Search results for: inherent feature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2213

Search results for: inherent feature

1913 Seashore Debris Detection System Using Deep Learning and Histogram of Gradients-Extractor Based Instance Segmentation Model

Authors: Anshika Kankane, Dongshik Kang

Abstract:

Marine debris has a significant influence on coastal environments, damaging biodiversity, and causing loss and damage to marine and ocean sector. A functional cost-effective and automatic approach has been used to look up at this problem. Computer vision combined with a deep learning-based model is being proposed to identify and categorize marine debris of seven kinds on different beach locations of Japan. This research compares state-of-the-art deep learning models with a suggested model architecture that is utilized as a feature extractor for debris categorization. The model is being proposed to detect seven categories of litter using a manually constructed debris dataset, with the help of Mask R-CNN for instance segmentation and a shape matching network called HOGShape, which can then be cleaned on time by clean-up organizations using warning notifications of the system. The manually constructed dataset for this system is created by annotating the images taken by fixed KaKaXi camera using CVAT annotation tool with seven kinds of category labels. A pre-trained HOG feature extractor on LIBSVM is being used along with multiple templates matching on HOG maps of images and HOG maps of templates to improve the predicted masked images obtained via Mask R-CNN training. This system intends to timely alert the cleanup organizations with the warning notifications using live recorded beach debris data. The suggested network results in the improvement of misclassified debris masks of debris objects with different illuminations, shapes, viewpoints and litter with occlusions which have vague visibility.

Keywords: computer vision, debris, deep learning, fixed live camera images, histogram of gradients feature extractor, instance segmentation, manually annotated dataset, multiple template matching

Procedia PDF Downloads 106
1912 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second

Authors: P. V. Pramila , V. Mahesh

Abstract:

Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients esulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF 25, PEF,FEF 25-75, FEF50, and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF 25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects). It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.

Keywords: FEV, multivariate adaptive regression splines pulmonary function test, random forest

Procedia PDF Downloads 310
1911 A General Framework for Knowledge Discovery from Echocardiographic and Natural Images

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: active contour, Bayesian, echocardiographic image, feature vector

Procedia PDF Downloads 445
1910 Revealing the Feature of Mind Wandering on People with High Creativity and High Mental Health through Experience Sampling Method

Authors: A. Yamaoka, S. Yukawa

Abstract:

Mind wandering is a mental phenomenon of drifting away from a current task or external environment toward inner thought. This research examines the feature of mind wandering which people who have high creativity and high mental health engage in because it is expected that mind wandering which such kind of people engage in may not induce negative affect, although it can improve creativity. Sixty-seven participants were required to complete questionnaires which measured their creativity and mental health. After that, researchers conducted experience sampling method and measured the details of their mind wandering and the situation when mind wandering was generated in daily life for three days. The result showed that high creative people and high mental health people more think about positive things during mind wandering and less think about negative things. In further research, researchers will examine how to induce positive thought during mind wandering and how to inhibit negative thought during mind wandering. Doing so will contribute to improve creative problem solving without generation of negative affect.

Keywords: creativity, experience sampling method, mental health, mind wandering

Procedia PDF Downloads 173
1909 Automatic Integrated Inverter Type Smart Device for Safe Kitchen

Authors: K. M. Jananni, R. Nandini

Abstract:

The proposed wireless, inverter type design of a LPG leakage monitoring system aims to provide a smart and safe kitchen. The system detects the LPG gas leak using Nano-sensors and alerts the concerned individual through GSM system. The system uses two sensors, one attached to the chimney and other to the regulator of the LPG cylinder. Upon a leakage being detected, the sensor at the regulator actuates the system to cut off the gas supply immediately using a solenoid control valve. The sensor at the chimney checks for the permissible level of LPG mix in the air and when the level exceeds the threshold, the system sends an automatic SMS to the numbers saved. Further the sensor actuates the mini suction system fixed at the chimney within 20 seconds of a leakage to suck out the gas until the level falls well below the threshold. As a safety measure, an automatic window opening and alarm feature is also incorporated into the system. The key feature of this design is that the system is provided with a special inverter designed to make the device function effectively even during power failures. In this paper, utilization of sensors in the kitchen area is discussed and this gives the proposed architecture for real time field monitoring with a PIC Micro-controller.

Keywords: nano sensors, global system for mobile communication, GSM, micro controller, inverter

Procedia PDF Downloads 473
1908 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks

Authors: Radhika Ranjan Roy

Abstract:

Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.

Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve

Procedia PDF Downloads 78
1907 Audio-Visual Recognition Based on Effective Model and Distillation

Authors: Heng Yang, Tao Luo, Yakun Zhang, Kai Wang, Wei Qin, Liang Xie, Ye Yan, Erwei Yin

Abstract:

Recent years have seen that audio-visual recognition has shown great potential in a strong noise environment. The existing method of audio-visual recognition has explored methods with ResNet and feature fusion. However, on the one hand, ResNet always occupies a large amount of memory resources, restricting the application in engineering. On the other hand, the feature merging also brings some interferences in a high noise environment. In order to solve the problems, we proposed an effective framework with bidirectional distillation. At first, in consideration of the good performance in extracting of features, we chose the light model, Efficientnet as our extractor of spatial features. Secondly, self-distillation was applied to learn more information from raw data. Finally, we proposed a bidirectional distillation in decision-level fusion. In more detail, our experimental results are based on a multi-model dataset from 24 volunteers. Eventually, the lipreading accuracy of our framework was increased by 2.3% compared with existing systems, and our framework made progress in audio-visual fusion in a high noise environment compared with the system of audio recognition without visual.

Keywords: lipreading, audio-visual, Efficientnet, distillation

Procedia PDF Downloads 134
1906 Microwave-Assisted Eradication of Wool

Authors: M. Salama, K. Haggag, H. El-Sayed

Abstract:

An environmentally and ecologically acceptable method for eradication of wool fabrics based on microwave irradiation (MWI) was described. The process would be a suitable alternative for mothproofing of wool using toxic degradative chemical or biological methods. The effect of microwave irradiation and exposure time on the extent of eradication of wool fabrics from moth larvae was monitored. The inherent properties of the MW-irradiated wool fabrics; viz. tensile properties, alkali solubility, and yellowing index, were not adversely altered.

Keywords: microwave, wool, fabric, moth, eradication, resistance

Procedia PDF Downloads 457
1905 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 240
1904 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: active contour, bayesian, echocardiographic image, feature vector

Procedia PDF Downloads 420
1903 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems

Authors: Hala Zaghloul, Taymoor Nazmy

Abstract:

One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.

Keywords: cognitive system, image processing, segmentation, PCNN kernels

Procedia PDF Downloads 280
1902 Health Hazards of Performance Enhancing Drugs

Authors: Austin Oduor Otieno

Abstract:

There is an ingrained belief that the use of performance-enhancing drugs by athletes enable them to perform better. While this has been found to be truth, it also raises ethical and health issues. This paper analyzes the health hazards associated with performance enhancing drugs. It seeks to achieve this through the analysis of different academic journals as well as publications on the relationship between doping in sports and health. It concludes that there are inherent health hazards associated with the use of performance-enhancing drugs as they affect the physical and psychological health and wellbeing of a user (athlete).

Keywords: doping, health hazards, athletes, drugs

Procedia PDF Downloads 164
1901 Multi-Modal Feature Fusion Network for Speaker Recognition Task

Authors: Xiang Shijie, Zhou Dong, Tian Dan

Abstract:

Speaker recognition is a crucial task in the field of speech processing, aimed at identifying individuals based on their vocal characteristics. However, existing speaker recognition methods face numerous challenges. Traditional methods primarily rely on audio signals, which often suffer from limitations in noisy environments, variations in speaking style, and insufficient sample sizes. Additionally, relying solely on audio features can sometimes fail to capture the unique identity of the speaker comprehensively, impacting recognition accuracy. To address these issues, we propose a multi-modal network architecture that simultaneously processes both audio and text signals. By gradually integrating audio and text features, we leverage the strengths of both modalities to enhance the robustness and accuracy of speaker recognition. Our experiments demonstrate significant improvements with this multi-modal approach, particularly in complex environments, where recognition performance has been notably enhanced. Our research not only highlights the limitations of current speaker recognition methods but also showcases the effectiveness of multi-modal fusion techniques in overcoming these limitations, providing valuable insights for future research.

Keywords: feature fusion, memory network, multimodal input, speaker recognition

Procedia PDF Downloads 32
1900 Image Inpainting Model with Small-Sample Size Based on Generative Adversary Network and Genetic Algorithm

Authors: Jiawen Wang, Qijun Chen

Abstract:

The performance of most machine-learning methods for image inpainting depends on the quantity and quality of the training samples. However, it is very expensive or even impossible to obtain a great number of training samples in many scenarios. In this paper, an image inpainting model based on a generative adversary network (GAN) is constructed for the cases when the number of training samples is small. Firstly, a feature extraction network (F-net) is incorporated into the GAN network to utilize the available information of the inpainting image. The weighted sum of the extracted feature and the random noise acts as the input to the generative network (G-net). The proposed network can be trained well even when the sample size is very small. Secondly, in the phase of the completion for each damaged image, a genetic algorithm is designed to search an optimized noise input for G-net; based on this optimized input, the parameters of the G-net and F-net are further learned (Once the completion for a certain damaged image ends, the parameters restore to its original values obtained in the training phase) to generate an image patch that not only can fill the missing part of the damaged image smoothly but also has visual semantics.

Keywords: image inpainting, generative adversary nets, genetic algorithm, small-sample size

Procedia PDF Downloads 130
1899 Offline Signature Verification in Punjabi Based On SURF Features and Critical Point Matching Using HMM

Authors: Rajpal Kaur, Pooja Choudhary

Abstract:

Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capabilities to the reliably distinguish between an authorized person and an imposter. The Signature recognition systems can categorized as offline (static) and online (dynamic). This paper presents Surf Feature based recognition of offline signatures system that is trained with low-resolution scanned signature images. The signature of a person is an important biometric attribute of a human being which can be used to authenticate human identity. However the signatures of human can be handled as an image and recognized using computer vision and HMM techniques. With modern computers, there is need to develop fast algorithms for signature recognition. There are multiple techniques are defined to signature recognition with a lot of scope of research. In this paper, (static signature) off-line signature recognition & verification using surf feature with HMM is proposed, where the signature is captured and presented to the user in an image format. Signatures are verified depended on parameters extracted from the signature using various image processing techniques. The Off-line Signature Verification and Recognition is implemented using Mat lab platform. This work has been analyzed or tested and found suitable for its purpose or result. The proposed method performs better than the other recently proposed methods.

Keywords: offline signature verification, offline signature recognition, signatures, SURF features, HMM

Procedia PDF Downloads 384
1898 Detection and Classification of Myocardial Infarction Using New Extracted Features from Standard 12-Lead ECG Signals

Authors: Naser Safdarian, Nader Jafarnia Dabanloo

Abstract:

In this paper we used four features i.e. Q-wave integral, QRS complex integral, T-wave integral and total integral as extracted feature from normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our research we focused on detection and localization of MI in standard ECG. We use the Q-wave integral and T-wave integral because this feature is important impression in detection of MI. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI. Because these methods have good accuracy for classification of normal and abnormal signals. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 80% for accuracy in test data for localization and over 95% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve accuracy of classification by adding more features in this method. A simple method based on using only four features which extracted from standard ECG is presented which has good accuracy in MI localization.

Keywords: ECG signal processing, myocardial infarction, features extraction, pattern recognition

Procedia PDF Downloads 454
1897 Social Media and Counseling: Opportunities, Risks and Ethical Considerations

Authors: Kyriaki G. Giota, George Kleftaras

Abstract:

The purpose of this article is to briefly review the opportunities that social media presents to counselors and psychologists. Particular attention was given to understanding some of the more important common risks inherent in social media and the potential ethical dilemmas which may arise for counselors and psychologists who embrace them in their practice. Key considerations of issues pertinent to an online presence such as multiple relationships, visibility and privacy, maintaining ethical principles and professional boundaries are being discussed.

Keywords: social media, counseling, risks, ethics

Procedia PDF Downloads 425
1896 RGB Color Based Real Time Traffic Sign Detection and Feature Extraction System

Authors: Kay Thinzar Phu, Lwin Lwin Oo

Abstract:

In an intelligent transport system and advanced driver assistance system, the developing of real-time traffic sign detection and recognition (TSDR) system plays an important part in recent research field. There are many challenges for developing real-time TSDR system due to motion artifacts, variable lighting and weather conditions and situations of traffic signs. Researchers have already proposed various methods to minimize the challenges problem. The aim of the proposed research is to develop an efficient and effective TSDR in real time. This system proposes an adaptive thresholding method based on RGB color for traffic signs detection and new features for traffic signs recognition. In this system, the RGB color thresholding is used to detect the blue and yellow color traffic signs regions. The system performs the shape identify to decide whether the output candidate region is traffic sign or not. Lastly, new features such as termination points, bifurcation points, and 90’ angles are extracted from validated image. This system uses Myanmar Traffic Sign dataset.

Keywords: adaptive thresholding based on RGB color, blue color detection, feature extraction, yellow color detection

Procedia PDF Downloads 313
1895 Investigation of Aerodynamic and Design Features of Twisting Tall Buildings

Authors: Sinan Bilgen, Bekir Ozer Ay, Nilay Sezer Uzol

Abstract:

After decades of conventional shapes, irregular forms with complex geometries are getting more popular for form generation of tall buildings all over the world. This trend has recently brought out diverse building forms such as twisting tall buildings. This study investigates both the aerodynamic and design features of twisting tall buildings through comparative analyses. Since twisting a tall building give rise to additional complexities related with the form and structural system, lateral load effects become of greater importance on these buildings. The aim of this study is to analyze the inherent characteristics of these iconic forms by comparing the wind loads on twisting tall buildings with those on their prismatic twins. Through a case study research, aerodynamic analyses of an existing twisting tall building and its prismatic counterpart were performed and the results have been compared. The prismatic twin of the original building were generated by removing the progressive rotation of its floors with the same plan area and story height. Performance-based measures under investigation have been evaluated in conjunction with the architectural design. Aerodynamic effects have been analyzed by both wind tunnel tests and computational methods. High frequency base balance tests and pressure measurements on 3D models were performed to evaluate wind load effects on a global and local scale. Comparisons of flat and real surface models were conducted to further evaluate the effects of the twisting form without façade texture contribution. Comparisons highlighted that, the twisting form under investigation shows better aerodynamic behavior both for along wind but particularly for across wind direction. Compared to the prismatic counterpart; twisting model is superior on reducing vortex-shedding dynamic response by disorganizing the wind vortices. Consequently, despite the difficulties arisen from inherent complexity of twisted forms, they could still be feasible and viable with their attractive images in the realm of tall buildings.

Keywords: aerodynamic tests, motivation for twisting, tall buildings, twisted forms, wind excitation

Procedia PDF Downloads 234
1894 The Effect of General Data Protection Regulation on South Asian Data Protection Laws

Authors: Sumedha Ganjoo, Santosh Goswami

Abstract:

The rising reliance on technology places national security at the forefront of 21st-century issues. It complicates the efforts of emerging and developed countries to combat cyber threats and increases the inherent risk factors connected with technology. The inability to preserve data securely might have devastating repercussions on a massive scale. Consequently, it is vital to establish national, regional, and global data protection rules and regulations that penalise individuals who participate in immoral technology usage and exploit the inherent vulnerabilities of technology. This study paper seeks to analyse GDPR-inspired Bills in the South Asian Region and determine their suitability for the development of a worldwide data protection framework, considering that Asian countries are much more diversified than European ones. In light of this context, the objectives of this paper are to identify GDPR-inspired Bills in the South Asian Region, identify their similarities and differences, as well as the obstacles to developing a regional-level data protection mechanism, thereby satisfying the need to develop a global-level mechanism. Due to the qualitative character of this study, the researcher did a comprehensive literature review of prior research papers, journal articles, survey reports, and government publications on the aforementioned topics. Taking into consideration the survey results, the researcher conducted a critical analysis of the significant parameters highlighted in the literature study. Many nations in the South Asian area are in the process of revising their present data protection measures in accordance with GDPR, according to the primary results of this study. Consideration is given to the data protection laws of Thailand, Malaysia, China, and Japan. Significant parallels and differences in comparison to GDPR have been discussed in detail. The conclusion of the research analyses the development of various data protection legislation regimes in South Asia.

Keywords: data privacy, GDPR, Asia, data protection laws

Procedia PDF Downloads 82
1893 User-Driven Product Line Engineering for Assembling Large Families of Software

Authors: Zhaopeng Xuan, Yuan Bian, C. Cailleaux, Jing Qin, S. Traore

Abstract:

Traditional software engineering allows engineers to propose to their clients multiple specialized software distributions assembled from a shared set of software assets. The management of these assets however requires a trade-off between client satisfaction and software engineering process. Clients have more and more difficult to find a distribution or components based on their needs from all of distributed repositories. This paper proposes a software engineering for a user-driven software product line in which engineers define a feature model but users drive the actual software distribution on demand. This approach makes the user become final actor as a release manager in software engineering process, increasing user product satisfaction and simplifying user operations to find required components. In addition, it provides a way for engineers to manage and assembly large software families. As a proof of concept, a user-driven software product line is implemented for eclipse, an integrated development environment. An eclipse feature model is defined, which is exposed to users on a cloud-based built platform from which clients can download individualized Eclipse distributions.

Keywords: software product line, model-driven development, reverse engineering and refactoring, agile method

Procedia PDF Downloads 432
1892 Navigating the Legal Seas: The Freedom to Choose Applicable Law in Tort

Authors: Sara Vora (Hoxha)

Abstract:

An essential feature of any international lawsuit is the ability of the parties to pick the law that would apply in the event of a tort claim. This option to choose the law to use in tort cases is based on Article 14 and 4/3 of the Rome II Regulation. The purpose of this article is to examine the boundaries of this freedom, as well as its relevance in international legal disputes. The article opens with a brief introduction to the basics of tort law. After a short introduction, the article demonstrates why Article 14 and 4/3 of the Rome II Regulation are so crucial to the right to select appropriate law in tort cases. The notion of the right to select the law to use in tort cases is examined, along with its breadth and possible restrictions. The article presents case studies to demonstrate how the right to select relevant law in tort might be put into practise. Case results and the judges' rationales for their rulings are examined. The possible influence of the right to select applicable law in tort on the process of harmonisation is also explored in this study. The results are summarised and the primary research question is addressed in the last section of the paper. In conclusion, the parties' ability to pick the law that rules their dispute via the freedom to choose relevant law in tort is a crucial feature of cross-border litigation. Despite certain restrictions, this freedom is nevertheless an important part of the legal structure that governs international conflicts.

Keywords: applicable law, tort, Rome II regulation, freedom to choose, cross-border litigation, harmonization of tort law

Procedia PDF Downloads 67
1891 Perceptual Image Coding by Exploiting Internal Generative Mechanism

Authors: Kuo-Cheng Liu

Abstract:

In the perceptual image coding, the objective is to shape the coding distortion such that the amplitude of distortion does not exceed the error visibility threshold, or to remove perceptually redundant signals from the image. While most researches focus on color image coding, the perceptual-based quantizer developed for luminance signals are always directly applied to chrominance signals such that the color image compression methods are inefficient. In this paper, the internal generative mechanism is integrated into the design of a color image compression method. The internal generative mechanism working model based on the structure-based spatial masking is used to assess the subjective distortion visibility thresholds that are visually consistent to human eyes better. The estimation method of structure-based distortion visibility thresholds for color components is further presented in a locally adaptive way to design quantization process in the wavelet color image compression scheme. Since the lowest subband coefficient matrix of images in the wavelet domain preserves the local property of images in the spatial domain, the error visibility threshold inherent in each coefficient of the lowest subband for each color component is estimated by using the proposed spatial error visibility threshold assessment. The threshold inherent in each coefficient of other subbands for each color component is then estimated in a local adaptive fashion based on the distortion energy allocation. By considering that the error visibility thresholds are estimated using predicting and reconstructed signals of the color image, the coding scheme incorporated with locally adaptive perceptual color quantizer does not require side information. Experimental results show that the entropies of three color components obtained by using proposed IGM-based color image compression scheme are lower than that obtained by using the existing color image compression method at perceptually lossless visual quality.

Keywords: internal generative mechanism, structure-based spatial masking, visibility threshold, wavelet domain

Procedia PDF Downloads 248
1890 Image Segmentation Using Active Contours Based on Anisotropic Diffusion

Authors: Shafiullah Soomro

Abstract:

Active contour is one of the image segmentation techniques and its goal is to capture required object boundaries within an image. In this paper, we propose a novel image segmentation method by using an active contour method based on anisotropic diffusion feature enhancement technique. The traditional active contour methods use only pixel information to perform segmentation, which produces inaccurate results when an image has some noise or complex background. We use Perona and Malik diffusion scheme for feature enhancement, which sharpens the object boundaries and blurs the background variations. Our main contribution is the formulation of a new SPF (signed pressure force) function, which uses global intensity information across the regions. By minimizing an energy function using partial differential framework the proposed method captures semantically meaningful boundaries instead of catching uninterested regions. Finally, we use a Gaussian kernel which eliminates the problem of reinitialization in level set function. We use several synthetic and real images from different modalities to validate the performance of the proposed method. In the experimental section, we have found the proposed method performance is better qualitatively and quantitatively and yield results with higher accuracy compared to other state-of-the-art methods.

Keywords: active contours, anisotropic diffusion, level-set, partial differential equations

Procedia PDF Downloads 160
1889 The Implications of Instrumental Animal Protection for the Legal and Moral Status of Animals

Authors: Ankita Shanker, Angus Nurse

Abstract:

The notion of animal rights is an emerging trend in various spaces, including judicial and societal discourse. But one of the key purposes of recognizing the fundamental rights of anyone is their de-objectification. Animals are a prime example of a group that has rights that are neither recognized nor protected in any meaningful way, and anything that purports differently fails to ameliorate this because it still objectifies animals. Animals are currently treated by law and society as commodities with primarily (though not exclusively) instrumental value to some other rights-holder, such as humans or nature. So most protections that are afforded to them are done so in furtherance of the interests that they allegedly further, be it social morality or environmental protection. Animal rights are thus often seen as an application or extension of the rights of humans or, more commonly, the rights of nature. What this means is that animal rights are not always protected or even recognized in their own regard, but as stemming from some other reason, or worse, instrumentally as means to some other ends. This has two identifiable effects from a legal perspective: animal rights are not seen as inherently justified and are not seen as inherently valuable. Which in turn means that there can be no fundamental protection of animal rights. In other words, judicial protection does not always entail protection of animal ‘rights’ qua animal rights, which is needed for any meaningful protections to be afforded to animals. But the effects of this legal paradigm do not end at the legal status of animals. Because this status, in turn, affects how persons and the societies of which they form part see animals as a part of the rights of others, such as humans or nature, or as valuable only insofar as they further these rights, as opposed to as individuals with inherent worth and value deserving of protection regardless of their instrumental usefulness to these other objectives. This does nothing to truly de-objectify animals. Because even though most people would agree that animals are not objects, they continue to treat them as such wherever it serves them. For individuals and society to resolve, this inconsistency between stance and actions is for them to believe that animals are more than objects on a psychological and societal level. In this paper, we examine the implications of this perception of animals and their rights on the legal protections afforded to them and on the minds of individuals and civil society. We also argue that a change in the legal and societal status of animals can be brought about only through judicial, psychological, and sociological acknowledgment that animals have inherent value and deserve protection on this basis. Animal rights derived in such a way would not need to place reliance on other justifications and would not be subject to subjugation to other rights should a conflict arise.

Keywords: animal rights law, animal protection laws, psycho-socio-legal studies, animal rights, human rights, rights of nature

Procedia PDF Downloads 108
1888 Relevance Feedback within CBIR Systems

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-Nearest Neighbours Algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing colour moments on the RGB space. This compact descriptor, Colour Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.

Keywords: CBIR, category search, relevance feedback, query point movement, standard Rocchio’s formula, adaptive shifting query, feature weighting, original KNN, incremental KNN

Procedia PDF Downloads 280
1887 River Stage-Discharge Forecasting Based on Multiple-Gauge Strategy Using EEMD-DWT-LSSVM Approach

Authors: Farhad Alizadeh, Alireza Faregh Gharamaleki, Mojtaba Jalilzadeh, Houshang Gholami, Ali Akhoundzadeh

Abstract:

This study presented hybrid pre-processing approach along with a conceptual model to enhance the accuracy of river discharge prediction. In order to achieve this goal, Ensemble Empirical Mode Decomposition algorithm (EEMD), Discrete Wavelet Transform (DWT) and Mutual Information (MI) were employed as a hybrid pre-processing approach conjugated to Least Square Support Vector Machine (LSSVM). A conceptual strategy namely multi-station model was developed to forecast the Souris River discharge more accurately. The strategy used herein was capable of covering uncertainties and complexities of river discharge modeling. DWT and EEMD was coupled, and the feature selection was performed for decomposed sub-series using MI to be employed in multi-station model. In the proposed feature selection method, some useless sub-series were omitted to achieve better performance. Results approved efficiency of the proposed DWT-EEMD-MI approach to improve accuracy of multi-station modeling strategies.

Keywords: river stage-discharge process, LSSVM, discrete wavelet transform, Ensemble Empirical Decomposition Mode, multi-station modeling

Procedia PDF Downloads 175
1886 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 74
1885 Bring Your Own Devices (BOYD): Risks and Mitigation Strategies

Authors: Mohammed Ketel

Abstract:

This paper discusses the security issues related to Bring Your Own Devices (BYOD) programs, an increasingly popular choice for small and big businesses alike, and explores the benefits, risks, the available controls and solutions to mitigate the inherent security concerns with mobile devices, in general, and BYOD programs specifically. The paper also discusses the approaches that organizations can apply to mitigate the risks, which may include policies, diverse technologies, education, and training.

Keywords: BYOD, security, policies, standards, controls, education

Procedia PDF Downloads 288
1884 Some Results on Generalized Janowski Type Functions

Authors: Fuad Al Sarari

Abstract:

The purpose of the present paper is to study subclasses of analytic functions which generalize the classes of Janowski functions introduced by Polatoglu. We study certain convolution conditions. This leads to a study of the sufficient condition and the neighborhood results related to the functions in the class S (T; H; F ): and a study of new subclasses of analytic functions that are defined using notions of the generalized Janowski classes and -symmetrical functions. In the quotient of analytical representations of starlikeness and convexity with respect to symmetric points, certain inherent properties are pointed out.

Keywords: convolution conditions, subordination, Janowski functions, starlike functions, convex functions

Procedia PDF Downloads 67