Search results for: improved RSA
4364 Causes Analysis of Vacuum Consolidation Failure to Soft Foundation Filled by Newly Dredged Mud
Authors: Bao Shu-Feng, Lou Yan, Dong Zhi-Liang, Mo Hai-Hong, Chen Ping-Shan
Abstract:
For soft foundation filled by newly dredged mud, after improved by Vacuum Preloading Technology (VPT), the soil strength was increased only a little, the effective improved depth was small, and the ground bearing capacity is still low. To analyze the causes in depth, it was conducted in laboratory of several comparative single well model experiments of VPT. It was concluded: (1) it mainly caused serious clogging problem and poor drainage performance in vertical drains of high content of fine soil particles and strong hydrophilic minerals in dredged mud, too fast loading rate at the early stage of vacuum preloading (namely rapidly reaching-80kPa) and too small characteristic opening size of the filter of the existed vertical drains; (2) it commonly reduced the drainage efficiency of drainage system, in turn weaken vacuum pressure in soils and soil improvement effect of the greater partial loss and friction loss of vacuum pressure caused by larger curvature of vertical drains and larger transfer resistance of vacuum pressure in horizontal drain.Keywords: newly dredged mud, single well model experiments of vacuum preloading technology, poor drainage performance of vertical drains, poor soil improvement effect, causes analysis
Procedia PDF Downloads 2874363 Prone Positioning and Clinical Outcomes of Mechanically Ventilated Patients with Severe Acute Respiratory Distress Syndrome
Authors: Maha Salah Abdullah Ismail, Mahmoud M. Alsagheir, Mohammed Salah Abd Allah
Abstract:
Acute respiratory distress syndrome (ARDS) is characterized by permeability pulmonary edema and refractory hypoxemia. Lung-protective ventilation is still the key of better outcome in ARDS. Prone position reduces the trans-pulmonary pressure gradient, recruiting collapsed regions of the lung without increasing airway pressure or hyperinflation. Prone ventilation showed improved oxygenation and improved outcomes in severe hypoxemic patients with ARDS. This study evaluates the effect of prone positioning on mechanically ventilated patients with ARDS. A quasi-experimental design was carried out at Critical Care Units, on 60 patients. Two tools were utilized to collect data; Socio demographic, medical and clinical outcomes data sheet. Results of the present study indicated that prone position improves oxygenation in patients with severe respiratory distress syndrome. The study recommended that use prone position in patients with severe ARDS, as early as possible and for long sessions. Also, replication of this study on larger probability sample at the different geographical location is highly recommended.Keywords: acute respiratory distress syndrome, critical care, mechanical ventilation, prone position
Procedia PDF Downloads 5384362 CO2 Methanation over Ru-Ni/CeO2 Catalysts
Authors: Nathalie Elia, Samer Aouad, Jane Estephane, Christophe Poupin, Bilal Nsouli, Edmond Abi Aad
Abstract:
Carbon dioxide is one of the main contributors to greenhouse effect and hence to climate change. As a result, the methanation reaction CO2(g) + 4H2(g) →CH4(g) + 2H2O (ΔH°298 = -165 kJ/mol), also known as Sabatier reaction, has received great interest as a process for the valorization of the greenhouse gas CO2 into methane which is a hydrogen-carrier gas. The methanation of CO2 is an exothermic reaction favored at low temperature and high pressure. However, this reaction requires a high energy input to activate the very stable CO2 molecule, and exhibits serious kinetic limitations. Consequently, the development of active and stable catalysts is essential to overcome these difficulties. Catalytic methanation of CO2 has been studied using catalysts containing Rh, Pd, Ru, Co and Ni on various supports. Among them, the Ni-based catalysts have been extensively investigated under various conditions for their comparable methanation activity with highly improved cost-efficiency. The addition of promoters are common strategies to increase the performance and stability of Ni catalysts. In this work, a small amount of Ru was used as a promoter for Ni catalysts supported on ceria and tested in the CO2 methanation reaction. The nickel loading was 5 wt. % and ruthenium loading is 0.5wt. %. The catalysts were prepared by successive impregnation method using Ni(NO3)2.6H2O and Ru(NO)(NO3)3 as precursors. The calcined support was impregnated with Ni(NO3)2.6H2O, dried, calcined at 600°C for 4h, and afterward, was impregnated with Ru(NO)(NO3)3. The resulting solid was dried and calcined at 600°C for 4 h. Supported monometallic catalysts were prepared likewise. The prepared solids Ru(0.5%)/CeO2, Ni(5%)/CeO2 and Ru(0.5%)-Ni(5%)/CeO2 were then reduced prior to the catalytic test under a flow of 50% H2/Ar (50 ml/min) for 4h at 500°C. Finally, their catalytic performances were evaluated in the CO2 methanation reaction, in the temperature range of 100–350°C by using a gaseous mixture of CO2 (10%) and H2 (40%) in Ar balanced at a total flow rate of 100 mL/min. The effect of pressure on the CO2 methanation was studied by varying the pressure between 1 and 10 bar. The various catalysts showed negligible CO2 conversion at temperatures lower than 250°C. The conversion of CO2 increases with increasing reaction temperature. The addition of Ru as promoter to Ni/CeO2 improved the CO2 methanation. It was shown that the CO2 conversion increases from 15 to 70% at 350°C and 1 bar. The effect of pressure on CO2 conversion was also studied. Increasing the pressure from 1 to 5 bar increases the CO2 conversion from 70% to 87%, while increasing the pressure from 5 to 10 bar increases the CO2 conversion from 87% to 91%. Ru–Ni catalysts showed excellent catalytic performance in the methanation of carbon dioxide with respect to Ni catalysts. Therefore the addition of Ru onto Ni catalysts improved remarkably the catalytic activity of Ni catalysts. It was also found that the pressure plays an important role in improving the CO2 methanation.Keywords: CO2, methanation, nickel, ruthenium
Procedia PDF Downloads 2224361 The Influence of Silica on the Properties of Cementitious Composites
Authors: Eva Stefanovska, Estefania Cuenca, Aleksandra Momirov, Monika Fidanchevska, Liberato Ferrara, Emilija Fidanchevski
Abstract:
Silica is used in construction materials as a part of natural raw materials or as an additive in powder form (micro and nano dimensions). SiO₂ particles in cement act as centers of nucleation, as a filler or as pozzolan material. In this regard, silica improves the microstructure of cementitious composites, increases the mechanical properties, and finally also results into improved durability of the final products. Improved properties of cementitious composites may lead to better structural efficiency, which, together with increased durability, results into increased sustainability signature of structures made with this kind of materials. The aim of the present work was to investigate the influence of silica on the properties of cement. Fly ash (as received and mechanically activated) and synthetized silica (sol-gel method using TEOS as precursor) was used in the investigation as source of silica. Four types of cement mixtures were investigated (reference cement paste, cement paste with addition of 15wt.% as-received fly ash, cement paste with 15 wt.% mechanically activated fly ash and cement paste with 14wt.% mechanically activated fly ash and 1 wt.% silica). The influence of silica on setting time and mechanical properties (2, 7 and 28 days) was followed. As a matter of fact it will be shown that cement paste with composition 85 wt. % cement, 14 wt.% mechanically activated fly ash and 1 wt. % SiO₂ obtained by the sol-gel method was the best performing one, with increased compressive and flexure strength by 9 and 10 % respectively, as compared to the reference mixture. Acknowledgements: 'COST Action CA15202, www.sarcos.eng.cam.ac.uk'Keywords: cement, fly ash, mechanical properties, silica, sol-gel
Procedia PDF Downloads 1454360 Screening of Wheat Wild Relatives as a Gene Pool for Improved Photosynthesis in Wheat Breeding
Authors: Amanda J. Burridge, Keith J. Edwards, Paul A. Wilkinson, Tom Batstone, Erik H. Murchie, Lorna McAusland, Ana Elizabete Carmo-Silva, Ivan Jauregui, Tracy Lawson, Silvere R. M. Vialet-Chabrand
Abstract:
The rate of genetic progress in wheat production must be improved to meet global food security targets. However, past selection for domestication traits has reduced the genetic variation in modern wheat cultivars, a fact that could severely limit the future rate of genetic gain. The genetic variation in agronomically important traits for the wild relatives and progenitors of wheat is far greater than that of the current domesticated cultivars, but transferring these traits into modern cultivars is not straightforward. Between the elite cultivars of wheat, photosynthetic capacity is a key trait for which there is limited variation. Early screening of wheat wild relative and progenitors has shown differences in photosynthetic capacity and efficiency not only between wild relative species but marked differences between the accessions of each species. By identifying wild relative accessions with improved photosynthetic traits and characterising the genetic variation responsible, it is possible to incorporate these traits into advanced breeding programmes by wide crossing and introgression programmes. To identify the potential variety of photosynthetic capacity and efficiency available in the secondary and tertiary genepool, a wide scale survey was carried out for over 600 accessions from 80 species including those from the genus Aegilops, Triticum, Thinopyrum, Elymus, and Secale. Genotype data were generated for each accession using a ‘Wheat Wild Relative’ Single Nucleotide Polymorphism (SNP) genotyping array composed of 35,000 SNP markers polymorphic between wild relatives and elite hexaploid wheat. This genotype data was combined with phenotypic measurements such as gas exchange (CO₂, H₂O), chlorophyll fluorescence, growth, morphology, and RuBisCO activity to identify potential breeding material with enhanced photosynthetic capacity and efficiency. The data and associated analysis tools presented here will prove useful to anyone interested in increasing the genetic diversity in hexaploid wheat or the application of complex genotyping data to plant breeding.Keywords: wheat, wild relatives, pre-breeding, genomics, photosynthesis
Procedia PDF Downloads 2244359 Academic Skills Enhancement in Secondary School Students Undertaking Tertiary Studies
Authors: Richard White, Anne Drabble, Maureen O’Neill
Abstract:
The University of the Sunshine Coast (USC) offers secondary school students in the final two years of school (Years 11 and 12, 16 – 18 years of age) an opportunity to participate in a program which provides an accelerated pathway to tertiary studies. Whilst still at secondary school, the students undertake two first year university subjects that are required subjects in USC undergraduate degree programs. The program is called Integrated Learning Pathway (ILP) and offers a range of disciplines, including business, design, drama, education, and engineering. Between 2010 and 2014, 38% of secondary students who participated in an ILP program commenced undergraduate studies at USC following completion of secondary school studies. The research reported here considers “before and after” literacy and numeracy competencies of students to determine what impact participation in the ILP program has had on their academic skills. Qualitative and quantitative data has been gathered via numeracy and literacy testing of the students, and a survey asking the students to self-evaluate their numeracy and literacy skills, and reflect on their views of these academic skills. The research will enable improved targeting of teaching strategies so that students will acquire not only course-specific learning outcomes but also collateral academic skills. This enhancement of academic skills will improve undergraduate experience and improve student retention.Keywords: academic skills enhancement, accelerated pathways, improved teaching, student retention
Procedia PDF Downloads 3084358 Phytoremediation Waste Processing of Coffee in Various Concentration of Organic Materials Plant Using Kiambang
Authors: Siti Aminatu Zuhria
Abstract:
On wet coffee processing can improve the quality of coffee, but the coffee liquid waste that can pollute the environment. Liquid waste a lot of coffee resulting from the stripping and washing the coffee. This research will be carried out the process of handling liquid waste stripping coffee from the coffee skin with media phytoremediation using plants kiambang. The purpose of this study was to determine the characteristics of the coffee liquid waste and plant phytoremediation kiambang as agent in various concentrations of liquid waste coffee as well as determining the most optimal concentration in the improved quality of waste water quality standard approach. This research will be conducted through two stages, namely the preliminary study and the main study. In a preliminary study aims to determine the ability of the plant life kiambang as phytoremediation agent in the media well water, distilled water and liquid waste coffee. The main study will be conducted wastewater dilution and coffee will be obtained COD concentration variations. Results are expected at this research that can determine the ability of plants kiambang as an agent for phytoremediation in wastewater treatment with various concentrations of waste and the most optimal concentration in the improved quality of waste water quality standard approach.Keywords: wet coffee processing, phytoremediation, Kiambang plant, variation concentration liquid waste
Procedia PDF Downloads 3054357 Effect of High Volume processed Fly Ash on Engineering Properties of Concrete
Authors: Dhara Shah, Chandrakant Shah
Abstract:
As everyone knows, fly ash is a residual material we get upon energy production using coal. It has found numerous advantages for use in the concrete industry like improved workability, increased ultimate strength, reduced bleeding, reduced permeability, better finish and reduced heat of hydration. Types of fly ash depend on the type of coal and the coal combustion process. It is a pozzolanic material and has mainly two classes, F and C, based on the chemical composition. The fly ash used for this experimental work contains significant amount of lime and would be categorized as type F fly ash. Generally all types of fly ash have particle size less than 0.075mm. The fineness and lime content of fly ash are very important as they will affect the air content and water demand of the concrete, thereby affecting the durability and strength of the concrete. The present work has been done to optimize the use of fly ash to produce concrete with improved results and added benefits. A series of tests are carried out, analyzed and compared with concrete manufactured using only Portland cement as a binder. The present study is carried out for concrete mix with replacement of cement with different proportions of fly ash. Two concrete mixes M25 and M30 were studied with six replacements of cement with fly ash i.e. 40%, 45%, 50%, 55%, 60% and 65% for 7-day, 14-day, 28-day, 56-day and 90-day. Study focused on compressive strength, split tensile strength, modulus of elasticity and modulus of rupture of concrete. Study clearly revealed that cement replacement by any proportion of fly ash failed to achieve early strength. Replacement of 40% and 45% succeeded in achieving required flexural strength for M25 and M30 grade of concrete.Keywords: processed fly ash, engineering properties of concrete, pozzolanic, lime content
Procedia PDF Downloads 3354356 Mental Health and Technology: Evidence Review
Authors: Kylie Henderson
Abstract:
Adapting mental health interventions is important when providing support to those experiencing difficulties. This analysis aimed to explore and evaluate the effectiveness of various forms of mental health interventions. Literature that has analysed face-to-face (F2F), phone (Telehealth), mobile (mHealth) and online (e-interventions) interferences found all interventions were effective in reducing and treating symptoms of mental health disorders. F2F and Telehealth interventions facilitated greater engagement and client satisfaction. Due to accessibility and privacy, mHealth and e-interventions were the preferred methods of engagement with health services for youth and young adults. Regardless, these interventions still identified several barriers of high dropout, low adherence, and lack of awareness. Additionally, a large proportion of interventions lacked evidence-based foundations. Exploration of interventions that utilise a variety of interfaces, as well as incorporated evidence-based literature and clinician experience, show that they benefit those experiencing mental health difficulties. Applications like YourHealth+ provide a combination of interventions (F2F, mHealth, and e-interventions) to improve the wellbeing of job seekers and employment consults. Individuals that have used the application in conjunction with therapy have reported feeling more empowered and demonstrated improved wellbeing. Practitioners have also described improved confidence in their ability to provide support to clients. Therefore, it can be proposed that utilising a variety of interventions as well as incorporating literature and experience is beneficial to those experiencing mental health difficulties and to health practitioners.Keywords: face-to-face, e-interventions, mHealth, YourHealth+
Procedia PDF Downloads 1384355 Improved of Elliptic Curves Cryptography over a Ring
Authors: Abdelhakim Chillali, Abdelhamid Tadmori, Muhammed Ziane
Abstract:
In this article we will study the elliptic curve defined over the ring An and we define the mathematical operations of ECC, which provides a high security and advantage for wireless applications compared to other asymmetric key cryptosystem.Keywords: elliptic curves, finite ring, cryptography, study
Procedia PDF Downloads 3724354 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-fed Sesame (Sesamum indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray
Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu, Tigray
Abstract:
Sesame is an important oilseed crop in Ethiopia; which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool; which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validated the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates; 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99; and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99, and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.Keywords: aquacrop model, sesame, normalized water productivity, nitrogen fertilizer
Procedia PDF Downloads 754353 Resilient Manufacturing in Times of Mass Customisation: Using Augmented Reality to Improve Training and Operating Practices of EV’s Battery Assembly
Authors: Lorena Caires Moreira, Marcos Kauffman
Abstract:
This paper outlines the results of experimental research on deploying an emerging augmented reality (AR) system for real-time task assistance of highly customized and high-risk manual operations. The focus is on operators’ training capabilities and the aim is to test if such technologies can support achieving higher levels of knowledge retention and accuracy of task execution to improve health and safety (H and S) levels. The proposed solution is tested and validated using a real-world case study of electric vehicles’ battery module assembly. The experimental results revealed that the proposed AR method improved the training practices by increasing the knowledge retention levels from 40% to 84% and improved the accuracy of task execution from 20% to 71%, compared to the traditional paper-based method. The results of this research can be used as a demonstration of how emerging technologies are advancing the choice of manual, hybrid, or fully automated processes by promoting the connected worker (Industry 5.0) and supporting manufacturing in becoming more resilient in times of constant market changes.Keywords: augmented reality, extended reality, connected worker, XR-assisted operator, manual assembly, industry 5.0, smart training, battery assembly
Procedia PDF Downloads 1284352 Estimation of Consolidating Settlement Based on a Time-Dependent Skin Friction Model Considering Column Surface Roughness
Authors: Jiang Zhenbo, Ishikura Ryohei, Yasufuku Noriyuki
Abstract:
Improvement of soft clay deposits by the combination of surface stabilization and floating type cement-treated columns is one of the most popular techniques worldwide. On the basis of one dimensional consolidation model, a time-dependent skin friction model for the column-soil interaction is proposed. The nonlinear relationship between column shaft shear stresses and effective vertical pressure of the surrounding soil can be described in this model. The influence of column-soil surface roughness can be represented using a roughness coefficient R, which plays an important role in the design of column length. Based on the homogenization method, a part of floating type improved ground will be treated as an unimproved portion, which with a length of αH1 is defined as a time-dependent equivalent skin friction length. The compression settlement of this unimproved portion can be predicted only using the soft clay parameters. Apart from calculating the settlement of this composited ground, the load transfer mechanism is discussed utilizing model tests. The proposed model is validated by comparing with calculations and laboratory results of model and ring shear tests, which indicate the suitability and accuracy of the solutions in this paper.Keywords: floating type improved foundation, time-dependent skin friction, roughness, consolidation
Procedia PDF Downloads 4684351 ORR Electrocatalyst for Batteries and Fuel Cells Development with SIO₂/Carbon Black Based Composite Nanomaterials
Authors: Maryam Kiani
Abstract:
This study focuses on the development of composite nanomaterials based on SiO₂ and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO₂/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO₂ into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO₂ facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO₂/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.Keywords: ORR, fuel cells, batteries, electrocatalyst
Procedia PDF Downloads 1134350 Graphene Reinforced Magnesium Metal Matrix Composites for Biomedical Applications
Authors: Khurram Munir, Cuie Wen, Yuncang Li
Abstract:
Magnesium (Mg) metal matrix composites (MMCs) reinforced with graphene nanoplatelets (GNPs) have been developed by powder metallurgy (PM). In this study, GNPs with different concentrations (0.1-0.3 wt.%) were dispersed into Mg powders by high-energy ball-milling processes. The microstructure and resultant mechanical properties of the fabricated nanocomposites were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy (RS), compression and nano-wear tests. The corrosion resistance of the fabricated composites was evaluated by electrochemical tests and hydrogen evolution measurements. Finally, the biological response of Mg-GNPs composites was assessed using osteoblast-like SaOS2 cells. The results indicate that GNPs are excellent candidates as reinforcements in Mg matrices for the manufacture of biodegradable Mg-based composite implants. GNP addition improved the mechanical properties of Mg via synergetic strengthening modes. Moreover, retaining the structural integrity of GNPs during PM processing improved the ductility, compressive strength, and corrosion resistance of the Mg-GNP composites as compared to monolithic Mg. Cytotoxicity assessments did not reveal any significant toxicity with the addition of GNPs to Mg matrices. This study demonstrates that Mg-xGNPs with x < 0.3 wt.%, may constitute novel biodegradable implant materials for load-bearing applications.Keywords: magnesium-graphene composites, strengthening mechanisms, In vitro cytotoxicity, biocorrosion
Procedia PDF Downloads 1584349 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-Fed Sesame (Sesamum Indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray, Ethiopia
Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu
Abstract:
Sesame is an important oilseed crop in Ethiopia, which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool, which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validate the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates, 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99, and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99 and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.Keywords: aquacrop model, normalized water productivity, nitrogen fertilizer, canopy cover, sesame
Procedia PDF Downloads 794348 Liposomal Encapsulation of Silver Nanoparticle for Improved Delivery and Enhanced Anticancer Properties
Authors: Azeez Yusuf, Alan Casey
Abstract:
Silver nanoparticles (AgNP) are one of the most widely investigated metallic nanoparticles due to their promising antibacterial activities. In recent years, AgNP research has shifted beyond antimicrobial use to potential applications in the medical arena. This shift coupled with the extensive commercial applications of AgNP will further increase human exposure, and the subsequent risk of adverse effects that may result from repeated exposures and inefficient delivery meaning research into improved AgNP delivery is of paramount importance. In this study, AgNP were encapsulated in a natural bio-surfactant, dipalmitoylphosphatyidyl choline (DPPC), in an attempt to enhance the intracellular delivery and simultaneously mediate the associated cytotoxicity of the AgNP. It was noted that as a result of the encapsulation, liposomal-AgNP (Lipo-AgNP) at 0.625 μg/ml induced significant cell death in THP1 cell lines a notably lower dose than that of the uncoated AgNP induced cytotoxicity. The induced cytotoxicity was shown to result in an increased level of DNA fragmentation resulting in a cell cycle interruption at the S phase of the cell cycle. It was shown that the predominate form of cell death upon exposure to both uncoated and Lipo-AgNP was apoptosis, however, a ROS-independent activation of the executioner caspases 3/7 occurred when exposed to the Lipo-AgNP. These findings showed that encapsulation of AgNP enhances AgNP cytotoxicity and mediates an ROS-independent induction of apoptosis.Keywords: silver nanoparticles, AgNP, cytotoxicity, encapsulation, liposome
Procedia PDF Downloads 1564347 Effect of Surface Preparation of Concrete Substrate on Bond Tensile Strength of Thin Bonded Cement Based Overlays
Authors: S. Asad Ali Gillani, Ahmed Toumi, Anaclet Turatsinze
Abstract:
After a certain period of time, the degradation of concrete structures is unavoidable. For large concrete areas, thin bonded cement-based overlay is a suitable rehabilitation technique. Previous research demonstrated that durability of bonded cement-based repairs is always a problem and one of its main reasons is deboning at interface. Since durability and efficiency of any repair system mainly depend upon the bond between concrete substrate and repair material, the bond between concrete substrate and repair material can be improved by increasing the surface roughness. The surface roughness can be improved by performing surface treatment of the concrete substrate to enhance mechanical interlocking which is one of the basic mechanisms of adhesion between two surfaces. In this research, bond tensile strength of cement-based overlays having substrate surface prepared using different techniques has been characterized. In first step cement based substrate was prepared and then cured for three months. After curing two different types of the surface treatments were performed on this substrate; cutting and sandblasting. In second step overlay was cast on these prepared surfaces, which were cut and sandblasted surfaces. The overlay was also cast on the surface without any treatment. Finally, bond tensile strength of cement-based overlays was evaluated in direct tension test and the results are discussed in this paper.Keywords: concrete substrate, surface preparation, overlays, bond tensile strength
Procedia PDF Downloads 4594346 Humans Trust Building in Robots with the Help of Explanations
Authors: Misbah Javaid, Vladimir Estivill-Castro, Rene Hexel
Abstract:
The field of robotics is advancing rapidly to the point where robots have become an integral part of the modern society. These robots collaborate and contribute productively with humans and compensate some shortcomings from human abilities and complement them with their skills. Effective teamwork of humans and robots demands to investigate the critical issue of trust. The field of human-computer interaction (HCI) has already examined trust humans place in technical systems mostly on issues like reliability and accuracy of performance. Early work in the area of expert systems suggested that automatic generation of explanations improved trust and acceptability of these systems. In this work, we augmented a robot with the user-invoked explanation generation proficiency. To measure explanations effect on human’s level of trust, we collected subjective survey measures and behavioral data in a human-robot team task into an interactive, adversarial and partial information environment. The results showed that with the explanation capability humans not only understand and recognize robot as an expert team partner. But, it was also observed that human's learning and human-robot team performance also significantly improved because of the meaningful interaction with the robot in the human-robot team. Moreover, by observing distinctive outcomes, we expect our research outcomes will also provide insights into further improvement of human-robot trustworthy relationships.Keywords: explanation interface, adversaries, partial observability, trust building
Procedia PDF Downloads 2004345 Estimation of a Finite Population Mean under Random Non Response Using Improved Nadaraya and Watson Kernel Weights
Authors: Nelson Bii, Christopher Ouma, John Odhiambo
Abstract:
Non-response is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random non-response using auxiliary data. In this study, it is assumed that random non-response occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random non-response. In particular, the auxiliary information is used via an improved Nadaraya-Watson kernel regression technique to compensate for random non-response. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at a 95% coverage rate. The results obtained in this study are useful, for instance, in choosing efficient estimators of the finite population mean in demographic sample surveys.Keywords: mean squared error, random non-response, two-stage cluster sampling, confidence interval lengths
Procedia PDF Downloads 1404344 An Improved Discrete Version of Teaching–Learning-Based Optimization for Supply Chain Network Design
Authors: Ehsan Yadegari
Abstract:
While there are several metaheuristics and exact approaches to solving the Supply Chain Network Design (SCND) problem, there still remains an unfilled gap in using the Teaching-Learning-Based Optimization (TLBO) algorithm. The algorithm has demonstrated desirable results with problems with complicated combinational optimization. The present study introduces a Discrete Self-Study TLBO (DSS-TLBO) with priority-based solution representation that can solve a supply chain network configuration model to lower the total expenses of establishing facilities and the flow of materials. The network features four layers, namely suppliers, plants, distribution centers (DCs), and customer zones. It is designed to meet the customer’s demand through transporting the material between layers of network and providing facilities in the best economic Potential locations. To have a higher quality of the solution and increase the speed of TLBO, a distinct operator was introduced that ensures self-adaptation (self-study) in the algorithm based on the four types of local search. In addition, while TLBO is used in continuous solution representation and priority-based solution representation is discrete, a few modifications were added to the algorithm to remove the solutions that are infeasible. As shown by the results of experiments, the superiority of DSS-TLBO compared to pure TLBO, genetic algorithm (GA) and firefly Algorithm (FA) was established.Keywords: supply chain network design, teaching–learning-based optimization, improved metaheuristics, discrete solution representation
Procedia PDF Downloads 524343 An Improved Multiple Scattering Reflectance Model Based on Specular V-Cavity
Authors: Hongbin Yang, Mingxue Liao, Changwen Zheng, Mengyao Kong, Chaohui Liu
Abstract:
Microfacet-based reflection models are widely used to model light reflections for rough surfaces. Microfacet models have become the standard surface material building block for describing specular components with varying roughness; and yet, while they possess many desirable properties as well as produce convincing results, their design ignores important sources of scattering, which can cause a significant loss of energy. Specifically, they only simulate the single scattering on the microfacets and ignore the subsequent interactions. As the roughness increases, the interaction will become more and more important. So a multiple-scattering microfacet model based on specular V-cavity is presented for this important open problem. However, it spends much unnecessary rendering time because of setting the same number of scatterings for different roughness surfaces. In this paper, we design a geometric attenuation term G to compute the BRDF (Bidirectional reflection distribution function) of multiple scattering of rough surfaces. Moreover, we consider determining the number of scattering by deterministic heuristics for different roughness surfaces. As a result, our model produces a similar appearance of the objects with the state of the art model with significantly improved rendering efficiency. Finally, we derive a multiple scattering BRDF based on the original microfacet framework.Keywords: bidirectional reflection distribution function, BRDF, geometric attenuation term, multiple scattering, V-cavity model
Procedia PDF Downloads 1164342 Effect of Damper Combinations in Series or Parallel on Structural Response
Authors: Ajay Kumar Sinha, Sharad Singh, Anukriti Sinha
Abstract:
Passive energy dissipation method for earthquake protection of structures is undergoing developments for improved performance. Combined use of different types of damping mechanisms has shown positive results in the near past. Different supplemental damping methods like viscous damping, frictional damping and metallic damping are being combined together for optimum performance. The conventional method of connecting passive dampers to structures is a parallel connection between the damper unit and structural member. Researchers are investigating coupling effect of different types of dampers. The most popular choice among the research community is coupling of viscous dampers and frictional dampers. The series and parallel coupling of these damping units are being studied for relative performance of the coupled system on response control of structures against earthquake. In this paper an attempt has been made to couple Fluid Viscous Dampers and Frictional Dampers in series and parallel to form a single unit of damping system. The relative performance of the coupled units has been studied on three dimensional reinforced concrete framed structure. The current theories of structural dynamics in practice for viscous damping and frictional damping have been incorporated in this study. The time history analysis of the structural system with coupled damper units, uncoupled damper units as well as of structural system without any supplemental damping has been performed in this study. The investigations reported in this study show significant improved performance of coupled system. A higher natural frequency of the system outside the forcing frequency has been obtained for structural systems with coupled damper units as against the other cases. The structural response of the structure in terms of storey displacement and storey drift show significant improvement for the case with coupled damper units as against the cases with uncoupled units or without any supplemental damping. The results are promising in terms of improved response of the structure with coupled damper units. Further investigations in this regard for a comparative performance of the series and parallel coupled systems will be carried out to study the optimum behavior of these coupled systems for enhanced response control of structural systems.Keywords: frictional damping, parallel coupling, response control, series coupling, supplemental damping, viscous damping
Procedia PDF Downloads 4564341 An Investigation on the Effect of Window Tinting on Thermal Comfort inside Office Buildings
Authors: S. El-Azzeh, A. Al-Aqqad, M. Salem, H. Al-Khaldi, S. Thaher
Abstract:
Thermal comfort studies are very important during the early stages of the building’s design. If this study was ignored, problems will start to occur for the occupants in the future. In hot climates, where solar radiations are entering buildings all year long, occupant’s thermal comfort in office buildings needs to be examined. This study aims to investigate the thermal comfort at an existing office building at the Australian College of Kuwait and test its validity and improve occupant’s thermal satisfaction by covering windows with a heat rejection tint material that enables sunlight to pass through the office while reflecting solar heat outside. Environmental variables were measured using thermal comfort data logger INNOVA 1221 to find the predicted mean vote (PMV) in the selected location. Also, subjective variables were measured to find the actual mean vote (AMV) through surveys distributed among occupants in the selected case study office. All the variables collected were analyzed and classified according to international standards ISO 7730 and ASHRAE55. The results of this study showed improvement in both PMV and AMV. The mean value of PMV based on the original design was 0.691 which dropped to 0.32 after installation and it still at comfort zone. Also, the mean value of the AMV has improved for the first occupant, where before it was -0.46 and it became -1 which is cooler. For the other occupant, it was slightly warm with a mean value of 0.9 and it was improved and became cooler with a -0.25 mean value based on American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) seven-point scale.Keywords: thermal comfort, office buildings, indoor environments, predicted mean vote
Procedia PDF Downloads 1974340 Nano-Structured Hydrophobic Silica Membrane for Gas Separation
Authors: Sajid Shah, Yoshimitsu Uemura, Katsuki Kusakabe
Abstract:
Sol-gel derived hydrophobic silica membranes with pore sizes less than 1 nm are quite attractive for gas separation in a wide range of temperatures. A nano-structured hydrophobic membrane was prepared by sol-gel technique on a porous α–Al₂O₃ tubular support with yttria stabilized zirconia (YSZ) as an intermediate layer. Bistriethoxysilylethane (BTESE) derived sol was modified by adding phenyltriethoxysilylethane (PhTES) as an organic template. Six times dip coated modified silica membrane having a thickness of about 782 nm was characterized by field emission scanning electron microscopy. Thermogravimetric analysis, together along contact angle and Fourier transform infrared spectroscopy, showed that hydrophobic properties were improved by increasing the PhTES content. The contact angle of water droplet increased from 37° for pure to 111.5° for the modified membrane. The permeance of single gas H₂ was higher than H₂:CO₂ ratio of 75:25 binary feed mixtures. However, the permeance of H₂ for 60:40 H₂:CO₂ was found lower than single and binary mixture 75:25 H₂:CO₂. The binary selectivity values for 75:25 H₂:CO₂ were 24.75, 44, and 57, respectively. Selectivity had an inverse relation with PhTES content. Hydrophobicity properties were improved by increasing PhTES content in the silica matrix. The system exhibits proper three layers adhesion or integration, and smoothness. Membrane system suitable in steam environment and high-temperature separation. It was concluded that the hydrophobic silica membrane is highly promising for the separation of H₂/CO₂ mixture from various H₂-containing process streams.Keywords: gas separation, hydrophobic properties, silica membrane, sol–gel method
Procedia PDF Downloads 1224339 Melatonin Improved Vase Quality by Delaying Oxidation Reaction and Supplying More Energies in Cut Peony (Paeonia Lactiflora cv. Sarah)
Authors: Tai Chen, Caihuan Tian, Xiuxia Ren, Jingqi Xue, Xiuxin Zhang
Abstract:
The herbaceous peony has become increasingly popular worldwide in recent years, especially as a cut flower with great economic value. However, peony has a very short vase life, only 3-5 d usually, which seriously affects its commodity value. In this study, we used the cut peony (Paeonia lactiflora cv. Sarah) as a material and found that melatonin treatment significantly improved its postharvest performance. In the control group, its vase life was 4.8 d, accompanied by petal dropping at last; melatonin treatment (40 μM) increased this time to 6.9 d without petal dropping at the end. Further study showed that melatonin treatment significantly increased the activity of antioxidant enzymes as well as reduced sugar content in petals, whereas the starch content in petals decreased. These results indicated that melatonin treatment may delay the oxidation reaction caused by aging, which also provides extra energy for maintaining flowering. Through full-length transcriptome sequencing, a total of 2819 differentially expressed genes (DEGs) between control and melatonin treatment groups were identified. KEGG enrichment analysis showed that these DEGs were mainly involved in three pathways, including melatonin synthesis, starch and sucrose conversion, and plant disease resistance. After the RT-qPCR verification, we identified three DEGs, named PlBAM3, PlWRKY22 and PlTIP1, and they should play major roles in melatonin-improved postharvest performance. One possible reason is that PlBAM3 caused maltose production (by starch degradation), maintained the proline biosynthesis, and then alleviated oxidative stress. Another reason is that both PlBAM3 and PlWRKY22 are key drought resistance regulators, which have the ability to alleviate osmotic stress and improve water absorption, which may also help to improve the postharvest quality of cut peony. In addition, PlTIP1 is involved in the sugar signal pathway, indicating sugar may also as a signal substance during this process. Our work may give new ideas for developing new ways to prolong the vase life of cut peony and improve its commodity value eventually.Keywords: cut peony, melatonin, vase life, oxidation reaction, energy supply, differentially expressed genes
Procedia PDF Downloads 524338 Numerical Simulation of Two-Dimensional Flow over a Stationary Circular Cylinder Using Feedback Forcing Scheme Based Immersed Boundary Finite Volume Method
Authors: Ranjith Maniyeri, Ahamed C. Saleel
Abstract:
Two-dimensional fluid flow over a stationary circular cylinder is one of the bench mark problem in the field of fluid-structure interaction in computational fluid dynamics (CFD). Motivated by this, in the present work, a two-dimensional computational model is developed using an improved version of immersed boundary method which combines the feedback forcing scheme of the virtual boundary method with Peskin’s regularized delta function approach. Lagrangian coordinates are used to represent the cylinder and Eulerian coordinates are used to describe the fluid flow. A two-dimensional Dirac delta function is used to transfer the quantities between the sold to fluid domain. Further, continuity and momentum equations governing the fluid flow are solved using fractional step based finite volume method on a staggered Cartesian grid system. The developed code is validated by comparing the values of drag coefficient obtained for different Reynolds numbers with that of other researcher’s results. Also, through numerical simulations for different Reynolds numbers flow behavior is well captured. The stability analysis of the improved version of immersed boundary method is tested for different values of feedback forcing coefficients.Keywords: Feedback Forcing Scheme, Finite Volume Method, Immersed Boundary Method, Navier-Stokes Equations
Procedia PDF Downloads 3054337 Polyethylenimine-Ethoxylated Dual Interfacial Layers for High-Efficient Quantum Dot Light-Emitting Diodes
Authors: Woosuk Lee
Abstract:
We controlled the electron injection rate in inverted quantum dot light-emitting diode (QLED) by inserting PEIE layer between ZnO electron transport layer(ETL) and quantum dots(QDs) layer and successfully demonstrated high efficiency of QLEDs. The inverted QLED has the layer structure of ITO(cathode)/ ZnO NPs/PEIE/QDs/PEIE/P-TPD/MoO3/Al(anode). The PEIE between poly-TPD hole transport layer (HTL) and quantum dot emitting layer protects QD EML during HTL coating process and improves the surface morphology. In addition, the hole injection barrier is reduced by upshifting the valence band maximum (VBM) of QDs. An additional layer of PEIE was introduced between ZnO and QD to balance charge within QD emissive layer in device, which serves as an effective electron blocking layer without changing device operating condition such as turn-on voltage and emissive spectra. As a result, the optimized QLED with 5nm PEIE shows a ~36% improved current efficiency and external quantum efficiency (EQE) compared to the QLED without PEIE.(maximum current efficiency, and EQE are achieved 70cd/A and 17.3%, respectively). In particular, the maximum brightness of the optimized QLED dramatically improved by a factor of 2.3 relative to the QLED without PEIE. The main reasons for these QLED performance improvement are due to the suppressing the leakage current across the device and well confined exciton by inserting PEIE layers.Keywords: quantum dot light-emitting diodes, interfacial layer, charge-injection balance, suppressing QD charging
Procedia PDF Downloads 1834336 Evaluation of the Performance of ACTIFLO® Clarifier in the Treatment of Mining Wastewaters: Case Study of Costerfield Mining Operations, Victoria, Australia
Authors: Seyed Mohsen Samaei, Shirley Gato-Trinidad
Abstract:
A pre-treatment stage prior to reverse osmosis (RO) is very important to ensure the long-term performance of the RO membranes in any wastewater treatment using RO. This study aims to evaluate the application of the Actiflo® clarifier as part of a pre-treatment unit in mining operations. It involves performing analytical testing on RO feed water before and after installation of Actiflo® unit. Water samples prior to RO plant stage were obtained on different dates from Costerfield mining operations in Victoria, Australia. Tests were conducted in an independent laboratory to determine the concentration of various compounds in RO feed water before and after installation of Actiflo® unit during the entire evaluated period from December 2015 to June 2018. Water quality analysis shows that the quality of RO feed water has remarkably improved since installation of Actiflo® clarifier. Suspended solids (SS) and turbidity removal efficiencies has been improved by 91 and 85 percent respectively in pre-treatment system since the installation of Actiflo®. The Actiflo® clarifier proved to be a valuable part of pre-treatment system prior to RO. It has the potential to conveniently condition the mining wastewater prior to RO unit, and reduce the risk of RO physical failure and irreversible fouling. Consequently, reliable and durable operation of RO unit with minimum requirement for RO membrane replacement is expected with Actiflo® in use.Keywords: ACTIFLO ® clarifier, mining wastewater, reverse osmosis, water treatment
Procedia PDF Downloads 1934335 Optimal Design of Linear Generator to Recharge the Smartphone Battery
Authors: Jin Ho Kim, Yujeong Shin, Seong-Jin Cho, Dong-Jin Kim, U-Syn Ha
Abstract:
Due to the development of the information industry and technologies, cellular phones have must not only function to communicate, but also have functions such as the Internet, e-banking, entertainment, etc. These phones are called smartphones. The performance of smartphones has improved, because of the various functions of smartphones, and the capacity of the battery has been increased gradually. Recently, linear generators have been embedded in smartphones in order to recharge the smartphone's battery. In this study, optimization is performed and an array change of permanent magnets is examined in order to increase efficiency. We propose an optimal design using design of experiments (DOE) to maximize the generated induced voltage. The thickness of the poleshoe and permanent magnet (PM), the height of the poleshoe and PM, and the thickness of the coil are determined to be design variables. We made 25 sampling points using an orthogonal array according to four design variables. We performed electromagnetic finite element analysis to predict the generated induced voltage using the commercial electromagnetic analysis software ANSYS Maxwell. Then, we made an approximate model using the Kriging algorithm, and derived optimal values of the design variables using an evolutionary algorithm. The commercial optimization software PIAnO (Process Integration, Automation, and Optimization) was used with these algorithms. The result of the optimization shows that the generated induced voltage is improved.Keywords: smartphone, linear generator, design of experiment, approximate model, optimal design
Procedia PDF Downloads 345