Aouinet Hana

Abstract:

The presence of bubbles in the boundary layer introduces corrections into the log law, which must be taken into account. In this work, a logarithmic wall law was presented for bubbly two phase flows. The wall law presented in this work was based on the postulation of additional turbulent viscosity associated with bubble wakes in the boundary layer. The presented wall law contained empirical constant accounting both for shear induced turbulence interaction and for non-linearity of bubble. This constant was deduced from experimental data. The wall friction prediction achieved with the wall law was compared to the experimental data, in the case of a turbulent boundary layer developing on a vertical flat plate in the presence of millimetric bubbles. A very good agreement between experimental and numerical wall friction prediction was verified. The agreement was especially noticeable for the low void fraction when bubble induced turbulence plays a significant role.

Keywords: bubbly flows, log law, boundary layer, CFD

Procedia PDF Downloads 263
25269 Selecting the Best RBF Neural Network Using PSO Algorithm for ECG Signal Prediction

Authors: Najmeh Mohsenifar, Narjes Mohsenifar, Abbas Kargar

Abstract:

In this paper, has been presented a stable method for predicting the ECG signals through the RBF neural networks, by the PSO algorithm. In spite of quasi-periodic ECG signal from a healthy person, there are distortions in electro cardiographic data for a patient. Therefore, there is no precise mathematical model for prediction. Here, we have exploited neural networks that are capable of complicated nonlinear mapping. Although the architecture and spread of RBF networks are usually selected through trial and error, the PSO algorithm has been used for choosing the best neural network. In this way, 2 second of a recorded ECG signal is employed to predict duration of 20 second in advance. Our simulations show that PSO algorithm can find the RBF neural network with minimum MSE and the accuracy of the predicted ECG signal is 97 %.

Keywords: electrocardiogram, RBF artificial neural network, PSO algorithm, predict, accuracy

Procedia PDF Downloads 608
25268 Epilepsy Seizure Prediction by Effective Connectivity Estimation Using Granger Causality and Directed Transfer Function Analysis of Multi-Channel Electroencephalogram

Authors: Mona Hejazi, Ali Motie Nasrabadi

Abstract:

Epilepsy is a persistent neurological disorder that affects more than 50 million people worldwide. Hence, there is a necessity to introduce an efficient prediction model for making a correct diagnosis of the epileptic seizure and accurate prediction of its type. In this study we consider how the Effective Connectivity (EC) patterns obtained from intracranial Electroencephalographic (EEG) recordings reveal information about the dynamics of the epileptic brain and can be used to predict imminent seizures, as this will enable the patients (and caregivers) to take appropriate precautions. We use this definition because we believe that effective connectivity near seizures begin to change, so we can predict seizures according to this feature. Results are reported on the standard Freiburg EEG dataset which contains data from 21 patients suffering from medically intractable focal epilepsy. Six channels of EEG from each patients are considered and effective connectivity using Directed Transfer Function (DTF) and Granger Causality (GC) methods is estimated. We concentrate on effective connectivity standard deviation over time and feature changes in five brain frequency sub-bands (Alpha, Beta, Theta, Delta, and Gamma) are compared. The performance obtained for the proposed scheme in predicting seizures is: average prediction time is 50 minutes before seizure onset, the maximum sensitivity is approximate ~80% and the false positive rate is 0.33 FP/h. DTF method is more acceptable to predict epileptic seizures and generally we can observe that the greater results are in gamma and beta sub-bands. The research of this paper is significantly helpful for clinical applications, especially for the exploitation of online portable devices.

Keywords: effective connectivity, Granger causality, directed transfer function, epilepsy seizure prediction, EEG

Procedia PDF Downloads 445
25267 Geospatial Analysis of Hydrological Response to Forest Fires in Small Mediterranean Catchments

Authors: Bojana Horvat, Barbara Karleusa, Goran Volf, Nevenka Ozanic, Ivica Kisic

Abstract:

Forest fire is a major threat in many regions in Croatia, especially in coastal areas. Although they are often caused by natural processes, the most common cause is the human factor, intentional or unintentional. Forest fires drastically transform landscapes and influence natural processes. The main goal of the presented research is to analyse and quantify the impact of the forest fire on hydrological processes and propose the model that best describes changes in hydrological patterns in the analysed catchments. Keeping in mind the spatial component of the processes, geospatial analysis is performed to gain better insight into the spatial variability of the hydrological response to disastrous events. In that respect, two catchments that experienced severe forest fire were delineated, and various hydrological and meteorological data were collected both attribute and spatial. The major drawback is certainly the lack of hydrological data, common in small torrential karstic streams; hence modelling results should be validated with the data collected in the catchment that has similar characteristics and established hydrological monitoring. The event chosen for the modelling is the forest fire that occurred in July 2019 and burned nearly 10% of the analysed area. Surface (land use/land cover) conditions before and after the event were derived from the two Sentinel-2 images. The mapping of the burnt area is based on a comparison of the Normalized Burn Index (NBR) computed from both images. To estimate and compare hydrological behaviour before and after the event, curve number (CN) values are assigned to the land use/land cover classes derived from the satellite images. Hydrological modelling resulted in surface runoff generation and hence prediction of hydrological responses in the catchments to a forest fire event. The research was supported by the Croatian Science Foundation through the project 'Influence of Open Fires on Water and Soil Quality' (IP-2018-01-1645).

Keywords: Croatia, forest fire, geospatial analysis, hydrological response

Procedia PDF Downloads 118
25266 Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran

Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh

Abstract:

Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R2) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran.

Keywords: time series modelling, ARIMA model, river runoff, Karkheh River, CLS method

Procedia PDF Downloads 323
25265 Customer Acquisition through Time-Aware Marketing Campaign Analysis in Banking Industry

Authors: Harneet Walia, Morteza Zihayat

Abstract:

Customer acquisition has become one of the critical issues of any business in the 21st century; having a healthy customer base is the essential asset of the bank business. Term deposits act as a major source of cheap funds for the banks to invest and benefit from interest rate arbitrage. To attract customers, the marketing campaigns at most financial institutions consist of multiple outbound telephonic calls with more than one contact to a customer which is a very time-consuming process. Therefore, customized direct marketing has become more critical than ever for attracting new clients. As customer acquisition is becoming more difficult to archive, having an intelligent and redefined list is necessary to sell a product smartly. Our aim of this research is to increase the effectiveness of campaigns by predicting customers who will most likely subscribe to the fixed deposit and suggest the most suitable month to reach out to customers. We design a Time Aware Upsell Prediction Framework (TAUPF) using two different approaches, with an aim to find the best approach and technique to build the prediction model. TAUPF is implemented using Upsell Prediction Approach (UPA) and Clustered Upsell Prediction Approach (CUPA). We also address the data imbalance problem by examining and comparing different methods of sampling (Up-sampling and down-sampling). Our results have shown building such a model is quite feasible and profitable for the financial institutions. The Time Aware Upsell Prediction Framework (TAUPF) can be easily used in any industry such as telecom, automobile, tourism, etc. where the TAUPF (Clustered Upsell Prediction Approach (CUPA) or Upsell Prediction Approach (UPA)) holds valid. In our case, CUPA books more reliable. As proven in our research, one of the most important challenges is to define measures which have enough predictive power as the subscription to a fixed deposit depends on highly ambiguous situations and cannot be easily isolated. While we have shown the practicality of time-aware upsell prediction model where financial institutions can benefit from contacting the customers at the specified month, further research needs to be done to understand the specific time of the day. In addition, a further empirical/pilot study on real live customer needs to be conducted to prove the effectiveness of the model in the real world.

Keywords: customer acquisition, predictive analysis, targeted marketing, time-aware analysis

Procedia PDF Downloads 105
25264 Effect of Traffic Volume and Its Composition on Vehicular Speed under Mixed Traffic Conditions: A Kriging Based Approach

Authors: Subhadip Biswas, Shivendra Maurya, Satish Chandra, Indrajit Ghosh

Abstract:

Use of speed prediction models sometimes appears as a feasible alternative to laborious field measurement particularly, in case when field data cannot fulfill designer’s requirements. However, developing speed models is a challenging task specifically in the context of developing countries like India where vehicles with diverse static and dynamic characteristics use the same right of way without any segregation. Here the traffic composition plays a significant role in determining the vehicular speed. The present research was carried out to examine the effects of traffic volume and its composition on vehicular speed under mixed traffic conditions. Classified traffic volume and speed data were collected from different geometrically identical six lane divided arterials in New Delhi. Based on these field data, speed prediction models were developed for individual vehicle category adopting Kriging approximation technique, an alternative for commonly used regression. These models are validated with the data set kept aside earlier for validation purpose. The predicted speeds showed a great deal of agreement with the observed values and also the model outperforms all other existing speed models. Finally, the proposed models were utilized to evaluate the effect of traffic volume and its composition on speed.

Keywords: speed, Kriging, arterial, traffic volume

Procedia PDF Downloads 338
25263 Privacy Policy Prediction for Uploaded Image on Content Sharing Sites

Authors: Pallavi Mane, Nikita Mankar, Shraddha Mazire, Rasika Pashankar

Abstract:

Content sharing sites are very useful in sharing information and images. However, with the increasing demand of content sharing sites privacy and security concern have also increased. There is need to develop a tool for controlling user access to their shared content. Therefore, we are developing an Adaptive Privacy Policy Prediction (A3P) system which is helpful for users to create privacy settings for their images. We propose the two-level framework which assigns the best available privacy policy for the users images according to users available histories on the site.

Keywords: online information services, prediction, security and protection, web based services

Procedia PDF Downloads 339
25262 Early Prediction of Disposable Addresses in Ethereum Blockchain

Authors: Ahmad Saleem

Abstract:

Ethereum is the second largest crypto currency in blockchain ecosystem. Along with standard transactions, it supports smart contracts and NFT’s. Current research trends are focused on analyzing the overall structure of the network its growth and behavior. Ethereum addresses are anonymous and can be created on fly. The nature of Ethereum network and addresses make it hard to predict their behavior. The activity period of an ethereum address is not much analyzed. Using machine learning we can make early prediction about the disposability of the address. In this paper we analyzed the lifetime of the addresses. We also identified and predicted the disposable addresses using machine learning models and compared the results.

Keywords: blockchain, Ethereum, cryptocurrency, prediction

Procedia PDF Downloads 83
25261 Crime Prevention with Artificial Intelligence

Authors: Mehrnoosh Abouzari, Shahrokh Sahraei

Abstract:

Today, with the increase in quantity and quality and variety of crimes, the discussion of crime prevention has faced a serious challenge that human resources alone and with traditional methods will not be effective. One of the developments in the modern world is the presence of artificial intelligence in various fields, including criminal law. In fact, the use of artificial intelligence in criminal investigations and fighting crime is a necessity in today's world. The use of artificial intelligence is far beyond and even separate from other technologies in the struggle against crime. Second, its application in criminal science is different from the discussion of prevention and it comes to the prediction of crime. Crime prevention in terms of the three factors of the offender, the offender and the victim, following a change in the conditions of the three factors, based on the perception of the criminal being wise, and therefore increasing the cost and risk of crime for him in order to desist from delinquency or to make the victim aware of self-care and possibility of exposing him to danger or making it difficult to commit crimes. While the presence of artificial intelligence in the field of combating crime and social damage and dangers, like an all-seeing eye, regardless of time and place, it sees the future and predicts the occurrence of a possible crime, thus prevent the occurrence of crimes. The purpose of this article is to collect and analyze the studies conducted on the use of artificial intelligence in predicting and preventing crime. How capable is this technology in predicting crime and preventing it? The results have shown that the artificial intelligence technologies in use are capable of predicting and preventing crime and can find patterns in the data set. find large ones in a much more efficient way than humans. In crime prediction and prevention, the term artificial intelligence can be used to refer to the increasing use of technologies that apply algorithms to large sets of data to assist or replace police. The use of artificial intelligence in our debate is in predicting and preventing crime, including predicting the time and place of future criminal activities, effective identification of patterns and accurate prediction of future behavior through data mining, machine learning and deep learning, and data analysis, and also the use of neural networks. Because the knowledge of criminologists can provide insight into risk factors for criminal behavior, among other issues, computer scientists can match this knowledge with the datasets that artificial intelligence uses to inform them.

Keywords: artificial intelligence, criminology, crime, prevention, prediction

Procedia PDF Downloads 62
25260 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Authors: Hyunchul Ahn, William X. S. Wong

Abstract:

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.

Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines

Procedia PDF Downloads 277
25259 Grey Prediction of Atmospheric Pollutants in Shanghai Based on GM(1,1) Model Group

Authors: Diqin Qi, Jiaming Li, Siman Li

Abstract:

Based on the use of the three-point smoothing method for selectively processing original data columns, this paper establishes a group of grey GM(1,1) models to predict the concentration ranges of four major air pollutants in Shanghai from 2023 to 2024. The results indicate that PM₁₀, SO₂, and NO₂ maintain the national Grade I standards, while the concentration of PM₂.₅ has decreased but still remains within the national Grade II standards. Combining the forecast results, recommendations are provided for the Shanghai municipal government's efforts in air pollution prevention and control.

Keywords: atmospheric pollutant prediction, Grey GM(1, 1), model group, three-point smoothing method

Procedia PDF Downloads 23
25258 Dissolved Oxygen Prediction Using Support Vector Machine

Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed

Abstract:

In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, water temperature, and conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.

Keywords: dissolved oxygen, water quality, predication DO, support vector machine

Procedia PDF Downloads 271
25257 Cost Sensitive Feature Selection in Decision-Theoretic Rough Set Models for Customer Churn Prediction: The Case of Telecommunication Sector Customers

Authors: Emel Kızılkaya Aydogan, Mihrimah Ozmen, Yılmaz Delice

Abstract:

In recent days, there is a change and the ongoing development of the telecommunications sector in the global market. In this sector, churn analysis techniques are commonly used for analysing why some customers terminate their service subscriptions prematurely. In addition, customer churn is utmost significant in this sector since it causes to important business loss. Many companies make various researches in order to prevent losses while increasing customer loyalty. Although a large quantity of accumulated data is available in this sector, their usefulness is limited by data quality and relevance. In this paper, a cost-sensitive feature selection framework is developed aiming to obtain the feature reducts to predict customer churn. The framework is a cost based optional pre-processing stage to remove redundant features for churn management. In addition, this cost-based feature selection algorithm is applied in a telecommunication company in Turkey and the results obtained with this algorithm.

Keywords: churn prediction, data mining, decision-theoretic rough set, feature selection

Procedia PDF Downloads 428
25256 Applying Pre-Accident Observational Methods for Accident Assessment and Prediction at Intersections in Norrkoping City in Sweden

Authors: Ghazwan Al-Haji, Adeyemi Adedokun

Abstract:

Traffic safety at intersections is highly represented, given the fact that accidents occur randomly in time and space. It is necessary to judge whether the intersection is dangerous or not based on short-term observations, and not waiting for many years of assessing historical accident data. There are active and pro-active road infrastructure safety methods for assessing safety at intersections. This study aims to investigate the use of quantitative and qualitative pre-observational methods as the best practice for accident prediction, future black spot identification, and treatment. Historical accident data from STRADA (the Swedish Traffic Accident Data Acquisition) was used within Norrkoping city in Sweden. The ADT (Average Daily Traffic), capacity and speed were used to predict accident rates. Locations with the highest accident records and predicted accident counts were identified and hence audited qualitatively by using Street Audit. The results from these quantitative and qualitative methods were analyzed, validated and compared. The paper provides recommendations on the used methods as well as on how to reduce the accident occurrence at the chosen intersections.

Keywords: intersections, traffic conflict, traffic safety, street audit, accidents predictions

Procedia PDF Downloads 211
25255 Optimizing Communications Overhead in Heterogeneous Distributed Data Streams

Authors: Rashi Bhalla, Russel Pears, M. Asif Naeem

Abstract:

In this 'Information Explosion Era' analyzing data 'a critical commodity' and mining knowledge from vertically distributed data stream incurs huge communication cost. However, an effort to decrease the communication in the distributed environment has an adverse influence on the classification accuracy; therefore, a research challenge lies in maintaining a balance between transmission cost and accuracy. This paper proposes a method based on Bayesian inference to reduce the communication volume in a heterogeneous distributed environment while retaining prediction accuracy. Our experimental evaluation reveals that a significant reduction in communication can be achieved across a diverse range of dataset types.

Keywords: big data, bayesian inference, distributed data stream mining, heterogeneous-distributed data

Procedia PDF Downloads 142
25254 Development of the Structure of the Knowledgebase for Countermeasures in the Knowledge Acquisition Process for Trouble Prediction in Healthcare Processes

Authors: Shogo Kato, Daisuke Okamoto, Satoko Tsuru, Yoshinori Iizuka, Ryoko Shimono

Abstract:

Healthcare safety has been perceived important. It is essential to prevent troubles in healthcare processes for healthcare safety. Trouble prevention is based on trouble prediction using accumulated knowledge on processes, troubles, and countermeasures. However, information on troubles has not been accumulated in hospitals in the appropriate structure, and it has not been utilized effectively to prevent troubles. In the previous study, though a detailed knowledge acquisition process for trouble prediction was proposed, the knowledgebase for countermeasures was not involved. In this paper, we aim to propose the structure of the knowledgebase for countermeasures in the knowledge acquisition process for trouble prediction in healthcare process. We first design the structure of countermeasures and propose the knowledge representation form on countermeasures. Then, we evaluate the validity of the proposal, by applying it into an actual hospital.

Keywords: trouble prevention, knowledge structure, structured knowledge, reusable knowledge

Procedia PDF Downloads 351
25253 Intelligent Prediction System for Diagnosis of Heart Attack

Authors: Oluwaponmile David Alao

Abstract:

Due to an increase in the death rate as a result of heart attack. There is need to develop a system that can be useful in the diagnosis of the disease at the medical centre. This system will help in preventing misdiagnosis that may occur from the medical practitioner or the physicians. In this research work, heart disease dataset obtained from UCI repository has been used to develop an intelligent prediction diagnosis system. The system is modeled on a feedforwad neural network and trained with back propagation neural network. A recognition rate of 86% is obtained from the testing of the network.

Keywords: heart disease, artificial neural network, diagnosis, prediction system

Procedia PDF Downloads 431
25252 Analysis of an Alternative Data Base for the Estimation of Solar Radiation

Authors: Graciela Soares Marcelli, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Claudineia Brazil, Rafael Haag

Abstract:

The sun is a source of renewable energy, and its use as both a source of heat and light is one of the most promising energy alternatives for the future. To measure the thermal or photovoltaic systems a solar irradiation database is necessary. Brazil still has a reduced number of meteorological stations that provide frequency tests, as an alternative to the radio data platform, with reanalysis systems, quite significant. ERA-Interim is a global fire reanalysis by the European Center for Medium-Range Weather Forecasts (ECMWF). The data assimilation system used for the production of ERA-Interim is based on a 2006 version of the IFS (Cy31r2). The system includes a 4-dimensional variable analysis (4D-Var) with a 12-hour analysis window. The spatial resolution of the dataset is approximately 80 km at 60 vertical levels from the surface to 0.1 hPa. This work aims to make a comparative analysis between the ERA-Interim data and the data observed in the Solarimmetric Atlas of the State of Rio Grande do Sul, to verify its applicability in the absence of an observed data network. The analysis of the results obtained for a study region as an alternative to the energy potential of a given region.

Keywords: energy potential, reanalyses, renewable energy, solar radiation

Procedia PDF Downloads 144
25251 Assessment of Pre-Processing Influence on Near-Infrared Spectra for Predicting the Mechanical Properties of Wood

Authors: Aasheesh Raturi, Vimal Kothiyal, P. D. Semalty

Abstract:

We studied mechanical properties of Eucalyptus tereticornis using FT-NIR spectroscopy. Firstly, spectra were pre-processed to eliminate useless information. Then, prediction model was constructed by partial least squares regression. To study the influence of pre-processing on prediction of mechanical properties for NIR analysis of wood samples, we applied various pretreatment methods like straight line subtraction, constant offset elimination, vector-normalization, min-max normalization, multiple scattering. Correction, first derivative, second derivatives and their combination with other treatment such as First derivative + straight line subtraction, First derivative+ vector normalization and First derivative+ multiplicative scattering correction. The data processing methods in combination of preprocessing with different NIR regions, RMSECV, RMSEP and optimum factors/rank were obtained by optimization process of model development. More than 350 combinations were obtained during optimization process. More than one pre-processing method gave good calibration/cross-validation and prediction/test models, but only the best calibration/cross-validation and prediction/test models are reported here. The results show that one can safely use NIR region between 4000 to 7500 cm-1 with straight line subtraction, constant offset elimination, first derivative and second derivative preprocessing method which were found to be most appropriate for models development.

Keywords: FT-NIR, mechanical properties, pre-processing, PLS

Procedia PDF Downloads 327
25250 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering

Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal

Abstract:

The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.

Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease

Procedia PDF Downloads 185
25249 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance

Authors: Ammar Alali, Mahmoud Abughaban

Abstract:

Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.

Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe

Procedia PDF Downloads 204
25248 Assessing the Efficiency of Pre-Hospital Scoring System with Conventional Coagulation Tests Based Definition of Acute Traumatic Coagulopathy

Authors: Venencia Albert, Arulselvi Subramanian, Hara Prasad Pati, Asok K. Mukhophadhyay

Abstract:

Acute traumatic coagulopathy in an endogenous dysregulation of the intrinsic coagulation system in response to the injury, associated with three-fold risk of poor outcome, and is more amenable to corrective interventions, subsequent to early identification and management. Multiple definitions for stratification of the patients' risk for early acute coagulopathy have been proposed, with considerable variations in the defining criteria, including several trauma-scoring systems based on prehospital data. We aimed to develop a clinically relevant definition for acute coagulopathy of trauma based on conventional coagulation assays and to assess its efficacy in comparison to recently established prehospital prediction models. Methodology: Retrospective data of all trauma patients (n = 490) presented to our level I trauma center, in 2014, was extracted. Receiver operating characteristic curve analysis was done to establish cut-offs for conventional coagulation assays for identification of patients with acute traumatic coagulopathy was done. Prospectively data of (n = 100) adult trauma patients was collected and cohort was stratified by the established definition and classified as "coagulopathic" or "non-coagulopathic" and correlated with the Prediction of acute coagulopathy of trauma score and Trauma-Induced Coagulopathy Clinical Score for identifying trauma coagulopathy and subsequent risk for mortality. Results: Data of 490 trauma patients (average age 31.85±9.04; 86.7% males) was extracted. 53.3% had head injury, 26.6% had fractures, 7.5% had chest and abdominal injury. Acute traumatic coagulopathy was defined as international normalized ratio ≥ 1.19; prothrombin time ≥ 15.5 s; activated partial thromboplastin time ≥ 29 s. Of the 100 adult trauma patients (average age 36.5±14.2; 94% males), 63% had early coagulopathy based on our conventional coagulation assay definition. Overall prediction of acute coagulopathy of trauma score was 118.7±58.5 and trauma-induced coagulopathy clinical score was 3(0-8). Both the scores were higher in coagulopathic than non-coagulopathic patients (prediction of acute coagulopathy of trauma score 123.2±8.3 vs. 110.9±6.8, p-value = 0.31; trauma-induced coagulopathy clinical score 4(3-8) vs. 3(0-8), p-value = 0.89), but not statistically significant. Overall mortality was 41%. Mortality rate was significantly higher in coagulopathic than non-coagulopathic patients (75.5% vs. 54.2%, p-value = 0.04). High prediction of acute coagulopathy of trauma score also significantly associated with mortality (134.2±9.95 vs. 107.8±6.82, p-value = 0.02), whereas trauma-induced coagulopathy clinical score did not vary be survivors and non-survivors. Conclusion: Early coagulopathy was seen in 63% of trauma patients, which was significantly associated with mortality. Acute traumatic coagulopathy defined by conventional coagulation assays (international normalized ratio ≥ 1.19; prothrombin time ≥ 15.5 s; activated partial thromboplastin time ≥ 29 s) demonstrated good ability to identify coagulopathy and subsequent mortality, in comparison to the prehospital parameter-based scoring systems. Prediction of acute coagulopathy of trauma score may be more suited for predicting mortality rather than early coagulopathy. In emergency trauma situations, where immediate corrective measures need to be taken, complex multivariable scoring algorithms may cause delay, whereas coagulation parameters and conventional coagulation tests will give highly specific results.

Keywords: trauma, coagulopathy, prediction, model

Procedia PDF Downloads 165