Search results for: inverse kinematics of redundant manipulators
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 718

Search results for: inverse kinematics of redundant manipulators

418 Effects of Applying Low-Dye Taping in Performing Double-Leg Squat on Electromyographic Activity of Lower Extremity Muscles for Collegiate Basketball Players with Excessive Foot Pronation

Authors: I. M. K. Ho, S. K. Y. Chan, K. H. P. Lam, G. M. W. Tong, N. C. Y. Yeung, J. T. C. Luk

Abstract:

Low-dye taping (LDT) is commonly used for treating foot problems, such as plantar fasciitis, and supporting foot arch for runners and non-athletes patients with pes planus. The potential negative impact of pronated feet leading to tibial and femoral internal rotation via the entire kinetic chain reaction was postulated and identified. The changed lower limb biomechanics potentially leading to poor activation of hip and knee stabilizers, such as gluteus maximus and medius, may associate with higher risk of knee injuries including patellofemoral pain syndrome and ligamentous sprain in many team sports players. It is therefore speculated that foot arch correction with LDT might enhance the use of gluteal muscles. The purpose of this study was to investigate the effect of applying LDT on surface electromyographic (sEMG) activity of superior gluteus maximus (SGMax), inferior gluteus maximus (IGMax), gluteus medius (GMed) and tibialis anterior (TA) during double-leg squat. 12 male collegiate basketball players (age: 21.72.5 years; body fat: 12.43.6%; navicular drop: 13.72.7mm) with at least three years regular basketball training experience participated in this study. Participants were excluded if they had recent history of lower limb injuries, over 16.6% body fat and lesser than 10mm drop in navicular drop (ND) test. Recruited subjects visited the laboratory once for the within-subject crossover study. Maximum voluntary isometric contraction (MVIC) tests on all selected muscles were performed in randomized order followed by sEMG test on double-leg squat during LDT and non-LDT conditions in counterbalanced order. SGMax, IGMax, GMed and TA activities during the entire 2-second concentric and 2-second eccentric phases were normalized and interpreted as %MVIC. The magnitude of the difference between taped and non-taped conditions of each muscle was further assessed via standardized effect90% confidence intervals (CI) with non-clinical magnitude-based inference. Paired samples T-test showed a significant decrease (4.71.4mm) in ND (95% CI: 3.8, 5.6; p < 0.05) while no significant difference was observed between taped and non-taped conditions in sEMG tests for all muscles and contractions (p > 0.05). On top of traditional significant testing, magnitude-based inference showed possibly increase in IGMax activity (small standardized effect: 0.270.44), likely increase in GMed activity (small standardized effect: 0.340.34) and possibly increase in TA activity (small standardized effect: 0.220.29) during eccentric phase. It is speculated that the decrease of navicular drop supported by LDT application could potentially enhance the use of inferior gluteus maximus and gluteus medius especially during eccentric phase in this study. As the eccentric phase of double-leg squat is an important component of landing activities in basketball, further studies on the onset and amount of gluteal activation during jumping and landing activities with LDT are recommended. Since both hip and knee kinematics were not measured in this study, the underlying cause of the observed increase in gluteal activation during squat after LDT is inconclusive. In this regard, the investigation of relationships between LDT application, ND, hip and knee kinematics, and gluteal muscle activity during sports specific jumping and landing tasks should be focused in the future.

Keywords: flat foot, gluteus maximus, gluteus medius, injury prevention

Procedia PDF Downloads 137
417 A New DIDS Design Based on a Combination Feature Selection Approach

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original data set. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 data set is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.

Keywords: distributed intrusion detection system, mobile agent, feature selection, bees algorithm, decision tree

Procedia PDF Downloads 383
416 Spatial Distribution of Heavy Metals in Khark Island-Iran Using Geographic Information System

Authors: Abbas Hani, Maryam Jassasizadeh

Abstract:

The concentrations of Cd, Pb, and Ni were determined from 40 soil samples collected in surface soils of Khark Island. Geostatistic methods and GIS were used to identify heavy metal sources and their spatial pattern. Principal component analysis coupled with correlation between heavy metals showed that level of mentioned heavy metal was lower than the standard level. Then the data obtained from the soil analyzing were studied for the purposes of normal distribution. The best way of interior finding for cadmium and nickel was ordinary kriging and the best way of interpolation of lead was inverse distance weighted. The result of this study help us to understand heavy metals distribution and make decision for remediation of soil pollution.

Keywords: geostatistics, ordinary kriging, heavy metals, GIS, Khark

Procedia PDF Downloads 143
415 Association of Genetically Proxied Cholesterol-Lowering Drug Targets and Head and Neck Cancer Survival: A Mendelian Randomization Analysis

Authors: Danni Cheng

Abstract:

Background: Preclinical and epidemiological studies have reported potential protective effects of low-density lipoprotein cholesterol (LDL-C) lowering drugs on head and neck squamous cell cancer (HNSCC) survival, but the causality was not consistent. Genetic variants associated with LDL-C lowering drug targets can predict the effects of their therapeutic inhibition on disease outcomes. Objective: We aimed to evaluate the causal association of genetically proxied cholesterol-lowering drug targets and circulating lipid traits with cancer survival in HNSCC patients stratified by human papillomavirus (HPV) status using two-sample Mendelian randomization (MR) analyses. Method: Single-nucleotide polymorphisms (SNPs) in gene region of LDL-C lowering drug targets (HMGCR, NPC1L1, CETP, PCSK9, and LDLR) associated with LDL-C levels in genome-wide association study (GWAS) from the Global Lipids Genetics Consortium (GLGC) were used to proxy LDL-C lowering drug action. SNPs proxy circulating lipids (LDL-C, HDL-C, total cholesterol, triglycerides, apoprotein A and apoprotein B) were also derived from the GLGC data. Genetic associations of these SNPs and cancer survivals were derived from 1,120 HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) and 2,570 non-HPV-driven HNSCC patients in VOYAGER program. We estimated the causal associations of LDL-C lowering drugs and circulating lipids with HNSCC survival using the inverse-variance weighted method. Results: Genetically proxied HMGCR inhibition was significantly associated with worse overall survival (OS) in non-HPV-drive HNSCC patients (inverse variance-weighted hazard ratio (HR IVW), 2.64[95%CI,1.28-5.43]; P = 0.01) but better OS in HPV-positive OPSCC patients (HR IVW,0.11[95%CI,0.02-0.56]; P = 0.01). Estimates for NPC1L1 were strongly associated with worse OS in both total HNSCC (HR IVW,4.17[95%CI,1.06-16.36]; P = 0.04) and non-HPV-driven HNSCC patients (HR IVW,7.33[95%CI,1.63-32.97]; P = 0.01). A similar result was found that genetically proxied PSCK9 inhibitors were significantly associated with poor OS in non-HPV-driven HNSCC (HR IVW,1.56[95%CI,1.02 to 2.39]). Conclusion: Genetically proxied long-term HMGCR inhibition was significantly associated with decreased OS in non-HPV-driven HNSCC and increased OS in HPV-positive OPSCC. While genetically proxied NPC1L1 and PCSK9 had associations with worse OS in total and non-HPV-driven HNSCC patients. Further research is needed to understand whether these drugs have consistent associations with head and neck tumor outcomes.

Keywords: Mendelian randomization analysis, head and neck cancer, cancer survival, cholesterol, statin

Procedia PDF Downloads 80
414 Development of 3D Neck Muscle to Analyze the Effect of Active Muscle Contraction in Whiplash Injury

Authors: Nisha Nandlal Sharma, Julaluk Carmai, Saiprasit Koetniyom, Bernd Markert

Abstract:

Whiplash Injuries are mostly experienced in car accidents. Symptoms of whiplash are commonly reported in studies, neck pain and headaches are two most common symptoms observed. The whiplash Injury mechanism is poorly understood. In present study, hybrid neck muscle model were developed with a combination of solid tetrahedral elements and 1D beam elements. Solid tetrahedral elements represents passive part of the muscle whereas, 1D beam elements represents active part. To simulate the active behavior of the muscle, Hill-type muscle model was applied to beam elements. To simulate non-linear passive properties of muscle, solid elements were modeled with rubber/foam material model. Some important muscles were then inserted into THUMS (Total Human Model for Safety) THUMS was given a boundary conditions similar to experimental tests. The model was exposed to 4g and 7g rear impacts as these load impacts are close to low speed impacts causing whiplash. The effect of muscle activation level on occupant kinematics during whiplash was analyzed.

Keywords: finite element model, muscle activation, THUMS, whiplash injury mechanism

Procedia PDF Downloads 315
413 Advancing UAV Operations with Hybrid Mobile Network and LoRa Communications

Authors: Annika J. Meyer, Tom Piechotta

Abstract:

Unmanned Aerial Vehicles (UAVs) have increasingly become vital tools in various applications, including surveillance, search and rescue, and environmental monitoring. One common approach to ensure redundant communication systems when flying beyond visual line of sight is for UAVs to employ multiple mobile data modems by different providers. Although widely adopted, this approach suffers from several drawbacks, such as high costs, added weight and potential increases in signal interference. In light of these challenges, this paper proposes a communication framework intermeshing mobile networks and LoRa (Long Range) technology—a low-power, long-range communication protocol. LoRaWAN (Long Range Wide Area Network) is commonly used in Internet of Things applications, relying on stationary gateways and Internet connectivity. This paper, however, utilizes the underlying LoRa protocol, taking advantage of the protocol’s low power and long-range capabilities while ensuring efficiency and reliability. Conducted in collaboration with the Potsdam Fire Department, the implementation of mobile network technology in combination with the LoRa protocol in small UAVs (take-off weight < 0.4 kg), specifically designed for search and rescue and area monitoring missions, is explored. This research aims to test the viability of LoRa as an additional redundant communication system during UAV flights as well as its intermeshing with the primary, mobile network-based controller. The methodology focuses on direct UAV-to-UAV and UAV-to-ground communications, employing different spreading factors optimized for specific operational scenarios—short-range for UAV-to-UAV interactions and long-range for UAV-to-ground commands. This explored use case also dramatically reduces one of the major drawbacks of LoRa communication systems, as a line of sight between the modules is necessary for reliable data transfer. Something that UAVs are uniquely suited to provide, especially when deployed as a swarm. Additionally, swarm deployment may enable UAVs that have lost contact with their primary network to reestablish their connection through another, better-situated UAV. The experimental setup involves multiple phases of testing, starting with controlled environments to assess basic communication capabilities and gradually advancing to complex scenarios involving multiple UAVs. Such a staged approach allows for meticulous adjustment of parameters and optimization of the communication protocols to ensure reliability and effectiveness. Furthermore, due to the close partnership with the Fire Department, the real-world applicability of the communication system is assured. The expected outcomes of this paper include a detailed analysis of LoRa's performance as a communication tool for UAVs, focusing on aspects such as signal integrity, range, and reliability under different environmental conditions. Additionally, the paper seeks to demonstrate the cost-effectiveness and operational efficiency of using a single type of communication technology that reduces UAV payload and power consumption. By shifting from traditional cellular network communications to a more robust and versatile cellular and LoRa-based system, this research has the potential to significantly enhance UAV capabilities, especially in critical applications where reliability is paramount. The success of this paper could pave the way for broader adoption of LoRa in UAV communications, setting a new standard for UAV operational communication frameworks.

Keywords: LoRa communication protocol, mobile network communication, UAV communication systems, search and rescue operations

Procedia PDF Downloads 22
412 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation

Authors: Muhammad Zubair Khan, Yugyung Lee

Abstract:

Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.

Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network

Procedia PDF Downloads 82
411 Effects of Age and Energy Expenditure on Obesity Among Adults in Abeokuta, Nigeria

Authors: Adeniyi Samuel Adekoya

Abstract:

The study assessed the independent effects of age and energy expenditure on the risks of obesity among adults (20-64 years). A cross-sectional study with changes in age, changes in work and leisure-time, and physical activities information played roles, with cut-off for energy expenditure and BMI in rural and urban localities. Physical activity information determined the energy expenditure, while the BMI determined the risk of obesity among the subjects. Statistically, age has a strong and direct association with obesity in both rural and urban settings, while energy expenditure was inverse in its association. Findings from the this study showed that in developing societies, age tends to be a risk factor for obesity, whereas energy expenditure is to be protective. Level of education and economic development are also relevant modifiers of the influences exerted by these variables.

Keywords: age, energy expenditure, BMI, rural/urban

Procedia PDF Downloads 401
410 Real-Time Path Planning for Unmanned Air Vehicles Using Improved Rapidly-Exploring Random Tree and Iterative Trajectory Optimization

Authors: A. Ramalho, L. Romeiro, R. Ventura, A. Suleman

Abstract:

A real-time path planning framework for Unmanned Air Vehicles, and in particular multi-rotors is proposed. The framework is designed to provide feasible trajectories from the current UAV position to a goal state, taking into account constraints such as obstacle avoidance, problem kinematics, and vehicle limitations such as maximum speed and maximum acceleration. The framework computes feasible paths online, allowing to avoid new, unknown, dynamic obstacles without fully re-computing the trajectory. These features are achieved using an iterative process in which the robot computes and optimizes the trajectory while performing the mission objectives. A first trajectory is computed using a modified Rapidly-Exploring Random Tree (RRT) algorithm, that provides trajectories that respect a maximum curvature constraint. The trajectory optimization is accomplished using the Interior Point Optimizer (IPOPT) as a solver. The framework has proven to be able to compute a trajectory and optimize to a locally optimal with computational efficiency making it feasible for real-time operations.

Keywords: interior point optimization, multi-rotors, online path planning, rapidly exploring random trees, trajectory optimization

Procedia PDF Downloads 119
409 A Mathematical Model for Reliability Redundancy Optimization Problem of K-Out-Of-N: G System

Authors: Gak-Gyu Kim, Won Il Jung

Abstract:

According to a remarkable development of science and technology, function and role of the system of engineering fields has recently been diversified. The system has become increasingly more complex and precise, and thus, system designers intended to maximize reliability concentrate more effort at the design stage. This study deals with the reliability redundancy optimization problem (RROP) for k-out-of-n: G system configuration with cold standby and warm standby components. This paper further intends to present the optimal mathematical model through which the following three elements of (i) multiple components choices, (ii) redundant components quantity and (iii) the choice of redundancy strategies may be combined in order to maximize the reliability of the system. Therefore, we focus on the following three issues. First, we consider RROP that there exists warm standby state as well as cold standby state of the component. Second, as eliminating an approximation approach of the previous RROP studies, we construct a precise model for system reliability. Third, given transition time when the state of components changes, we present not simply a workable solution but the advanced method. For the wide applicability of RROPs, moreover, we use absorbing continuous time Markov chain and matrix analytic methods in the suggested mathematical model.

Keywords: RROP, matrix analytic methods, k-out-of-n: G system, MTTF, absorbing continuous time Markov Chain

Procedia PDF Downloads 238
408 Linkages between Postponement Strategies and Flexibility in Organizations

Authors: Polycarpe Feussi

Abstract:

Globalization, technological and customer increasing changes, amongst other drivers, result in higher levels of uncertainty and unpredictability for organizations. In order for organizations to cope with the uncertain and fast-changing economic and business environment, these organizations need to innovate in order to achieve flexibility. In simple terms, the organizations must develop strategies leading to the ability of these organizations to provide horizontal information connections across the supply chain to create and deliver products that meet customer needs by synchronization of customer demands with product creation. The generated information will create efficiency and effectiveness throughout the whole supply chain regarding production, storage, and distribution, as well as eliminating redundant activities and reduction in response time. In an integrated supply chain, spanning activities include coordination with distributors and suppliers. This paper explains how through postponement strategies, flexibility can be achieved in an organization. In order to achieve the above, a thorough literature review was conducted via the search of online websites that contains material from scientific journal data-bases, articles, and textbooks on the subject of postponement and flexibility. The findings of the research are found in the last part of the paper. The first part introduces the concept of postponement and its importance in supply chain management. The second part of the paper provides the methodology used in the process of writing the paper.

Keywords: postponement strategies, supply chain management, flexibility, logistics

Procedia PDF Downloads 175
407 A Prediction Model of Tornado and Its Impact on Architecture Design

Authors: Jialin Wu, Zhiwei Lian, Jieyu Tang, Jingyun Shen

Abstract:

Tornado is a serious and unpredictable natural disaster, which has an important impact on people's production and life. The probability of being hit by tornadoes in China was analyzed considering the principles of tornado formation. Then some suggestions on layout and shapes for newly-built buildings were provided combined with the characteristics of tornado wind fields. Fuzzy clustering and inverse closeness methods were used to evaluate the probability levels of tornado risks in various provinces based on classification and ranking. GIS was adopted to display the results. Finally, wind field single-vortex tornado was studied to discuss the optimized design of rural low-rise houses in Yancheng, Jiangsu as an example. This paper may provide enough data to support building and urban design in some specific regions.

Keywords: tornado probability, computational fluid dynamics, fuzzy mathematics, optimal design

Procedia PDF Downloads 108
406 A New Approach for Preparation of Super Absorbent Polymers: In-Situ Surface Cross-Linking

Authors: Reyhan Özdoğan, Mithat Çelebi, Özgür Ceylan, Mehmet Arif Kaya

Abstract:

Super absorbent polymers (SAPs) are defined as materials that can absorb huge amount of water or aqueous solution in comparison to their own mass and retain in their lightly cross-linked structure. SAPs were produced from water soluble monomers via polymerization subsequently controlled crosslinking. SAPs are generally used for water absorbing applications such as baby diapers, patient or elder pads and other hygienic product industries. Crosslinking density (CD) of SAP structure is an essential factor for water absortion capacity (WAC). Low internal CD leads to high WAC values and vice versa. However, SAPs have low CD and high swelling capacities and tend to disintegrate when pressure is applied upon them, so SAPs under load cannot absorb liquids effectively. In order to prevent this undesired situation and to obtain suitable SAP structures having high swelling capacity and ability to work under load, surface crosslinking can be the answer. In industry, these superabsorbent gels are mostly produced via solution polymerization and then they need to be dried, grinded, sized, post polymerized and finally surface croslinked (involves spraying of a crosslinking solution onto dried and grinded SAP particles, and then curing by heat). It can easily be seen that these steps are time consuming and should be handled carefully for the desired final product. If we could synthesize desired final SAPs using less processes it will help reducing time and production costs which are very important for any industries. In this study, synthesis of SAPs were achieved successfully by inverse suspension (Pickering type) polymerization and subsequently in-situ surface cross-linking via using proper surfactants in high boiling point solvents. Our one-pot synthesis of surface cross-linked SAPs invovles only one-step for preparation, thus it can be said that this technique exhibits more preferable characteristic for the industry in comparison to conventional methods due to its one-step easy process. Effects of different surface crosslinking agents onto properties of poly(acrylic acid-co-sodium acrylate) based SAPs are investigated. Surface crosslink degrees are evaluated by swelling under load (SUL) test. It was determined water absorption capacities of obtained SAPs decrease with the increasing surface crosslink density while their mechanic properties are improved.

Keywords: inverse suspension polymerization, polyacrylic acid, super absorbent polymers (SAPs), surface crosslinking, sodium polyacrylate

Procedia PDF Downloads 304
405 A Method to Compute Efficient 3D Helicopters Flight Trajectories Based On a Motion Polymorph-Primitives Algorithm

Authors: Konstanca Nikolajevic, Nicolas Belanger, David Duvivier, Rabie Ben Atitallah, Abdelhakim Artiba

Abstract:

Finding the optimal 3D path of an aerial vehicle under flight mechanics constraints is a major challenge, especially when the algorithm has to produce real-time results in flight. Kinematics models and Pythagorian Hodograph curves have been widely used in mobile robotics to solve this problematic. The level of difficulty is mainly driven by the number of constraints to be saturated at the same time while minimizing the total length of the path. In this paper, we suggest a pragmatic algorithm capable of saturating at the same time most of dimensioning helicopter 3D trajectories’ constraints like: curvature, curvature derivative, torsion, torsion derivative, climb angle, climb angle derivative, positions. The trajectories generation algorithm is able to generate versatile complex 3D motion primitives feasible by a helicopter with parameterization of the curvature and the climb angle. An upper ”motion primitives’ concatenation” algorithm is presented based. In this article we introduce a new way of designing three-dimensional trajectories based on what we call the ”Dubins gliding symmetry conjecture”. This extremely performing algorithm will be soon integrated to a real-time decisional system dealing with inflight safety issues.

Keywords: robotics, aerial robots, motion primitives, helicopter

Procedia PDF Downloads 597
404 M-Number of Aortic Cannulas Applied During Hypothermic Cardiopulmonary Bypass

Authors: Won-Gon Kim

Abstract:

A standardized system to describe the pressure-flow characteristics of a given cannula has recently been proposed and has been termed ‘the M-number’. Using three different sizes of aortic cannulas in 50 pediatric cardiac patients on hypothermic cardiopulmonary bypass, we analyzed the correlation between experimentally and clinically derived M-numbers, and found this was positive. Clinical M-numbers were typically 0.35 to 0.55 greater than experimental M-numbers, and correlated inversely with a patient's temperature change; this was most probably due to increased blood viscosity, arising from hypothermia. This inverse relationship was more marked in higher M-number cannulas. The clinical data obtained in this study suggest that experimentally derived M-numbers correlate strongly with clinical performance of the cannula, and that the influence of temperature is significant.

Keywords: cardiopulmonary bypass, M-number, aortic cannula, pressure-flow characteristics

Procedia PDF Downloads 223
403 Reliability and Cost Focused Optimization Approach for a Communication Satellite Payload Redundancy Allocation Problem

Authors: Mehmet Nefes, Selman Demirel, Hasan H. Ertok, Cenk Sen

Abstract:

A typical reliability engineering problem regarding communication satellites has been considered to determine redundancy allocation scheme of power amplifiers within payload transponder module, whose dominant function is to amplify power levels of the received signals from the Earth, through maximizing reliability against mass, power, and other technical limitations. Adding each redundant power amplifier component increases not only reliability but also hardware, testing, and launch cost of a satellite. This study investigates a multi-objective approach used in order to solve Redundancy Allocation Problem (RAP) for a communication satellite payload transponder, focusing on design cost due to redundancy and reliability factors. The main purpose is to find the optimum power amplifier redundancy configuration satisfying reliability and capacity thresholds simultaneously instead of analyzing respectively or independently. A mathematical model and calculation approach are instituted including objective function definitions, and then, the problem is solved analytically with different input parameters in MATLAB environment. Example results showed that payload capacity and failure rate of power amplifiers have remarkable effects on the solution and also processing time.

Keywords: communication satellite payload, multi-objective optimization, redundancy allocation problem, reliability, transponder

Procedia PDF Downloads 243
402 Configuration Design and Optimization of the Movable Leg-Foot Lunar Soft-Landing Device

Authors: Shan Jia, Jinbao Chen, Jinhua Zhou, Jiacheng Qian

Abstract:

Lunar exploration is a necessary foundation for deep-space exploration. For the functional limitations of the fixed landers which are widely used currently and are to expand the detection range by the use of wheeled rovers with unavoidable path-repeatability, a movable lunar soft-landing device based on cantilever type buffer mechanism and leg-foot type walking mechanism is presented. Firstly, a 20 DoFs quadruped configuration based on pushrod is proposed. The configuration is of the bionic characteristics such as hip, knee and ankle joints, and can make the kinematics of the whole mechanism unchanged before and after buffering. Secondly, the multi-function main/auxiliary buffers based on crumple-energy absorption and screw-nut mechanism, as well as the telescopic device which could be used to protect the plantar force sensors during the buffer process are designed. Finally, the kinematic model of the whole mechanism is established, and the configuration optimization of the whole mechanism is completed based on the performance requirements of slope adaptation and obstacle crossing. This research can provide a technical solution integrating soft-landing, large-scale inspection and material-transfer for future lunar exploration and even mars exploration, and can also serve as the technical basis for developing the reusable landers.

Keywords: configuration design, lunar soft-landing device, movable, optimization

Procedia PDF Downloads 132
401 Time and Kinematics of Moving Bodies

Authors: Muhammad Omer Farooq Saeed

Abstract:

The purpose of the proposal is to find out what time actually is! And to understand the natural phenomenon of the behavior of time and light corresponding to the motion of the bodies at relatively high speeds. The utmost concern of the paper is to deal with the possible demerits in the equations of relativity, thereby providing some valuable extensions in those equations and concepts. The idea used develops the most basic conception of the relative motion of the body with respect to space and a real understanding of time and the variation of energy of the body in different frames of reference. The results show the development of a completely new understanding of time, relative motion and energy, along with some extensions in the equations of special relativity most importantly the time dilation and the mass-energy relationship that will explain all frames of a body, all in one go. The proposal also raises serious questions on the validity of the “Principle of Equivalence” on which the General Relativity is based, most importantly a serious case of the bending light that eventually goes against its own governing concepts of space-time being proposed in the theory. The results also predict the existence of a completely new field that explains the fact just how and why bodies acquire energy in space-time. This field explains the production of gravitational waves based on time. All in all, this proposal challenges the formulas and conceptions of Special and General Relativity, respectively.

Keywords: time, relative motion, energy, speed, frame of reference, photon, curvature, space-time, time –differentials

Procedia PDF Downloads 47
400 Dynamic Analysis and Design of Lower Extremity Power-Assisted Exoskeleton

Authors: Song Shengli, Tan Zhitao, Li Qing, Fang Husheng, Ye Qing, Zhang Xinglong

Abstract:

Lower extremity power-assisted exoskeleton (LEPEX) is a kind of wearable electromechanical integration intelligent system, walking in synchronization with the wearer, which can assist the wearer walk by means of the driver mounted in the exoskeleton on each joint. In this paper, dynamic analysis and design of the LEPEX are performed. First of all, human walking process is divided into single leg support phase, double legs support phase and ground collision model. The three kinds of dynamics modeling is established using the Lagrange method. Then, the flat walking and climbing stairs dynamic information such as torque and power of lower extremity joints is derived for loading 75kg according to scholar Stansfield measured data of flat walking and scholars R. Riener measured data of climbing stair respectively. On this basis, the joint drive way in the sagittal plane is determined, and the structure of LEPEX is designed. Finally, the designed LEPEX is simulated under ADAMS by using a person’s joint sports information acquired under flat walking and climbing stairs. The simulation result effectively verified the correctness of the structure.

Keywords: kinematics, lower extremity exoskeleton, simulation, structure

Procedia PDF Downloads 409
399 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms

Authors: Mohammad Besharatloo

Abstract:

Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.

Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree

Procedia PDF Downloads 66
398 A Correlational Study between Parentification and Memory Retention among Parentified Female Adolescents: A Neurocognitive Perspective on Parentification

Authors: Mary Dorothy Roxas, Jeian Mae Dungca, Reginald Agor, Beatriz Figueroa, Lennon Andre Patricio, Honey Joy Cabahug

Abstract:

Parentification occurs when children are expected to provide instrumental or emotional caregiving within the family. It was found that parentification has the latter effect on adolescents’ cognitive and emotional vulnerability. Attachment theory helps clarify the process of parentification as it involves the relationship between the child and the parent. Carandang theory of “taga-salo” helps explain parentification in the Philippines setting. The present study examined the potential risk of parentification on adolescent’s memory retention by hypothesizing that there is a correlation between the two. The research was conducted with 249 female adolescents ages 12-24, residing in Valenzuela City. Results indicated that there is a significant inverse correlation between parentification and memory retention.

Keywords: memory retention, neurocognitive, parentification, stress

Procedia PDF Downloads 598
397 Virtual Test Model for Qualification of Knee Prosthesis

Authors: K. Zehouani, I. Oldal

Abstract:

Purpose: In the human knee joint, degenerative joint disease may happen with time. The standard treatment of this disease is the total knee replacement through prosthesis implanting. The reason lies in the fact that this phenomenon causes different material abrasion as compare to pure sliding or rolling alone. This study focuses on developing a knee prosthesis geometry, which fulfills the mechanical and kinematical requirements. Method: The MSC ADAMS program is used to describe the rotation of the human knee joint as a function of flexion, and to investigate how the flexion and rotation movement changes between the condyles of a multi-body model of the knee prosthesis as a function of flexion angle (in the functional arc of the knee (20-120º)). Moreover, the multi-body model with identical boundary conditions is constituted, and the numerical simulations are carried out using the MSC ADAMS program system. Results: It is concluded that the use of the multi-body model reduces time and cost since it does not need to manufacture the tibia and the femur as it requires for the knee prosthesis of the test machine. Moreover, without measuring or by dispensing with a test machine for the knee prosthesis geometry, approximation of the results of our model to a human knee is carried out directly. Conclusion: The pattern obtained by the multi-body model provides an insight for future experimental tests related to the rotation and flexion of the knee joint concerning the actual average and friction load.

Keywords: biomechanics, knee joint, rotation, flexion, kinematics, MSC ADAMS

Procedia PDF Downloads 122
396 Modeling and Controlling Nonlinear Dynamical Effects in Non-Contact Superconducting and Diamagnetic Suspensions

Authors: Sergey Kuznetsov, Yuri Urman

Abstract:

We present an approach to investigate non-linear dynamical effects occurring in the noncontact superconducting and diamagnetic suspensions, when levitated body has finite size. This approach is based on the calculation of interaction energy between spherical finite size superconducting or diamagnetic body with external magnetic field. Effects of small deviations from spherical shape may be also taken into account by introducing small corrections to the energy. This model allows investigating dynamical effects important for practical applications, such as nonlinear resonances, change of vibration plane, coupling of rotational and translational motions etc. We also show how the geometry of suspension affects various dynamical effects and how an inverse problem may be formulated to enforce or diminish various dynamical effects.

Keywords: levitation, non-linear dynamics, superconducting, diamagnetic stability

Procedia PDF Downloads 388
395 Multi-Criteria Test Case Selection Using Ant Colony Optimization

Authors: Niranjana Devi N.

Abstract:

Test case selection is to select the subset of only the fit test cases and remove the unfit, ambiguous, redundant, unnecessary test cases which in turn improve the quality and reduce the cost of software testing. Test cases optimization is the problem of finding the best subset of test cases from a pool of the test cases to be audited. It will meet all the objectives of testing concurrently. But most of the research have evaluated the fitness of test cases only on single parameter fault detecting capability and optimize the test cases using a single objective. In the proposed approach, nine parameters are considered for test case selection and the best subset of parameters for test case selection is obtained using Interval Type-2 Fuzzy Rough Set. Test case selection is done in two stages. The first stage is the fuzzy entropy-based filtration technique, used for estimating and reducing the ambiguity in test case fitness evaluation and selection. The second stage is the ant colony optimization-based wrapper technique with a forward search strategy, employed to select test cases from the reduced test suite of the first stage. The results are evaluated using the Coverage parameters, Precision, Recall, F-Measure, APSC, APDC, and SSR. The experimental evaluation demonstrates that by this approach considerable computational effort can be avoided.

Keywords: ant colony optimization, fuzzy entropy, interval type-2 fuzzy rough set, test case selection

Procedia PDF Downloads 643
394 Increasing Health Education Tools Satisfaction in Nursing Staffs

Authors: Lu Yu Jyun

Abstract:

Background: Health education is important nursing work aiming to strengthen patients’ self-caring ability and family members. Our department educates through three methods, including speech education, flyer and demonstration video education. The satisfaction rate of health education tool use is 54.3% in nursing staff. The main reason is there hadn’t been a storage area for flyers, causing extra workload in assessing flyers. The satisfaction rate of health education in patients and families is 70.7%. We aim to improve this situation between 13th April and 6th June 2021. Method: We introduce the ECRS method to erase repetitive and redundant actions. We redesign the health education tool usage workflow to improve nursing staffs’ efficiency and further enhance nursing staffs care quality and working satisfaction. Result: The satisfaction rate of health education tool usage in nursing staff elevated from 54.3% to 92.5%. The satisfaction rate of health education in patients and families elevated from 70.7% to 90.2%. Conclusion: The assessment time of health care tools dropped from 10minutes to 3minutes. This significantly reduced the nursing staffs’ workload. 1213 paper is saved in one month and 14,556 a year in the estimate; we save the environment via this action. Health education map implemented in other nursing departments since October due to its’ high efficiency and makes health care tools more humanize.

Keywords: health, education tools, satisfaction, nursing staff

Procedia PDF Downloads 126
393 Correlation between Dynamic Knee Valgus with Isometric Hip Abductors Strength during Single-Leg Landing

Authors: Ahmed Fawzy, Khaled Ayad, Gh. M. Koura, W. Reda

Abstract:

The knee joint complex is one of the most commonly injured areas of the body in athletes. Excessive frontal plane knee excursion is considered a risk factor for multiple knee pathologies such as anterior cruciate ligament and patellofemoral joint injuries, however, little is known about the biomechanical factors that contribute to this loading pattern. Objectives: The purpose of this study was to investigate if there is a relationship between hip abductors isometric strength and the value of FPPA during single leg landing tasks in normal male subjects. Methods: One hundred (male) subjects free from lower extremity injuries for at least six months ago participated in this study. Their mean age was (23.25 ± 2.88) years, mean weight was (74.76 ± 13.54) (Kg), mean height was (174.23 ± 6.56) (Cm). The knee frontal plane projection angle was measured by digital video camera using single leg landing task. Hip abductors isometric strength were assessed by portable hand-held dynamometer. Muscle strength had been normalized to the body weight to obtain more accurate measurements. Results: The results demonstrated that there was no significant relationship between hip abductors isometric strength and the value of FPPA during single leg landing tasks in normal male subjects. Conclusion: It can be concluded that there is no relationship between hip abductors isometric strength and the value of FPPA during functional activities in normal male subjects.

Keywords: 2-dimensional motion analysis, hip strength, kinematics, knee injuries

Procedia PDF Downloads 228
392 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning

Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza

Abstract:

The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.

Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library

Procedia PDF Downloads 154
391 The Vision Baed Parallel Robot Control

Authors: Sun Lim, Kyun Jung

Abstract:

In this paper, we describe the control strategy of high speed parallel robot system with EtherCAT network. This work deals the parallel robot system with centralized control on the real-time operating system such as window TwinCAT3. Most control scheme and algorithm is implemented master platform on the PC, the input and output interface is ported on the slave side. The data is transferred by maximum 20usecond with 1000byte. EtherCAT is very high speed and stable industrial network. The control strategy with EtherCAT is very useful and robust on Ethernet network environment. The developed parallel robot is controlled pre-design nonlinear controller for 6G/0.43 cycle time of pick and place motion tracking. The experiment shows the good design and validation of the controller.

Keywords: parallel robot control, etherCAT, nonlinear control, parallel robot inverse kinematic

Procedia PDF Downloads 545
390 SEM-EBSD Observation for Microtubes by Using Dieless Drawing Process

Authors: Takashi Sakai, Itaru Kumisawa

Abstract:

Because die drawing requires insertion of a die, a plug, or a mandrel, higher precision and efficiency are demanded for drawing equipment for a tube having smaller diameter. Manufacturing of such tubes is also accompanied by problems such as cracking and fracture. We specifically examine dieless drawing, which is less affected by these drawing-related difficulties. This deformation process is governed by a similar principle to that of reduction in diameter when pulling a heated glass tube. We conducted dieless drawing of SUS304 stainless steel microtubes under various conditions with three factor parameters of heating temperature, area reduction, and drawing speed. We used SEM-EBSD to observe the processing condition effects on microstructural elements. As the result of this study, crystallographic orientation of microtube is clear by using SEM-EBSD analysis.

Keywords: microtube, dieless drawing, IPF (inverse pole figure), GOS (grain orientation spread), crystallographic analysis

Procedia PDF Downloads 226
389 Compressed Sensing of Fetal Electrocardiogram Signals Based on Joint Block Multi-Orthogonal Least Squares Algorithm

Authors: Xiang Jianhong, Wang Cong, Wang Linyu

Abstract:

With the rise of medical IoT technologies, Wireless body area networks (WBANs) can collect fetal electrocardiogram (FECG) signals to support telemedicine analysis. The compressed sensing (CS)-based WBANs system can avoid the sampling of a large amount of redundant information and reduce the complexity and computing time of data processing, but the existing algorithms have poor signal compression and reconstruction performance. In this paper, a Joint block multi-orthogonal least squares (JBMOLS) algorithm is proposed. We apply the FECG signal to the Joint block sparse model (JBSM), and a comparative study of sparse transformation and measurement matrices is carried out. A FECG signal compression transmission mode based on Rbio5.5 wavelet, Bernoulli measurement matrix, and JBMOLS algorithm is proposed to improve the compression and reconstruction performance of FECG signal by CS-based WBANs. Experimental results show that the compression ratio (CR) required for accurate reconstruction of this transmission mode is increased by nearly 10%, and the runtime is saved by about 30%.

Keywords: telemedicine, fetal ECG, compressed sensing, joint sparse reconstruction, block sparse signal

Procedia PDF Downloads 106