Search results for: grape stem borer
570 Determination of Critical Period for Weed Control in the Second Crop Forage Maize (454 Cultivar)
Authors: Farhad Farahvash, Parya Mobaseri
Abstract:
Weeds control based on their critical period leads to less production costs and risks of wide chemical application of weeds control methods. The present study considered effect of weeds control time (weeds interference after 20, 40 and 60 days, weeds full control, weeds interference and weeds control after 20, 40 and 60 days) on growth and yield of forage maize 454. The experiment based on full-randomized blocks design with three replications was conducted at research farm of Islamic Azad University of Tabriz located at 15th km of East Tabriz in 2013. According to the results, weeds interference after 40 and 60 days as well as weeds control after 20 days prevented from decrease of maize biomass resulted from weeds presence while weeds interference after 20 days, weeds interference and weeds control after 40 and 60 days led respectively to 41.2%, 35%, 25% and 32.5% decrease of forage maize biomass. The weeds-influenced decrease was manifested at different parts of the plant depending on presence period of weeds. Decrease of fresh weight of ear and fresh weight of leaf and stem was observed due to weeds interference after 20 days and weeds interference. If weeds are controlled after 60 days, decrease of ear weight and fresh weight of stem will lead to biomass decrease. Also, if weeds are controlled after 40 days, decrease of fresh weight of maize stems will result in biomass decrease. Ear traits were affected by weeds control treatment. Being affected by treatments of weeds interference after 20 days, weeds non-interference, weeds control after 40 and 60 days, ear length was shortened 29.9 %, 41.4 %, 27.6 % and 37.2 %, respectively. The stem diameter demonstrated a significant decrease although it was only affected by treatments of weeds interference and weeds control after 60 days. Considering results of the present study, generally, it is suggested to control weeds during initial 20-60 days of maize growth in order to prevent undesirable effect of weeds on growth, production and production biomass of maize and decrease of production costs.Keywords: maize, competition, weed, biomass
Procedia PDF Downloads 358569 Magnetic Lines of Force and Diamagnetism
Authors: Angel Pérez Sánchez
Abstract:
Magnet attraction or repulsion is not a product of a strange force from afar but comes from anchored lines of force inside the magnet as if it were reinforced concrete since you can move a small block by taking the steel rods that protrude from its interior. This approach serves as a basis for studying the behavior of diamagnetic materials. The significance of this study is to unify all diamagnetic phenomena: Movement of grapes, cooper approaching a magnet, Magnet levitation, etc., with a single explanation for all these phenomena. The method followed has consisted of observation of hundreds of diamagnetism experiments (in copper, aluminum, grapes, tomatoes, and bismuth), including the creation of own and new experiments and application of logical deduction product of these observations. Approaching a magnet to a hanging grape, Diamagnetism seems to consist not only of a slight repulsion but also of a slight attraction at a small distance. Replacing the grapes with a copper sphere, it behaves like the grape, pushing and pulling a nearby magnet. Diamagnetism could be redefined in the following way: There are materials that don't magnetize their internal structure when approaching a magnet, as ferromagnetic materials do. But they do allow magnetic lines of force to run through its interior, enhancing them without creating their own lines of force. Magnet levitates on superconducting ceramics because magnet gives lines near poles a force superior to what a superconductor can enhance these lines. Little further from the magnet, enhancing of lines by the superconductor is greater than the strength provided by the magnet due to the distance from the magnet's pole. It is this point that defines the magnet's levitation band. The anchoring effect of lines is what ultimately keeps the magnet and superconductor at a certain distance. The magnet seeks to levitate the area in which magnetic lines are stronger near de magnet's poles. Pouring ferrofluid into a magnet, lines of force are observed coming out of the poles. On other occasions, diamagnetic materials simply enhance the lines they receive without moving their position since their own weight is greater than the strength of the enhanced lines. (This is the case with grapes and copper). Magnet and diamagnetic materials look for a place where the lines of force are most enhanced, and this is at a small distance. Once the ideal distance is established, they tend to keep it by pushing or pulling on each other. At a certain distance from the magnet: the power exerted by diamagnetic materials is greater than the force of lines in the vicinity of the magnet's poles. All Diamagnetism phenomena: copper, aluminum, grapes, tomatoes, bismuth levitation, and magnet levitation on superconducting ceramics can now be explained with the support of magnetic lines of force.Keywords: diamagnetism, magnetic levitation, magnetic lines of force, enhancing magnetic lines
Procedia PDF Downloads 88568 Fungi Associated with Decline of Kikar (Acacia nilotica) and Red River Gum (Eucalyptus camaldulensis) in Faisalabad
Authors: I. Ahmad, A. Hannan, S. Ahmad, M. Asif, M. F. Nawaz, M. A. Tanvir, M. F. Azhar
Abstract:
During this research, a comprehensive survey of tree growing areas of Faisalabad district of Pakistan was conducted to observe the symptoms, spectrum, occurrence and severity of A. nilotica and E. camaldulensis decline. Objective of current research was to investigate specific fungal pathogens involved in decline of A. nilotica and E. camaldulensis. For this purpose, infected roots, bark, neck portion, stem, branches, leaves and infected soils were collected to identify associated fungi. Potato dextrose agar (PDA) and Czepak dox agar media were used for isolations. Identification of isolated fungi was done microscopically and different fungi were identified. During survey of urban locations of Faisalabad, disease incidence on Kikar and Eucalyptus was recorded as 3.9-7.9% and 2.6-7.1% respectively. Survey of Agroforest zones of Faisalabad revealed decline incidence on kikar 7.5% from Sargodha road while on Satiana and Jhang road it was not planted. In eucalyptus trees, 4%, 8% and 0% disease incidence was observed on Jhang road, Sargodha road and Satiana road respectively. The maximum fungus isolated from the kikar tree was Drechslera australiensis (5.00%) from the stem part. Aspergillus flavus also gave the maximum value of (3.05%) from the bark. Alternaria alternata gave the maximum value of (2.05%) from leaves. Rhizopus and Mucor spp. were recorded minimum as compared to the Drechslera, Alternaria and Aspergillus. The maximum fungus isolated from the Eucalyptus tree was Armillaria luteobubalina (5.00%) from the stem part. The other fungi isolated were Macrophamina phaseolina and A. niger.Keywords: decline, frequency of mycoflora, A. nilotica and E. camaldulensis, Drechslera australiensis, Armillaria luteobubalina
Procedia PDF Downloads 369567 Augmented Reality Applications for Active Learning in Geometry: Enhancing Mathematical Intelligence at Phra Dabos School
Authors: Nattamon Srithammee, Ratchanikorn Chonchaiya
Abstract:
This study explores the impact of Augmented Reality (AR) technology on mathematics education, focusing on Area and Volume concepts at Phra Dabos School in Thailand. We developed a mobile augmented reality application to present these mathematical concepts innovatively. Using a mixed-methods approach, we assessed the knowledge of 79 students before and after using the application. The results showed a significant improvement in students' understanding of Area and Volume, with average test scores increasing from 3.70 to 9.04 (p < 0.001, Cohen's d = 2.05). Students also reported increased engagement and satisfaction. Our findings suggest that augmented reality technology can be a valuable tool in mathematics education, particularly for enhancing the understanding of abstract concepts like Area and Volume. This study contributes to research on educational technology in STEM education and provides insights for educators and educational technology developers.Keywords: augmented reality, mathematics education, area and volume, educational technology, STEM education
Procedia PDF Downloads 24566 Exploring Instructional Designs on the Socio-Scientific Issues-Based Learning Method in Respect to STEM Education for Measuring Reasonable Ethics on Electromagnetic Wave through Science Attitudes toward Physics
Authors: Adisorn Banhan, Toansakul Santiboon, Prasong Saihong
Abstract:
Using the Socio-Scientific Issues-Based Learning Method is to compare of the blended instruction of STEM education with a sample consisted of 84 students in 2 classes at the 11th grade level in Sarakham Pittayakhom School. The 2-instructional models were managed of five instructional lesson plans in the context of electronic wave issue. These research procedures were designed of each instructional method through two groups, the 40-experimental student group was designed for the instructional STEM education (STEMe) and 40-controlling student group was administered with the Socio-Scientific Issues-Based Learning (SSIBL) methods. Associations between students’ learning achievements of each instructional method and their science attitudes of their predictions to their exploring activities toward physics with the STEMe and SSIBL methods were compared. The Measuring Reasonable Ethics Test (MRET) was assessed students’ reasonable ethics with the STEMe and SSIBL instructional design methods on two each group. Using the pretest and posttest technique to monitor and evaluate students’ performances of their reasonable ethics on electromagnetic wave issue in the STEMe and SSIBL instructional classes were examined. Students were observed and gained experience with the phenomena being studied with the Socio-Scientific Issues-Based Learning method Model. To support with the STEM that it was not just teaching about Science, Technology, Engineering, and Mathematics; it is a culture that needs to be cultivated to help create a problem solving, creative, critical thinking workforce for tomorrow in physics. Students’ attitudes were assessed with the Test Of Physics-Related Attitude (TOPRA) modified from the original Test Of Science-Related Attitude (TOSRA). Comparisons between students’ learning achievements of their different instructional methods on the STEMe and SSIBL were analyzed. Associations between students’ performances the STEMe and SSIBL instructional design methods of their reasonable ethics and their science attitudes toward physics were associated. These findings have found that the efficiency of the SSIBL and the STEMe innovations were based on criteria of the IOC value higher than evidence as 80/80 standard level. Statistically significant of students’ learning achievements to their later outcomes on the controlling and experimental groups with the SSIBL and STEMe were differentiated between students’ learning achievements at the .05 level. To compare between students’ reasonable ethics with the SSIBL and STEMe of students’ responses to their instructional activities in the STEMe is higher than the SSIBL instructional methods. Associations between students’ later learning achievements with the SSIBL and STEMe, the predictive efficiency values of the R2 indicate that 67% and 75% for the SSIBL, and indicate that 74% and 81% for the STEMe of the variances were attributable to their developing reasonable ethics and science attitudes toward physics, consequently.Keywords: socio-scientific issues-based learning method, STEM education, science attitudes, measurement, reasonable ethics, physics classes
Procedia PDF Downloads 292565 Urine Neutrophil Gelatinase-Associated Lipocalin as an Early Marker of Acute Kidney Injury in Hematopoietic Stem Cell Transplantation Patients
Authors: Sara Ataei, Maryam Taghizadeh-Ghehi, Amir Sarayani, Asieh Ashouri, Amirhossein Moslehi, Molouk Hadjibabaie, Kheirollah Gholami
Abstract:
Background: Acute kidney injury (AKI) is common in hematopoietic stem cell transplantation (HSCT) patients with an incidence of 21–73%. Prevention and early diagnosis reduces the frequency and severity of this complication. Predictive biomarkers are of major importance to timely diagnosis. Neutrophil gelatinase associated lipocalin (NGAL) is a widely investigated novel biomarker for early diagnosis of AKI. However, no study assessed NGAL for AKI diagnosis in HSCT patients. Methods: We performed further analyses on gathered data from our recent trial to evaluate the performance of urine NGAL (uNGAL) as an indicator of AKI in 72 allogeneic HSCT patients. AKI diagnosis and severity were assessed using Risk–Injury–Failure–Loss–End-stage renal disease and AKI Network criteria. We assessed uNGAL on days -6, -3, +3, +9 and +15. Results: Time-dependent Cox regression analysis revealed a statistically significant relationship between uNGAL and AKI occurrence. (HR=1.04 (1.008-1.07), P=0.01). There was a relation between uNGAL day +9 to baseline ratio and incidence of AKI (unadjusted HR=.1.047(1.012-1.083), P<0.01). The area under the receiver-operating characteristic curve for day +9 to baseline ratio was 0.86 (0.74-0.99, P<0.01) and a cut-off value of 2.62 was 85% sensitive and 83% specific in predicting AKI. Conclusions: Our results indicated that increase in uNGAL augmented the risk of AKI and the changes of day +9 uNGAL concentrations from baseline could be of value for predicting AKI in HSCT patients. Additionally uNGAL changes preceded serum creatinine rises by nearly 2 days.Keywords: acute kidney injury, hemtopoietic stem cell transplantation, neutrophil gelatinase-associated lipocalin, Receiver-operating characteristic curve
Procedia PDF Downloads 409564 Dissecting Big Trajectory Data to Analyse Road Network Travel Efficiency
Authors: Rania Alshikhe, Vinita Jindal
Abstract:
Digital innovation has played a crucial role in managing smart transportation. For this, big trajectory data collected from traveling vehicles, such as taxis through installed global positioning system (GPS)-enabled devices can be utilized. It offers an unprecedented opportunity to trace the movements of vehicles in fine spatiotemporal granularity. This paper aims to explore big trajectory data to measure the travel efficiency of road networks using the proposed statistical travel efficiency measure (STEM) across an entire city. Further, it identifies the cause of low travel efficiency by proposed least square approximation network-based causality exploration (LANCE). Finally, the resulting data analysis reveals the causes of low travel efficiency, along with the road segments that need to be optimized to improve the traffic conditions and thus minimize the average travel time from given point A to point B in the road network. Obtained results show that our proposed approach outperforms the baseline algorithms for measuring the travel efficiency of the road network.Keywords: GPS trajectory, road network, taxi trips, digital map, big data, STEM, LANCE
Procedia PDF Downloads 157563 Stem Cell Differentiation Toward Secretory Progenitors after Intestinal Ischemia-Reperfusion in a Rat is Accompanied by Inhibited Notch Signaling Cascade
Authors: Igor Sukhotnik
Abstract:
Objectives: Notch signaling is thought to act to drive cell versification in the lining of the small intestine. When Notch signaling is blocked, proliferation ceases, and epithelial cells become secretory. The purpose of the present study was to evaluate the role of Notch signaling pathway in stem cell differentiation in a rat model of intestinal ischemia-reperfusion (IR). Methods: Male Sprague-Dawley rats were randomly divided into four experimental groups: Sham-24 and Sham-48 rats underwent laparotomy and were killed 24 or 48 h later, respectively; IR-24 and IR-48 rats underwent occlusion of SMA and portal vein for 30 min followed by 24 or 48 h of reperfusion, respectively. Notch-related gene and protein expression were determined using Real Time PCR, Western blotting and immunohistochemistry. Wax histology and immunohistochemistry was used to determine cell differentiation toward absorptive (enterocytes) or secretory progenitors (goblet cells, enteroendocrine cells or Paneth cells). Results: IR-48 rats exhibited a significant decrease in Notch-1 protein expression (Western blot) that was coincided with a significant decrease in the number of Notch-1 positive cells (immunohistochemistry) in jejunum and ileum as well as Hes-1 positive cells in jejunum and ileum compared to Sham-48 rats. A significant down-regulation of Notch signaling related genes and proteins in IR animals was accompanied by a significant increase in the number of goblet and Paneth cells and decreased number of absorptive cells compared to control rats. Conclusions: Forty-eight hours following intestinal IR in rats, inhibited Notch signaling pathway was accompanied by intestinal stem cells differentiation toward secretory progenitors.Keywords: Intestine, notch, ischemia-reperfusion, cell differentiation, secretory
Procedia PDF Downloads 58562 Temporal Changes of Heterogeneous Subpopulations of Human Adipose-Derived Stromal/Stem Cells in vitro
Authors: Qiuyue Peng, Vladimir Zachar
Abstract:
The application of adipose-derived stromal/stem cells (ASCs) in regenerative medicine is gaining more awareness due to their advanced translational potential and abundant source preparations. However, ASC-based translation has been confounded by high subpopulation heterogeneity, causing ambiguity about its precise therapeutic value. Some phenotypes defined by a unique combination of positive and negative surface markers have been found beneficial to the required roles. Therefore, the immunophenotypic repertoires of cultured ASCs and temporal changes of distinct subsets were investigated in this study. ASCs from three donors undergoing cosmetic liposuction were cultured in standard culturing methods, and the co-expression patterns based on the combination of selected markers at passages 1, 4, and 8 were analyzed by multi-chromatic flow cytometry. The results showed that the level of heterogeneity of subpopulations of ASCs became lower by in vitro expansion. After a few passages, most of the CD166⁺/CD274⁺/CD271⁺ based subpopulations converged to CD166 single positive cells. Meanwhile, these CD29⁺CD201⁺ double-positive cells, in combination with CD36/Stro-1 expression or without, feathered only the major epitopes and maintained prevailing throughout the whole process. This study suggested that, upon in vitro expansion, the phenotype repertoire of ASCs redistributed and stabilized in a way that cells co-expressing exclusively the strong markers remained dominant. These preliminary findings provide a general overview of the distribution of heterogeneous subsets residents within human ASCs during expansion in vitro. It is a critical step to fully characterize ASCs before clinical application, although the biological effects of heterogeneous subpopulations still need to be clarified.Keywords: adipose-derived stromal/stem cells, heterogeneity, immunophenotype, subpopulations
Procedia PDF Downloads 113561 3D-Printed Collagen/Chitosan Scaffolds Loaded with Exosomes Derived from Neural Stem Cells Pretreated with Insulin Growth Factor-1 for Neural Regeneration after Traumatic Brain Injury
Authors: Xiao-Yin Liu, Liang-Xue Zhou
Abstract:
Traumatic brain injury (TBI), as a kind of nerve trauma caused by an external force, affects people all over the world and is a global public health problem. Although there are various clinical treatments for brain injury, including surgery, drug therapy, and rehabilitation therapy, the therapeutic effect is very limited. To improve the therapeutic effect of TBI, scaffolds combined with exosomes are a promising but challenging method for TBI repair. In this study, we examined whether a novel 3D-printed collagen/chitosan scaffold/exosomes derived from neural stem cells (NSCs) pretreated with insulin growth factor-1 (IGF-I) scaffolds (3D-CC-INExos) could be used to improve TBI repair and functional recovery after TBI. Our results showed that composite scaffolds of collagen-, chitosan- and exosomes derived from NSCs pretreated with IGF-I (INExos) could continuously release the exosomes for two weeks. In the rat TBI model, 3D-CC-INExos scaffold transplantation significantly improved motor and cognitive function after TBI, as assessed by the Morris water maze test and modified neurological severity scores. In addition, immunofluorescence staining and transmission electron microscopy showed that the recovery of damaged nerve tissue in the injured area was significantly improved by 3D-CC-INExos implantation. In conclusion, our data suggest that 3D-CC-INExos might provide a potential strategy for the treatment of TBI and lay a solid foundation for clinical translation.Keywords: traumatic brain injury, exosomes, insulin growth factor-1, neural stem cells, collagen, chitosan, 3D printing, neural regeneration, angiogenesis, functional recovery
Procedia PDF Downloads 80560 The Impact of Kids Science Labs Intervention Program on Independent Thinking and Academic Achievement in Young Children
Authors: Aliya Kamilyevna Salahova
Abstract:
This study examines the effectiveness of the Kids Science Labs intervention program, based on STEM, in fostering independent thinking among preschool and elementary school children and its influence on their academic achievement. Through a comprehensive methodology involving interviews, surveys, observations, case studies, and statistical tests, data were collected from various sources to accurately analyze the program's effects. The findings indicate a significant positive impact on children's independent thinking abilities, leading to improved academic performance in mathematics and science, enhanced learning motivation, and a propensity to critically evaluate problem-solving approaches. This research contributes to the theoretical understanding of how STEM activities can foster independent thinking and academic success in young children, providing valuable insights for the development of educational programs. Introduction: The goal of this study is to investigate the influence of the Kids Science Labs intervention program, grounded in STEM, on the development of independent thinking skills among preschool and elementary school children. By addressing this objective, we aim to explore the program's potential to enhance academic performance in mathematics and science. The study's findings have theoretical significance as they shed light on the ways in which STEM activities can foster independent thinking in young children, thus enabling educators to design effective learning programs that promote academic success. Methodology: This study employs a robust methodology that includes interviews, surveys, observations, case studies, and statistical tests. These methods were carefully selected to collect comprehensive data from multiple sources, such as documents and records, ensuring a thorough analysis of the program's effects. The use of diverse data collection and analysis procedures facilitated an in-depth exploration of the research questions and yielded reliable results. Results: The results indicate that children participating in the Kids Science Labs program experienced a sustained positive impact on their independent thinking abilities. Moreover, these children demonstrated improved academic performance in mathematics and science, displaying higher learning motivation and the capacity to critically evaluate problem-solving methods and seek optimal solutions. Theoretical Importance: This study contributes significantly to the existing theoretical knowledge by elucidating how STEM activities can foster independent thinking and enhance academic success in preschool and elementary school children. The findings have practical implications for educators, empowering them to develop learning programs that stimulate independent thinking, leading to improved academic performance in young children. Discussion: The findings of this research affirm that the Kids Science Labs intervention program is highly effective in fostering independent thinking among preschool and elementary school children. The program's positive impact extends to improved academic performance in mathematics and science, highlighting its potential to enhance learning outcomes. Educators can leverage these findings to develop educational programs that promote independent thinking and elevate academic achievement in young children. Conclusion: In conclusion, the Kids Science Labs intervention program has been found to be highly effective in fostering independent thinking among preschool and elementary school children. Furthermore, participation in the program correlates with improved academic performance in mathematics and science. The study's outcomes underscore the importance of developing educational initiatives that stimulate independent thinking in young children, thereby enhancing their academic success.Keywords: STEM in preschool, STEM in elementary school, kids science labs, independent thinking, STEM activities in early childhood education
Procedia PDF Downloads 87559 Quantitative Evaluation of Supported Catalysts Key Properties from Electron Tomography Studies: Assessing Accuracy Using Material-Realistic 3D-Models
Authors: Ainouna Bouziane
Abstract:
The ability of Electron Tomography to recover the 3D structure of catalysts, with spatial resolution in the subnanometer scale, has been widely explored and reviewed in the last decades. A variety of experimental techniques, based either on Transmission Electron Microscopy (TEM) or Scanning Transmission Electron Microscopy (STEM) have been used to reveal different features of nanostructured catalysts in 3D, but High Angle Annular Dark Field imaging in STEM mode (HAADF-STEM) stands out as the most frequently used, given its chemical sensitivity and avoidance of imaging artifacts related to diffraction phenomena when dealing with crystalline materials. In this regard, our group has developed a methodology that combines image denoising by undecimated wavelet transforms (UWT) with automated, advanced segmentation procedures and parameter selection methods using CS-TVM (Compressed Sensing-total variation minimization) algorithms to reveal more reliable quantitative information out of the 3D characterization studies. However, evaluating the accuracy of the magnitudes estimated from the segmented volumes is also an important issue that has not been properly addressed yet, because a perfectly known reference is needed. The problem particularly complicates in the case of multicomponent material systems. To tackle this key question, we have developed a methodology that incorporates volume reconstruction/segmentation methods. In particular, we have established an approach to evaluate, in quantitative terms, the accuracy of TVM reconstructions, which considers the influence of relevant experimental parameters like the range of tilt angles, image noise level or object orientation. The approach is based on the analysis of material-realistic, 3D phantoms, which include the most relevant features of the system under analysis.Keywords: electron tomography, supported catalysts, nanometrology, error assessment
Procedia PDF Downloads 87558 Prospects of Regenerative Medicine with Human Allogeneic Adipose Tissue-Derived Mesenchymal Stem Cell Sheets: Achievements and Future Outlook in Clinical Trials for Myopic Chorioretinal Atrophy
Authors: Norimichi Nagano, Yoshio Hirano, Tsutomu Yasukawa
Abstract:
Mesenchymal stem cells are thought to confer neuroprotection, facilitate tissue regeneration and exert their effects on retinal degenerative diseases, however, adverse events such as proliferative vitreoretinopathy and preretinal membrane disease associated with cell suspension transplantation have also been reported. We have recently developed human (allogeneic) adipose tissue-derived mesenchymal stem cell (adMSC) sheets through our proprietary sheet transformation technique, which could potentially mitigate these adverse events. To clarify the properties of our adMSC sheets named PAL-222, we performed in vitro studies such as viability testing, cytokine secretions by ELISA, immunohistochemical study, and migration assay. The viability of the cells exceeded 70%. Vascular Endothelial Growth Factor (VEGF) and Pigment Epithelium-Derived Factor (PEDF), which are quite important cytokines for the retinal area, were observed. PAL-222 expressed type I collagen, a strength marker, type IV collagen, a marker of the basement membrane, and elastin, an elasticity marker. Finally, the migration assay was performed and showed negative, which means that PAL-222 is stably kept in the topical area and does not come to pieces. Next, to evaluate the efficacy in vivo, we transplanted PAL-222 into the subretinal space of the eye of Royal College of Surgeons rats with congenital retinal degeneration and assessed it for three weeks after transplantation. We confirmed that PAL-222 suppressed the decrease in the thickness of the outer nuclear layer, which means that the photoreceptor protective effect treated with PAL-222 was significantly higher than that in the sham group. (p < 0.01). This finding demonstrates that PAL-222 showed their retinoprotective effect in a model of congenital retinal degeneration. As the study suggested the efficacy of PAL-222 in both in vitro and in vivo studies, we are presently engaged in clinical trials of PAL-222 for myopic chorioretinal atrophy, which is one of the retinal degenerative diseases, for the purpose of regenerative medicine.Keywords: cell sheet, clinical trial, mesenchymal stem cell, myopic chorioretinal atrophy
Procedia PDF Downloads 92557 Regenerative Therapeutic Effect of Statin Nanoparticle-Loaded Adipose-Derived Stem Cells on Myocardial Infarction
Authors: Masaaki Ii, Takashi Saito, Yasuhiko Tabata, Shintaro Nemoto
Abstract:
Background: Clinical trials of autologous adipose-derived stem cell (AdSC) therapy for ischemic heart diseases (IHD) are now on-going. We have investigated the hypothesis that combination of AdSCs and statin, an agent with pleiotropic effects, could augment the therapeutic effect on myocardial infarction (MI). Methods and Results: Human AdSC functions with different doses of simvastatin-conjugated nanoparticle (STNP) uptake were evaluated by in vitro assays. STNP promoted the migration activity without changing the proliferation activity, and also up-regulated growth factors. Next, MI was induced by LAD ligation in nude mice, and the mice were assigned in the following groups 3 days after MI: 1) PBS (control), 2) NP-AdSCs (50000 cells), 3) STNP, and 4) STNP-AdSCs (50000 cells). Cardiac functional recovery assessed by echocardiography was improved at 4 weeks after surgery in STNP-AdSC group. Masson’s trichrome-stained sections revealed that LV fibrosis length was reduced, and the number of TUNEL-positive cardiomyocytes was less in STNP-AdSC group. Surprisingly, a number of de novo endogenous Nkx-2.5/GATA4 positive immature cardiomyocytes as well as massive vascular formation were observed in outer layer of infarcted myocardium despite of a few recruited/retained transfused STNP-AdSCs 4 weeks after MI in STNP-AdSC group. Finally, massive myocardial regeneration was observed 8 weeks after MI. Conclusions: Intravenously injected small number of statin nanoparticle-loaded hAdSCs exhibited a potent therapeutic effect inducing endogenous cardiac tissue regeneration.Keywords: statin, drug delivery system, stem cells, cardiac regeneration
Procedia PDF Downloads 187556 Burn/Traumatic Scar Maturation Using Autologous Fat Grafts + SVF
Authors: Ashok K. Gupta
Abstract:
Over the past few decades, since the bio-engineering revolution, autologous cell therapy (ACT) has become a rapidly evolving field. Currently, this form of therapy has broad applications in modern medicine and plastic surgery, ranging from the treatment/improvement of wound healing to life-saving operations. A study was conducted on 50 patients having to disfigure, and deform post burn scars and was treated by injection of extracted, refined adipose tissue grafts with their unique stem cell properties. To compare the outcome, a control of 20 such patients was treated with conventional skin or soft-tissue flaps or skin grafting, and a control of 10 was treated with more advanced microsurgical techniques such as Pre-fabricated flaps/pre laminated flaps / free flaps. Assessment of fat volume and survival post- follow up period was done by radiological aid, using MRI and clinically (Survival of the autograft and objective parameters for scar elasticity were evaluated skin elasticity parameters 3 to 9 months postoperatively). Recently, an enzyme that is involved in collagen crosslinking in fibrotic tissue, lysyl hydroxylase (LH2), was identified. This enzyme is normally active in bone and cartilage but hardly in the skin. It has been found that this enzyme is highly expressed in scar tissue and subcutaneous fat; this is in contrast to the dermis, where the enzyme is hardly expressed. Adipose tissue-derived stem cell injections are an effective method in the treatment of various extensive post-burn scar deformities that makes it possible to re-create the lost sub-dermal tissue for improvement in the function of involved joint movements.Keywords: adipose tissue-derived stem cell injections, treatment of various extensive post-burn scar deformities, re-create the lost sub-dermal tissue, improvement in function of involved joint movements
Procedia PDF Downloads 67555 Hemocompatible Thin-Film Materials Recreating the Structure of the Cell Niches with High Potential for Endothelialization
Authors: Roman Major, Klaudia Trembecka- Wojciga, Juergen Markus Lackner, Boguslaw Major
Abstract:
The future and the development of science is therefore seen in interdisciplinary areas such as bio medical engineering. Self-assembled structures, similar to stem cell niches would inhibit fast division process and subsequently capture the stem cells from the blood flow. By means of surface topography and the stiffness as well as micro structure progenitor cells should be differentiated towards the formation of endothelial cells monolayer which effectively will inhibit activation of the coagulation cascade. The idea of the material surface development met the interest of the clinical institutions, which support the development of science in this area and are waiting for scientific solutions that could contribute to the development of heart assist systems. This would improve the efficiency of the treatment of patients with myocardial failure, supported with artificial heart assist systems. Innovative materials would enable the redesign, in the post project activity, construction of ventricular heart assist.Keywords: bio-inspired materials, electron microscopy, haemocompatibility, niche-like structures, thin coatings
Procedia PDF Downloads 478554 iPSCs More Effectively Differentiate into Neurons on PLA Scaffolds with High Adhesive Properties for Primary Neuronal Cells
Authors: Azieva A. M., Yastremsky E. V., Kirillova D. A., Patsaev T. D., Sharikov R. V., Kamyshinsky R. A., Lukanina K. I., Sharikova N. A., Grigoriev T. E., Vasiliev A. L.
Abstract:
Adhesive properties of scaffolds, which predominantly depend on the chemical and structural features of their surface, play the most important role in tissue engineering. The basic requirements for such scaffolds are biocompatibility, biodegradation, high cell adhesion, which promotes cell proliferation and differentiation. In many cases, synthetic polymers scaffolds have proven advantageous because they are easy to shape, they are tough, and they have high tensile properties. The regeneration of nerve tissue still remains a big challenge for medicine, and neural stem cells provide promising therapeutic potential for cell replacement therapy. However, experiments with stem cells have their limitations, such as low level of cell viability and poor control of cell differentiation. Whereas the study of already differentiated neuronal cell culture obtained from newborn mouse brain is limited only to cell adhesion. The growth and implantation of neuronal culture requires proper scaffolds. Moreover, the polymer scaffolds implants with neuronal cells could demand specific morphology. To date, it has been proposed to use numerous synthetic polymers for these purposes, including polystyrene, polylactic acid (PLA), polyglycolic acid, and polylactide-glycolic acid. Tissue regeneration experiments demonstrated good biocompatibility of PLA scaffolds, despite the hydrophobic nature of the compound. Problem with poor wettability of the PLA scaffold surface could be overcome in several ways: the surface can be pre-treated by poly-D-lysine or polyethyleneimine peptides; roughness and hydrophilicity of PLA surface could be increased by plasma treatment, or PLA could be combined with natural fibers, such as collagen or chitosan. This work presents a study of adhesion of both induced pluripotent stem cells (iPSCs) and mouse primary neuronal cell culture on the polylactide scaffolds of various types: oriented and non-oriented fibrous nonwoven materials and sponges – with and without the effect of plasma treatment and composites with collagen and chitosan. To evaluate the effect of different types of PLA scaffolds on the neuronal differentiation of iPSCs, we assess the expression of NeuN in differentiated cells through immunostaining. iPSCs more effectively differentiate into neurons on PLA scaffolds with high adhesive properties for primary neuronal cells.Keywords: PLA scaffold, neurons, neuronal differentiation, stem cells, polylactid
Procedia PDF Downloads 84553 Selection of Indigenous Tree Species and Microbial Inoculation for the Restoration of Degraded Uplands
Authors: Nelly S. Aggangan, Julieta A. Anarna
Abstract:
Indigenous tree species are priority planting materials for the National Greening Program of the Department of Environment and Natural Resources. Areas for reforestation are marginal grasslands where plant growth is stunted and seedling survival is low. This experiment was conducted to compare growth rates and seedling survival of seven indigenous reforestation species. Narra (Pterocarpus indicus), salago (Wikstroemia lanceolata), kisubeng (Sapindus saponaria), tuai (Biscofia javanica), batino (Alstonia macrophylla), bani (Pongamina pinnata) and ipil (Intsia bijuga) were inoculated with Mykovam® (mycorrhizal fungi) and Bio-N® (N2-fixing bacteria) during pricking. After five months in the nursery, the treated seedlings were planted in degraded upland acidic red soil in Cavinti, Laguna (Luzon). During outplanting, all mycorrhiza inoculated seedlings had 50-80% mycorrhizal roots while the control ones had 5-10% mycorrhizal roots. Mykovam increased height of narra, salago and kisubeng. Stem diameter was bigger in mycorrhizal salago than the control. After two years in the field, Mykovam®+Bio-N® inoculated narra, salago and bani gave 95% survival while non-mycorrhizal tuai gave the lowest survival (25%). Inoculated seedlings grew faster than the control. Highest height increase was in batino (103%), followed by bani (95%), ipil (59%), narra (58%), tuai (53%) and kisubeng was the lowest (10%). Stem diameter was increased by Mykovam® from 13-39% over the control. Highest stem diameter was obtained from narra (50%), followed by bani (40%), batino (36%), ipil (33%), salago (28%), kisubeng and tuai (12%) had the lowest. In conclusion, Mykovam® inoculated batino, bani, narra, salago and ipil can be selected to restore degraded upland acidic red soil in the Philippines.Keywords: Azospirillum spp., Bio-N®, Mykovam®, nitrogen fixing bacteria, acidic red soil
Procedia PDF Downloads 309552 The Anti-Glycation Effect of Sclerocarya birrea Stem-Bark Extracts and Their Ability to Break Existing Advanced Glycation End-Products Protein Cross-Links
Authors: O. I. Adeniran, M. A. Mogale
Abstract:
Advanced glycation end-products (AGEs) have been implicated in the development and progression of vascular complications of diabetes mellitus and other age-related disease such as Alzheimer’s disease, heart diseases, stroke and limb amputation. The aim of the study was to determine the anti-glycation activity and AGE-cross-linking breaking ability of Sclerocarya birrea stem-bark extracts (SBSBETs). Hexane, ethyl acetate, methanol and water extracts of Sclerocarya birrea stem-bark and standard inhibitor, aminoguanidine (AG) were incubated with bovine serum albumin (BSA)-fructose mixture for 20 and 40 days. The amounts of total immunogenic AGEs (TIAGEs), fluorescent AGEs (FAGEs) and carboxymethyl lysine (CML) formed were determined and the percentage anti-glycation activity of each plant extract calculated. The ability of SBSBETs to break fructose-derived BSA-AGE-collagen cross-links was also investigated. All SBSBETs under investigation demonstrated less anti-glycation activity against TIAGE, FAGEs and CML than AG after 20 days incubation. After 40 days incubation, ethyl acetate, methanol and water SBSBETs demonstrated lower anti-glycation activity against TIAGEs than AG but exerted higher anti-glycation activity than AG against FAGEs. All SBSBETs except water demonstrated lower anti-glycation activity than AG against CML. With regard to the ability of SBSBETs to breakdown fructose-derived AGEs cross-links, the polar SBSBETs demonstrated higher ability to break AGE-cross-links than the non-polar ones. The results of this study may lead to the isolation of bio-active phyto-chemicals from SBSBETs that may be used for the prevention of vascular complication of diabetes.Keywords: advanced glycation end-products, anti-glycation, cross-link breaking, Sclerocarrya birrea
Procedia PDF Downloads 259551 The Effect of Mesenchymal Stem Cells on Full Thickness Skin Wound Healing in Albino Rats
Authors: Abir O. El Sadik
Abstract:
Introduction: Wound healing involves the interaction of multiple biological processes among different types of cells, intercellular matrix and specific signaling factors producing enhancement of cell proliferation of the epidermis over dermal granulation tissue. Several studies investigated multiple strategies to promote wound healing and to minimize infection and fluid losses. However, burn crisis, and its related morbidity and mortality are still elevated. The aim of the present study was to examine the effects of mesenchymal stem cells (MSCs) in accelerating wound healing and to compare the most efficient route of administration of MSCs, either intradermal or systemic injection, with focusing on the mechanisms producing epidermal and dermal cell regeneration. Material and methods: Forty-two adult male Sprague Dawley albino rats were divided into three equal groups (fourteen rats in each group): control group (group I); full thickness surgical skin wound model, Group II: Wound treated with systemic injection of MSCs and Group III: Wound treated with intradermal injection of MSCs. The healing ulcer was examined on day 2, 6, 10 and 15 for gross morphological evaluation and on day 10 and 15 for fluorescent, histological and immunohistochemical studies. Results: The wounds of the control group did not reach complete closure up to the end of the experiment. In MSCs treated groups, better and faster healing of wounds were detected more than the control group. Moreover, the intradermal route of administration of stem cells increased the rate of healing of the wounds more than the systemic injection. In addition, the wounds were found completely healed by the end of the fifteenth day of the experiment in all rats of the group injected intradermally. Microscopically, the wound areas of group III were hardly distinguished from the adjacent normal skin with complete regeneration of all skin layers; epidermis, dermis, hypodermis and underlying muscle layer. Fully regenerated hair follicles and sebaceous glands in the dermis of the healed areas surrounded by different arrangement of collagen fibers with a significant increase in their area percent were recorded in this group more than in other groups. Conclusion: MSCs accelerate the healing process of wound closure. The route of administration of MSCs has a great influence on wound healing as intradermal injection of MSCs was more effective in enhancement of wound healing than systemic injection.Keywords: intradermal, mesenchymal stem cells, morphology, skin wound, systemic injection
Procedia PDF Downloads 203550 Study of the Combinatorial Impact of Substrate Properties on Mesenchymal Stem Cell Migration Using Microfluidics
Authors: Nishanth Venugopal Menon, Chuah Yon Jin, Samantha Phey, Wu Yingnan, Zhang Ying, Vincent Chan, Kang Yuejun
Abstract:
Cell Migration is a vital phenomenon that the cells undergo in various physiological processes like wound healing, disease progression, embryogenesis, etc. Cell migration depends primarily on the chemical and physical cues available in the cellular environment. The chemical cue involves the chemokines secreted and gradients generated in the environment while physical cues indicate the impact of matrix properties like nanotopography and stiffness on the cells. Mesenchymal Stem Cells (MSCs) have been shown to have a role wound healing in vivo and its migration to the site of the wound has been shown to have a therapeutic effect. In the field of stem cell based tissue regeneration of bones and cartilage, one approach has been to introduce scaffold laden with MSCs into the site of injury to enable tissue regeneration. In this work, we have studied the combinatorial impact of the substrate physical properties on MSC migration. A microfluidic in vitro model was created to perform the migration studies. The microfluidic model used is a three compartment device consisting of two cell seeding compartments and one migration compartment. Four different PDMS substrates with varying substrate roughness, stiffness and hydrophobicity were created. Its surface roughness and stiffness was measured using Atomic Force Microscopy (AFM) while its hydrphobicity was measured from the water contact angle using an optical tensiometer. These PDMS substrates are sealed to the microfluidic chip following which the MSCs are seeded and the cell migration is studied over the period of a week. Cell migration was quantified using fluorescence imaging of the cytoskeleton (F-actin) to find out the area covered by the cells inside the migration compartment. The impact of adhesion proteins on cell migration was also quantified using a real-time polymerase chain reaction (qRT PCR). These results suggested that the optimal substrate for cell migration would be one with an intermediate level of roughness, stiffness and hydrophobicity. A higher or lower value of these properties affected cell migration negatively. These observations have helped us in understanding that different substrate properties need to be considered in tandem, especially while designing scaffolds for tissue regeneration as cell migration is normally impacted by the combinatorial impact of the matrix. These observations may lead us to scaffold optimization in future tissue regeneration applications.Keywords: cell migration, microfluidics, in vitro model, stem cell migration, scaffold, substrate properties
Procedia PDF Downloads 557549 Inverted Diameter-Limit Thinning: A Promising Alternative for Mixed Populus tremuloides Stands Management
Authors: Ablo Paul Igor Hounzandji, Benoit Lafleur, Annie DesRochers
Abstract:
Introduction: Populus tremuloides [Michx] regenerates rapidly and abundantly by root suckering after harvest, creating stands with interconnected stems. Pre-commercial thinning can be used to concentrate growth on fewer stems to reach merchantability faster than un-thinned stands. However, conventional thinning methods are typically designed to reach even spacing between residual stems (1,100 stem ha⁻¹, evenly distributed), which can lead to treated stands consisting of weaker/smaller stems compared to the original stands. Considering the nature of P. tremuloides's regeneration, with large underground biomass of interconnected roots, aiming to keep the most vigorous and largest stems, regardless of their spatial distribution, inverted diameter-limit thinning could be more beneficial to post-thinning stand productivity because it would reduce the imbalance between roots and leaf area caused by thinning. Aims: This study aimed to compare stand and stem productivity of P. tremuloides stands thinned with a conventional thinning treatment (CT; 1,100 stem ha⁻¹, evenly distributed), two levels of inverted diameter-limit thinning (DL1 and DL2, keeping the largest 1100 or 2200 stems ha⁻¹, respectively, regardless of their spatial distribution) and a control unthinned treatment. Because DL treatments can create substantial or frequent gaps in the thinned stands, we also aimed to evaluate the potential of this treatment to recreate mixed conifer-broadleaf stands by fill-planting Picea glauca seedlings. Methods: Three replicate 21 year-old sucker-regenerated aspen stands were thinned in 2010 according to four treatments: CT, DL1, DL2, and un-thinned control. Picea glauca seedlings were underplanted in gaps created by the DL1 and DL2 treatments. Stand productivity per hectare, stem quality (diameter and height, volume stem⁻¹) and survival and height growth of fill-planted P. glauca seedlings were measured 8 year post-treatments. Results: Productivity, volume, diameter, and height were better in the treated stands (CT, DL1, and DL2) than in the un-thinned control. Productivity of CT and DL1 stands was similar 4.8 m³ ha⁻¹ year⁻¹. At the tree level, diameter and height of the trees in the DL1 treatment were 5% greater than those in the CT treatment. The average volume of trees in the DL1 treatment was 11% higher than the CT treatment. Survival after 8 years of fill planted P. glauca seedlings was 2% greater in the DL1 than in the DL2 treatment. DL1 treatment also produced taller seedlings (+20 cm). Discussion: Results showed that DL treatments were effective in producing post-thinned stands with larger stems without affecting stand productivity. In addition, we showed that these treatments were suitable to introduce slower growing conifer seedlings such as Picea glauca in order to re-create or maintain mixed stands despite the aggressive nature of P. tremuloides sucker regeneration.Keywords: Aspen, inverted diameter-limit, mixed forest, populus tremuloides, silviculture, thinning
Procedia PDF Downloads 141548 Wave Powered Airlift PUMP for Primarily Artificial Upwelling
Authors: Bruno Cossu, Elio Carlo
Abstract:
The invention (patent pending) relates to the field of devices aimed to harness wave energy (WEC) especially for artificial upwelling, forced downwelling, production of compressed air. In its basic form, the pump consists of a hydro-pneumatic machine, driven by wave energy, characterised by the fact that it has no moving mechanical parts, and is made up of only two structural components: an hollow body, which is open at the bottom to the sea and partially immersed in sea water, and a tube, both joined together to form a single body. The shape of the hollow body is like a mushroom whose cap and stem are hollow; the stem is open at both ends and the lower part of its surface is crossed by holes; the tube is external and coaxial to the stem and is joined to it so as to form a single body. This shape of the hollow body and the type of connection to the tube allows the pump to operate simultaneously as an air compressor (OWC) on the cap side, and as an airlift on the stem side. The pump can be implemented in four versions, each of which provides different variants and methods of implementation: 1) firstly, for the artificial upwelling of cold, deep ocean water; 2) secondly, for the lifting and transfer of these waters to the place of use (above all, fish farming plants), even if kilometres away; 3) thirdly, for the forced downwelling of surface sea water; 4) fourthly, for the forced downwelling of surface water, its oxygenation, and the simultaneous production of compressed air. The transfer of the deep water or the downwelling of the raised surface water (as for pump versions indicated in points 2 and 3 above), is obtained by making the water raised by the airlift flow into the upper inlet of another pipe, internal or adjoined to the airlift; the downwelling of raised surface water, oxygenation, and the simultaneous production of compressed air (as for the pump version indicated in point 4), is obtained by installing a venturi tube on the upper end of the pipe, whose restricted section is connected to the external atmosphere, so that it also operates like a hydraulic air compressor (trompe). Furthermore, by combining one or more pumps for the upwelling of cold, deep water, with one or more pumps for the downwelling of the warm surface water, the system can be used in an Ocean Thermal Energy Conversion plant to supply the cold and the warm water required for the operation of the same, thus allowing to use, without increased costs, in addition to the mechanical energy of the waves, for the purposes indicated in points 1 to 4, the thermal one of the marine water treated in the process.Keywords: air lifted upwelling, fish farming plant, hydraulic air compressor, wave energy converter
Procedia PDF Downloads 148547 Molecular Cloning of CSP2s, PBP1 and PBP2 Genes of Rhyzopertha dominica
Authors: Suliman A. I. Ali, Mory Mandiana Diakite, Saqib Ali, Man-Qun Wang
Abstract:
Lesser grain borer, Rhyzopertha dominica, is a causing damages of stored grains all tropical and subtropical area in the global, according to the information of antenna cDNA library of R. dominica, three olfactory protein genes, including R.domica CSPs2, R.domica PBPs1, R.domica PBPs2 genes (GenBank accessions are KJ186798.1, KJ186830.1, KJ186831.1 separately.), were successfully cloned. For sequencing and phylogenetic analysis, R.domica CSPs1 and R.domica CSPs2 belonged to Minus-C CSPs showed that have 4 conserved cysteine residues, while R.domica PBPs1 and R.domica PBPs2 showed conserved amino acids in all PBPs six conserved cysteine residues. The results of transcription expression level of PBPs1 and PBPs2 of R. dominica showed that the expression level of R.domnica PBP2 is much higher than that of R.domnica PBP1. The variation transcription level at the different developmental time suggested the PBP1, and PBP2 had their particular job in searching food sources, mates and oviposition sites.Keywords: Rhyzopertha dominica, CSPs, PBPs, molecular cloning
Procedia PDF Downloads 146546 Induction of Different Types of Callus and Somatic Embryogenesis in Various Explants of Taraxacum Kok-Saghyz Rodin
Authors: Kairat Uteulin, Azhar Iskakova, Serik Mukhambetzhanov, Bayan Yesbolayeva, Gabit Bari, Aslan Zheksenbai, Kabyl Zhambakin, Chingis Dzhabykbayev, Vladimir Piven, Izbasar Rakhimbaiev
Abstract:
To explore the potential for in vitro rapid regeneration of Russian dandelion (Taraxacum kok-saghyz Rodin), different concentrations of 6-Benzylaminopurine (BAP), 2,4-Dichlorophenoxyacetic acid (2.4-D) and BAP combined with Indole-3-acetic acid (IAA) were evaluated for their effects on the induction of somatic embryos from leaf, seed stem and root explants. Different explants were cultured on MS medium supplemented with various concentrations (0, 0.5, 1, 1.5, 2, 2.5 and 3 mg/l) of each kind of hormone. Callus induction percentage, fresh weight, color and texture of the callus were assessed after 14 and 28 days of culture. The optimum medium for the proliferation of embryogenic calli from leaf and root explants was MS supplemented with 2.5 mg/L BAP and 0.5 mg/L 2.4-D. Concentrations of 2.5 mg/L BAP and 1.5 mg/L IAA also had a remarkable effect on root and stem explants. The best concentration to produce callus from stem explants was 0.5 mg/L BAP and 1 mg/L IAA. Results of mean comparison showed that BAP and 2.4-D were more effective on different explants than BAP and IAA. Results of the double staining method proved that somatic embryogenesis occurred in the most concentrations of BAP and 2.4-D. Under microscopic observations, the different developmental stages of the embryos (globular, heart, torpedo and cotyledonary) were revealed together in callus cells, indicating that the most tested hormone combinations were effective for somatic embryogenesis formation in this species. Seed explants formed torpedo and cotyledonary stages faster than leaf and root explants in the most combinations. Most calli from seed explants were cream colored and friable, while calli were compact and light green from leaf and root explants. Some combinations gave direct regeneration and (3 mg/L BAP and 2 mg/L IAA) in seed explants and (0.5 mg/L BAP and 2.5 mg/L IAA) in leaf explants had the highest number of shoots with average of 21 and 27 shoots per callus. The developed protocol established the production of different callus types from seed, leaf, and root explants and plant regeneration through somatic embryogenesis.Keywords: taraxacum kok-saghyz Rodin, callus, somatic embryogenesis
Procedia PDF Downloads 372545 Development of a Natural Anti-cancer Formulation Which Can Target Triple Negative Breast Cancer Stem Cells
Authors: Samashi Munaweera
Abstract:
Cancer stem cells (CSC) are responsible for the initiation, extensive proliferation and metastasis of cancer. CSCs, including breast cancer stem cells (bCSCs) have a capacity to generate chemo and radiotherapy resistance heterogeneous population of cells. Over-expressed ABCB1 has been reported as a main reason for drug resistance of CSCs via activating drug efflux pumps by creating pores in the cell membrane. The overall efficiency of chemotherapeutic agents might be enhanced by blocking the ABCB protein efflux pump in the CSC membrane. There is an urgent need to search for persuasive natural drugs which can target CSCs. Anti-cancer properties of Hylocereus undatus on cancer CSCs have not yet been studied. In the present study, the anti-cancer effects of the peel and flesh of H. undatus fruit on bCSCs were evaluated with the aim of developing a marketable anti-cancer nutraceutical formulation. The flesh and peel of H. undatus were freeze-dried and sequentially extracted into four different solvents (hexane, chloroform, ethyl acetate and ethanol). All extracts (eight extracts) were dried under reduced pressure, and different concentrations (12.5-400 µg/mL) were treated on bCSCs isolated from a triple-negative chemo-resistant breast cancer phenotype (MDA-MB-231 cells). Anti-proliferative effects of all extracts and paclitaxel (positive control) were determined by a colorimetric assay (WST-1 based). Since peel-chloroform (IC50= 54.8 µg/mL) and flesh-ethyl acetate (IC50= 150.5 µg/mL) extras exerted a potent anti-proliferative effect at 72 h post-incubation, a combinatorial formulation (CF) was developed with the most active peel-chloroform extract and 20 µg/mL of verapamil (a known ABCB1 drug efflux pump blocker) first time in the world. Anti-proliferative effects and pro-apoptotic effects of CF were confirmed by estimating activated caspase3 and caspase7 levels and apoptotic morphological features in the CF-treated bCSCs compared to untreated and only verapamil (20 µg/mL) treated bCSCs, and CF treated normal mammary epithelial cells (MCF-10A). The antiproliferative effects of CF (16.4 µg/mL) are greater than paclitaxel (19.2 µg/mL) and three folds greater than peel-chloroform extract (IC50= 54.8 µg/mL) on bCSCs while exerting less effects on normal cells (> 400 µg/mL). Collectively, CF can be considered as a potential initiative of a nutraceutical formulation that can target CSCs.Keywords: breast cancer stem cells (bCSCs), Hylocereus undatus, combinatorial formulation (CF), ABCB 1 protein, verapamil
Procedia PDF Downloads 27544 An Early Intervention Framework for Supporting Students’ Mathematical Development in the Transition to University STEM Programmes
Authors: Richard Harrison
Abstract:
Developing competency in mathematics and related critical thinking skills is essential to the education of undergraduate students of Science, Technology, Engineering and Mathematics (STEM). Recently, the HE sector has been impacted by a seemingly widening disconnect between the mathematical competency of incoming first-year STEM students and their entrance qualification tariffs. Despite relatively high grades in A-Level Mathematics, students may initially lack fundamental skills in key areas such as algebraic manipulation and have limited capacity to apply problem solving strategies. Compounded by compensatory measures applied to entrance qualifications during the pandemic, there has been an associated decline in student performance on introductory university mathematics modules. In the UK, a number of online resources have been developed to help scaffold the transition to university mathematics. However, in general, these do not offer a structured learning journey focused on individual developmental needs, nor do they offer an experience coherent with the teaching and learning characteristics of the destination institution. In order to address some of these issues, a bespoke framework has been designed and implemented on our VLE in the Faculty of Engineering & Physical Sciences (FEPS) at the University of Surrey. Called the FEPS Maths Support Framework, it was conceived to scaffold the mathematical development of individuals prior to entering the university and during the early stages of their transition to undergraduate studies. More than 90% of our incoming STEM students voluntarily participate in the process. Students complete a set of initial diagnostic questions in the late summer. Based on their performance and feedback on these questions, they are subsequently guided to self-select specific mathematical topic areas for review using our proprietary resources. This further assists students in preparing for discipline related diagnostic tests. The framework helps to identify students who are mathematically weak and facilitates early intervention to support students according to their specific developmental needs. This paper presents a summary of results from a rich data set captured from the framework over a 3-year period. Quantitative data provides evidence that students have engaged and developed during the process. This is further supported by process evaluation feedback from the students. Ranked performance data associated with seven key mathematical topic areas and eight engineering and science discipline areas reveals interesting patterns which can be used to identify more generic relative capabilities of the discipline area cohorts. In turn, this facilitates evidence based management of the mathematical development of the new cohort, informing any associated adjustments to teaching and learning at a more holistic level. Evidence is presented establishing our framework as an effective early intervention strategy for addressing the sector-wide issue of supporting the mathematical development of STEM students transitioning to HEKeywords: competency, development, intervention, scaffolding
Procedia PDF Downloads 65543 Analysis of the Potential of Biomass Residues for Energy Production and Applications in New Materials
Authors: Sibele A. F. Leite, Bernno S. Leite, José Vicente H. D´Angelo, Ana Teresa P. Dell’Isola, Julio CéSar Souza
Abstract:
The generation of bioenergy is one of the oldest and simplest biomass applications and is one of the safest options for minimizing emissions of greenhouse gasses and replace the use of fossil fuels. In addition, the increasing development of technologies for energy biomass conversion parallel to the advancement of research in biotechnology and engineering has enabled new opportunities for exploitation of biomass. Agricultural residues offer great potential for energy use, and Brazil is in a prominent position in the production and export of agricultural products such as banana and rice. Despite the economic importance of the growth prospects of these activities and the increasing of the agricultural waste, they are rarely explored for energy and production of new materials. Brazil products almost 10.5 million tons/year of rice husk and 26.8 million tons/year of banana stem. Thereby, the aim of this study was to analysis the potential of biomass residues for energy production and applications in new materials. Rice husk (specify the type) and banana stem (specify the type) were characterized by physicochemical analyses using the following parameters: organic carbon, nitrogen (NTK), proximate analyses, FT-IR spectroscopy, thermogravimetric analyses (TG), calorific values and silica content. Rice husk and banana stem presented attractive superior calorific (from 11.5 to 13.7MJ/kg), and they may be compared to vegetal coal (21.25 MJ/kg). These results are due to the high organic matter content. According to the proximate analysis, biomass has high carbon content (fixed and volatile) and low moisture and ash content. In addition, data obtained by Walkley–Black method point out that most of the carbon present in the rice husk (50.5 wt%) and in banana stalk (35.5 wt%) should be understood as organic carbon (readily oxidizable). Organic matter was also detected by Kjeldahl method which gives the values of nitrogen (especially on the organic form) for both residues: 3.8 and 4.7 g/kg of rice husk and banana stem respectively. TG and DSC analyses support the previous results, as they can provide information about the thermal stability of the samples allowing a correlation between thermal behavior and chemical composition. According to the thermogravimetric curves, there were two main stages of mass-losses. The first and smaller one occurred below 100 °C, which was suitable for water losses and the second event occurred between 200 and 500 °C which indicates decomposition of the organic matter. At this broad peak, the main loss was between 250-350 °C, and it is because of sugar decomposition (components readily oxidizable). Above 350 °C, mass loss of the biomass may be associated with lignin decomposition. Spectroscopic characterization just provided qualitative information about the organic matter, but spectra have shown absorption bands around 1030 cm-1 which may be identified as species containing silicon. This result is expected for the rice husk and deserves further investigation to the stalk of banana, as it can bring a different perspective for this biomass residue.Keywords: rice husk, banana stem, bioenergy, renewable feedstock
Procedia PDF Downloads 279542 The in Vitro and in Vivo Antifungal Activity of Terminalia Mantaly on Aspergillus Species Using Drosophila melanogaster (UAS-Diptericin) As a Model
Authors: Ponchang Apollos Wuyep, Alice Njolke Mafe, Longchi Satkat Zacheaus, Dogun Ojochogu, Dabot Ayuba Yakubu
Abstract:
Fungi causes huge losses when infections occur both in plants and animals. Synthetic Antifungal drugs are mostly very expensive and highly cytotoxic when taken. This study was aimed at determining the in vitro and in vivo antifungal activities of the leaves and stem extracts of Terminalia mantaly (Umbrella tree)H. Perrier on Aspergillus species in a bid to identify potential sources of cheap starting materials for the synthesis of new drugs to address the growing antimicrobial resistance. T. mantaly leave and stem powdered plant was extracted by fractionation using the method of solvent partition co-efficient in their graded form in the order n-hexane, Ethyl acetate, methanol and distilled water and phytochemical screening of each fraction revealed the presence of alkaloids, saponins, Tannins, flavonoids, carbohydrates, steroids, anthraquinones, cardiac glycosides and terpenoids in varying degrees. The Agar well diffusion technique was used to screen for antifungal activity of the fractions on clinical isolates of Aspergillus species (Aspergillus flavus and Aspergillus fumigatus). Minimum inhibitory concentration (MIC50) of the most active extracts was determined by the broth dilution method. The fractions test indicated a high antifungal activity with zones of inhibition ranging from 6 to 26 mm and 8 to 30mm (leave fractions) and 10mm to 34mm and 14mm to36mm (stem fractions) on A. flavus and A. fumigatus respectively. All the fractions indicated antifungal activity in a dose response relationship at concentrations of 62.5mg/ml, 125mg/ml, 250mg/ml and 500mg/ml. Better antifungal efficacy was shown by the Ethyl acetate, Hexane and Methanol fractions in the in vitro as the most potent fraction with MIC ranging from 62.5 to 125mg/ml. There was no statistically significant difference (P>0.05) in the potency of the Eight fractions from leave and stem (Hexane, Ethyl acetate, methanol and distilled water, antifungal (fluconazole), which served as positive control and 10% DMSO(Dimethyl Sulfoxide)which served as negative control. In the in vivo investigations, the ingestion technique was used for the infectious studies Female Drosophilla melanogaster(UAS-Diptericin)normal flies(positive control),infected and not treated flies (negative control) and infected flies with A. fumigatus and placed on normal diet, diet containing fractions(MSM and HSM each at concentrations of 10mg/ml 20mg/ml, 30mg/ml, 40mg/ml, 50mg/ml, 60mg/ml, 70mg/ml, 80mg/ml, 90mg/ml and 100mg/ml), diet containing control drugs(fluconazole as positive control)and infected flies on normal diet(negative control), the flies were observed for fifteen(15) days. Then the total mortality of flies was recorded each day. The results of the study reveals that the flies were susceptible to infection with A. fumigatus and responded to treatment with more effectiveness at 50mg/ml, 60mg/ml and 70mg/ml for both the Methanol and Hexane stem fractions. Therefore, the Methanol and Hexane stem fractions of T. mantaly contain therapeutically useful compounds, justifying the traditional use of this plant for the treatment of fungal infections.Keywords: Terminalia mantaly, Aspergillus fumigatus, cytotoxic, Drosophila melanogaster, antifungal
Procedia PDF Downloads 86541 Improved Mechanical Properties and Osteogenesis in Electrospun Poly L-Lactic Ultrafine Nanofiber Scaffolds Incorporated with Graphene Oxide
Authors: Weili Shao, Qian Wang, Jianxin He
Abstract:
Recently, the applications of graphene oxide in fabricating scaffolds for bone tissue engineering have been received extensive concern. In this work, poly l-lactic/graphene oxide composite nanofibers were successfully fabricated by electrospinning. The morphology structure, porosity and mechanical properties of the composite nanofibers were characterized using different techniques. And mouse mesenchymal stem cells were cultured on the composite nanofiber scaffolds to assess their suitability for bone tissue engineering. The results indicated that the composite nanofiber scaffolds had finer fiber diameter and higher porosity as compared with pure poly l-lactic nanofibers. Furthermore, incorporation of graphene oxide into the poly l-lactic nanofibers increased protein adsorptivity, boosted the Young’s modulus and tensile strength by nearly 4.2-fold and 3.5-fold, respectively, and significantly enhanced adhesion, proliferation, and osteogenesis in mouse mesenchymal stem cells. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering.Keywords: poly l-lactic, graphene oxide, osteogenesis, bone tissue engineering
Procedia PDF Downloads 306