Search results for: fruit recognition
2025 Development of an Instrument for Measurement of Thermal Conductivity and Thermal Diffusivity of Tropical Fruit Juice
Authors: T. Ewetumo, K. D. Adedayo, Festus Ben
Abstract:
Knowledge of the thermal properties of foods is of fundamental importance in the food industry to establish the design of processing equipment. However, for tropical fruit juice, there is very little information in literature, seriously hampering processing procedures. This research work describes the development of an instrument for automated thermal conductivity and thermal diffusivity measurement of tropical fruit juice using a transient thermal probe technique based on line heat principle. The system consists of two thermocouple sensors, constant current source, heater, thermocouple amplifier, microcontroller, microSD card shield and intelligent liquid crystal. A fixed distance of 6.50mm was maintained between the two probes. When heat is applied, the temperature rise at the heater probe measured with time at time interval of 4s for 240s. The measuring element conforms as closely as possible to an infinite line source of heat in an infinite fluid. Under these conditions, thermal conductivity and thermal diffusivity are simultaneously measured, with thermal conductivity determined from the slope of a plot of the temperature rise of the heating element against the logarithm of time while thermal diffusivity was determined from the time it took the sample to attain a peak temperature and the time duration over a fixed diffusivity distance. A constant current source was designed to apply a power input of 16.33W/m to the probe throughout the experiment. The thermal probe was interfaced with a digital display and data logger by using an application program written in C++. Calibration of the instrument was done by determining the thermal properties of distilled water. Error due to convection was avoided by adding 1.5% agar to the water. The instrument has been used for measurement of thermal properties of banana, orange and watermelon. Thermal conductivity values of 0.593, 0.598, 0.586 W/m^o C and thermal diffusivity values of 1.053 ×〖10〗^(-7), 1.086 ×〖10〗^(-7), and 0.959 ×〖10〗^(-7) 〖m/s〗^2 were obtained for banana, orange and water melon respectively. Measured values were stored in a microSD card. The instrument performed very well as it measured the thermal conductivity and thermal diffusivity of the tropical fruit juice samples with statistical analysis (ANOVA) showing no significant difference (p>0.05) between the literature standards and estimated averages of each sample investigated with the developed instrument.Keywords: thermal conductivity, thermal diffusivity, tropical fruit juice, diffusion equation
Procedia PDF Downloads 3572024 Effects of Multilayer Coating of Chitosan and Polystyrene Sulfonate on Quality of ‘Nam Dok Mai No.4’ Mango
Authors: N. Hadthamard, P. Chaumpluk, M. Buanong, P. Boonyaritthongchai, C. Wongs-Aree
Abstract:
Ripe ‘Nam Dok Mai’ mango (Mangifera indica L.) is an important exported fruit of Thailand, but rapidly declined in the quality attributes mainly by infection of anthracnose and stem end rot diseases. Multilayer coating is considered as a developed technique to maintain the postharvest quality of mangoes. The utilization of alternated coating by matching oppositely electrostatic charges between 0.1% chitosan and 0.1% polystyrene sulfonate (PSS) was studied. A number of the coating layers (layer by layer) were applied on mature green ‘Nam Dok Mai No.4’ mangoes prior to storage at 25 oC, 65-70% relative humidity (RH). There were significant differences in some quality attributes of mangoes coated by 3½ layers, 4½ layers and 5½ layers. In comparison to coated mangoes, uncoated fruits were higher in weight loss, total soluble solids, respiration rate, ethylene production and disease incidence except the titratable acidity. Coating fruit at 3½ layers exhibited the ripening delay and reducing disease infection without off flavour. On the other hand, fruit coated with 5½ layers comprised the lowest acceptable score, caused by exhibiting disorders from fermentation at the end of storage. As a result, multilayer coating between chitosan and PSS could effectively maintain the postharvest quality of mango, but number of coating layers should be thoroughly considered.Keywords: multilayer, chitosan, polystyrene sulfonate, Nam Dok Mai No.4
Procedia PDF Downloads 2112023 Evaluation of Different High Tunnel Protection Methods for Quality Banana Production in Bangladesh
Authors: Shormin Choudhury, Nazrul Islam, Atiqur Rahman Shaon
Abstract:
High tunnels can provide several benefits to horticultural crops, including environmental stress protection such as hail, frost, excessive rainfall, and high wind. In hot and sunny areas, high tunnel is one of the cooling ways for modifying the microclimate and maximizing crop development. Present study was carried out to assess the effect of different type of high tunnels on banana growth, yield, and fruit quality characteristics. Net houses, poly net houses, UV poly shed houses, and open field (control) conditions are among the experimental treatments. The results revealed that the plants produced in the poly net house condition had maximum pseudo stem height (171.00cm), stem girth (68.66 cm), chlorophyll content (57.63), number of fruits (140), number of hands (9.66), individual fruit weight (125.00) and pulp: peel ratio (3.35) of bananas as compared to the other treatments. Quality parameters like total soluble solid (21.78°Brix), ascorbic acid (10.24 mg/100g), total sugar (25.44%), and reducing sugar (15.75%) were higher in fruits grown in poly net house. The study revealed that the poly net house is the best growing environment for bananas in terms of growth, yield, and quality attributes.Keywords: shed houses, banana, chlorophyll content, fruit yield, quality
Procedia PDF Downloads 862022 Image Processing techniques for Surveillance in Outdoor Environment
Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.
Abstract:
This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management
Procedia PDF Downloads 262021 Defect Localization and Interaction on Surfaces with Projection Mapping and Gesture Recognition
Authors: Qiang Wang, Hongyang Yu, MingRong Lai, Miao Luo
Abstract:
This paper presents a method for accurately localizing and interacting with known surface defects by overlaying patterns onto real-world surfaces using a projection system. Given the world coordinates of the defects, we project corresponding patterns onto the surfaces, providing an intuitive visualization of the specific defect locations. To enable users to interact with and retrieve more information about individual defects, we implement a gesture recognition system based on a pruned and optimized version of YOLOv6. This lightweight model achieves an accuracy of 82.8% and is suitable for deployment on low-performance devices. Our approach demonstrates the potential for enhancing defect identification, inspection processes, and user interaction in various applications.Keywords: defect localization, projection mapping, gesture recognition, YOLOv6
Procedia PDF Downloads 882020 Characterization of Shear and Extensional Rheology of Fibre Suspensions Prior to Atomization
Authors: Siti N. M. Rozali, A. H. J. Paterson, J. P. Hindmarsh
Abstract:
Spray drying of fruit juices from liquid to powder is desirable as the powders are easier to handle, especially for storage and transportation. In this project, pomace fibres will be used as a drying aid during spray drying, replacing the commonly used maltodextrins. The main attraction of this drying aid is that the pomace fibres are originally derived from the fruit itself. However, the addition of micro-sized fibres to fruit juices is expected to affect the rheology and subsequent atomization behaviour during the spray drying process. This study focuses on the determination and characterization of the rheology of juice-fibre suspensions specifically inside a spray dryer nozzle. Results show that the juice-fibre suspensions exhibit shear thinning behaviour with a significant extensional viscosity. The shear and extensional viscosities depend on several factors which include fibre fraction, shape, size and aspect ratio. A commercial capillary rheometer is used to characterize the shear behaviour while a portable extensional rheometer has been designed and built to study the extensional behaviour. Methods and equipment will be presented along with the rheology results. Rheology or behaviour of the juice-fibre suspensions provides an insight into the limitations that will be faced during atomization, and in the future, this finding will assist in choosing the best nozzle design that can overcome the limitations introduced by the fibre particles thus resulting in successful spray drying of juice-fibre suspensions.Keywords: extensional rheology, fibre suspensions, portable extensional rheometer, shear rheology
Procedia PDF Downloads 2042019 SCNet: A Vehicle Color Classification Network Based on Spatial Cluster Loss and Channel Attention Mechanism
Authors: Fei Gao, Xinyang Dong, Yisu Ge, Shufang Lu, Libo Weng
Abstract:
Vehicle color recognition plays an important role in traffic accident investigation. However, due to the influence of illumination, weather, and noise, vehicle color recognition still faces challenges. In this paper, a vehicle color classification network based on spatial cluster loss and channel attention mechanism (SCNet) is proposed for vehicle color recognition. A channel attention module is applied to extract the features of vehicle color representative regions and reduce the weight of nonrepresentative color regions in the channel. The proposed loss function, called spatial clustering loss (SC-loss), consists of two channel-specific components, such as a concentration component and a diversity component. The concentration component forces all feature channels belonging to the same class to be concentrated through the channel cluster. The diversity components impose additional constraints on the channels through the mean distance coefficient, making them mutually exclusive in spatial dimensions. In the comparison experiments, the proposed method can achieve state-of-the-art performance on the public datasets, VCD, and VeRi, which are 96.1% and 96.2%, respectively. In addition, the ablation experiment further proves that SC-loss can effectively improve the accuracy of vehicle color recognition.Keywords: feature extraction, convolutional neural networks, intelligent transportation, vehicle color recognition
Procedia PDF Downloads 1832018 The Influence of Polysaccharide Isolated from Morinda citrifolia Fruit to the Growth of Vero, He-La and T47D Cell Lines against Doxorubicin in vitro
Authors: Ediati Budi Cahyono, Triana Hertiani, Nauval Arrazy Asawimanda, Wahyu Puji Pratomo
Abstract:
Background: Doxorubicin is widely used as a chemotherapeutic drug despite having many side effects. It may cause macrophage dysfunction and decreasing proliferation of lymphocyte. Noni (Morinda citrifolia) fruit which has rich of polysaccharide content has potential as antitumor and immunostimulant effect. The isolation of polysaccharide from Noni fruit has been optimized according to four different methods based on macrophage and lymphocyte activities. We found the highest polysaccharide content from one of the four methods isolation. A method of polysaccharide isolation which has the highest immunostimulant effect was used for further observation as co-chemotherapy. The aim of the study: was to evaluate the isolated polysaccharide from the method of choice as co-chemotherapy of doxorubicin for the growth of Vero, He-La, and T47D cell lines in vitro. The method: in vitro growth assay of Vero, He-La, and T47D cell lines was done using MTT-reduction method, and apoptosis test was done by double staining method to evaluate the induction apoptotic effect of the combination. Every group was treated with doxorubicin and isolated polysaccharide from method of choice with 4 variances of concentrations (25 µg/ml, 50 µg/ml, 100 µg/ml and 200 µg/ml) a long with negative control (doxorubicin only) and normal control (without doxorubicin or polysaccharide administration). Results: The combination of polysaccharide fraction in the concentration of 100μg/ml with 2μmol of doxorubicin against He-La and T47D cell lines influenced the highest cytotoxic effect by suppressing cell viability comparing with doxorubicin only. The combination of polysaccharide fraction in the concentration of 100μg/ml with 2μmol of doxorubicin-induced apoptotic effect the He-La cell line comparing with doxorubicin only. The result of the study: it can be concluded that the combination of polysaccharide fraction and doxorubicin effect more selective toward He-La and T47D cell lines than to Vero cell line. It can be suggested isolated polysaccharide from the method of choice has co-chemotherapy activity against doxorubicin.Keywords: polysaccharide, noni fruit, doxorubicin, cancer cell lines, vero cell line
Procedia PDF Downloads 2512017 Analyzing the Use of Augmented Reality and Image Recognition in Cultural Education: Use Case of Sintra Palace Treasure Hunt Application
Authors: Marek Maruszczak
Abstract:
Gamified applications have been used successfully in education for years. The rapid development of technologies such as augmented reality and image recognition increases their availability and reduces their prices. Thus, there is an increasing possibility and need for a wide use of such applications in education. The main purpose of this article is to present the effects of work on a mobile application with augmented reality, the aim of which is to motivate tourists to pay more attention to the attractions and increase the likelihood of moving from one attraction to the next while visiting the Palácio Nacional de Sintra in Portugal. Work on the application was carried out together with the employees of Parques de Sintra from 2019 to 2021. Their effect was the preparation of a mobile application using augmented reality and image recognition. The application was tested on the palace premises by both Parques de Sintra employees and tourists visiting Palácio Nacional de Sintra. The collected conclusions allowed for the formulation of good practices and guidelines that can be used when designing gamified apps for the purpose of cultural education.Keywords: augmented reality, cultural education, gamification, image recognition, mobile games
Procedia PDF Downloads 1902016 The Effect of Experimentally Induced Stress on Facial Recognition Ability of Security Personnel’s
Authors: Zunjarrao Kadam, Vikas Minchekar
Abstract:
The facial recognition is an important task in criminal investigation procedure. The security guards-constantly watching the persons-can help to identify the suspected accused. The forensic psychologists are tackled such cases in the criminal justice system. The security personnel may loss their ability to correctly identify the persons due to constant stress while performing the duty. The present study aimed at to identify the effect of experimentally induced stress on facial recognition ability of security personnel’s. For this study 50, security guards from Sangli, Miraj & Jaysingpur city of the Maharashtra States of India were recruited in the experimental study. The randomized two group design was employed to carry out the research. In the initial condition twenty identity card size photographs were shown to both groups. Afterward, artificial stress was induced in the experimental group through the difficultpuzzle-solvingtask in a limited period. In the second condition, both groups were presented earlier photographs with another additional thirty new photographs. The subjects were asked to recognize the photographs which are shown earliest. The analyzed data revealed that control group has ahighest mean score of facial recognition than experimental group. The results were discussed in the present research.Keywords: experimentally induced stress, facial recognition, cognition, security personnel
Procedia PDF Downloads 2612015 Optimized Dynamic Bayesian Networks and Neural Verifier Test Applied to On-Line Isolated Characters Recognition
Authors: Redouane Tlemsani, Redouane, Belkacem Kouninef, Abdelkader Benyettou
Abstract:
In this paper, our system is a Markovien system which we can see it like a Dynamic Bayesian Networks. One of the major interests of these systems resides in the complete training of the models (topology and parameters) starting from training data. The Bayesian Networks are representing models of dubious knowledge on complex phenomena. They are a union between the theory of probability and the graph theory in order to give effective tools to represent a joined probability distribution on a set of random variables. The representation of knowledge bases on description, by graphs, relations of causality existing between the variables defining the field of study. The theory of Dynamic Bayesian Networks is a generalization of the Bayesians networks to the dynamic processes. Our objective amounts finding the better structure which represents the relationships (dependencies) between the variables of a dynamic bayesian network. In applications in pattern recognition, one will carry out the fixing of the structure which obliges us to admit some strong assumptions (for example independence between some variables).Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition, networks
Procedia PDF Downloads 6172014 Applying Organic Natural Fertilizer to 'Orange Rubis' and 'Farbaly' Apricot Growth, Yield and Fruit Quality
Authors: A. Tarantino, F. Lops, G. Lopriore, G. Disciglio
Abstract:
Biostimulants are known as the organic fertilizers that can be applied in agriculture in order to increase nutrient uptake, growth and development of plants and improve quality, productivity and the environmental positive impacts. The aim of this study was to test the effects of some commercial biostimulants products (Bion® 50 WG, Hendophyt ® PS, Ergostim® XL and Radicon®) on vegeto-productive behavior and qualitative characteristics of fruits of two emerging apricot cultivars (Orange Rubis® and Farbaly®). The study was conducted during the spring-summer season 2015, in a commercial orchard located in the agricultural area of Cerignola (Foggia district, Apulian region, Southern Italy). Eight years old apricot trees, cv ‘Orange Rubis’ and ‘Farbaly®’, were used. The experimental data recorded during the experimental trial were: shoot length, total number of flower buds, flower buds drop and time of flowering and fruit set. Total yield of fruits per tree and quality parameters were determined. Experimental data showed some specific differences among the biostimulant treatments. Concerning the yield of ‘Orange Rubis’, except for the Bion treatment, the other three biostimulant treatments showed a tendentially lower values than the control. The yield of ‘Farbaly’ was lower for the Bion and Hendophyt treatments, higher for the Ergostim treatment, when compared with the yield of the control untreated. Concerning the soluble solids content, the juice of ‘Farbaly’ fruits had always higher content than that of ‘Orange Rubis’. Particularly, the Bion and the Hendophyt treatments showed in both harvest values tendentially higher than the control. Differently, the four biostimulant treatments did not affect significantly this parameter in ‘Orange Rubis’. With regard to the fruit firmness, some differences were observed between the two harvest dates and among the four biostimulant treatments. At the first harvest date, ‘Orange Rubis’ treated with Bion and Hendophyt biostimulants showed texture values tendentially lower than the control. Instead, ‘Farbaly’ for all the biostimulant treatments showed fruit firmness values significantly lower than the control. At the second harvest, almost all the biostimulants treatments in both ‘Orange Rubis’ and ‘Farbaly’ cultivar showed values lower than the control. Only ‘Farbaly’ treated with Radicon showed higher value in comparison to the control.Keywords: apricot, fruit quality, growth, organic natural fertilizer
Procedia PDF Downloads 3262013 Tomato Fruit Color Changes during Ripening of Vine
Authors: A.Radzevičius, P. Viškelis, J. Viškelis, R. Karklelienė, D. Juškevičienė
Abstract:
Tomato (Lycopersicon esculentum Mill.) hybrid 'Brooklyn' was investigated at the LRCAF Institute of Horticulture. For investigation, five green tomatoes, which were grown on vine, were selected. Color measurements were made in the greenhouse with the same selected tomato fruits (fruits were not harvested and were growing and ripening on tomato vine through all experiment) in every two days while tomatoes fruits became fully ripen. Study showed that color index L has tendency to decline and established determination coefficient (R2) was 0.9504. Also, hue angle has tendency to decline during tomato fruit ripening on vine and it’s coefficient of determination (R2) reached–0.9739. Opposite tendency was determined with color index a, which has tendency to increase during tomato ripening and that was expressed by polynomial trendline where coefficient of determination (R2) reached–0.9592.Keywords: color, color index, ripening, tomato
Procedia PDF Downloads 4872012 Size-Reduction Strategies for Iris Codes
Authors: Jutta Hämmerle-Uhl, Georg Penn, Gerhard Pötzelsberger, Andreas Uhl
Abstract:
Iris codes contain bits with different entropy. This work investigates different strategies to reduce the size of iris code templates with the aim of reducing storage requirements and computational demand in the matching process. Besides simple sub-sampling schemes, also a binary multi-resolution representation as used in the JBIG hierarchical coding mode is assessed. We find that iris code template size can be reduced significantly while maintaining recognition accuracy. Besides, we propose a two stage identification approach, using small-sized iris code templates in a pre-selection satge, and full resolution templates for final identification, which shows promising recognition behaviour.Keywords: iris recognition, compact iris code, fast matching, best bits, pre-selection identification, two-stage identification
Procedia PDF Downloads 4402011 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models
Authors: Keyi Wang
Abstract:
Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.Keywords: deep learning, hand gesture recognition, computer vision, image processing
Procedia PDF Downloads 1392010 Features Reduction Using Bat Algorithm for Identification and Recognition of Parkinson Disease
Authors: P. Shrivastava, A. Shukla, K. Verma, S. Rungta
Abstract:
Parkinson's disease is a chronic neurological disorder that directly affects human gait. It leads to slowness of movement, causes muscle rigidity and tremors. Gait serve as a primary outcome measure for studies aiming at early recognition of disease. Using gait techniques, this paper implements efficient binary bat algorithm for an early detection of Parkinson's disease by selecting optimal features required for classification of affected patients from others. The data of 166 people, both fit and affected is collected and optimal feature selection is done using PSO and Bat algorithm. The reduced dataset is then classified using neural network. The experiments indicate that binary bat algorithm outperforms traditional PSO and genetic algorithm and gives a fairly good recognition rate even with the reduced dataset.Keywords: parkinson, gait, feature selection, bat algorithm
Procedia PDF Downloads 5452009 KSVD-SVM Approach for Spontaneous Facial Expression Recognition
Authors: Dawood Al Chanti, Alice Caplier
Abstract:
Sparse representations of signals have received a great deal of attention in recent years. In this paper, the interest of using sparse representation as a mean for performing sparse discriminative analysis between spontaneous facial expressions is demonstrated. An automatic facial expressions recognition system is presented. It uses a KSVD-SVM approach which is made of three main stages: A pre-processing and feature extraction stage, which solves the problem of shared subspace distribution based on the random projection theory, to obtain low dimensional discriminative and reconstructive features; A dictionary learning and sparse coding stage, which uses the KSVD model to learn discriminative under or over dictionaries for sparse coding; Finally a classification stage, which uses a SVM classifier for facial expressions recognition. Our main concern is to be able to recognize non-basic affective states and non-acted expressions. Extensive experiments on the JAFFE static acted facial expressions database but also on the DynEmo dynamic spontaneous facial expressions database exhibit very good recognition rates.Keywords: dictionary learning, random projection, pose and spontaneous facial expression, sparse representation
Procedia PDF Downloads 3052008 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features
Authors: Rabab M. Ramadan, Elaraby A. Elgallad
Abstract:
With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.Keywords: iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, the Scale Invariant Feature Transform (SIFT)
Procedia PDF Downloads 2352007 The Importance of Fruit Trees for Prescribed Burning in a South American Savanna
Authors: Rodrigo M. Falleiro, Joaquim P. L. Parime, Luciano C. Santos, Rodrigo D. Silva
Abstract:
The Cerrado biome is the most biodiverse savanna on the planet. Located in central Brazil, its preservation is seriously threatened by the advance of intensive agriculture and livestock. Conservation Units and Indigenous Lands are increasingly isolated and subject to mega wildfires. Among the characteristics of this savanna, we highlight the high rate of primary biomass production and the reduced occurrence of large grazing animals. In this biome, the predominant fauna is more dependent on the fruits produced by the dicotyledonous species in relation to other tropical savannas. Fire is a key element in the balance between mono and dicotyledons or between the arboreal and herbaceous strata. Therefore, applying fire regimes that maintain the balance between these strata without harming fruit production is essential in the conservation strategies of Cerrado's biodiversity. Recently, Integrated Fire Management has started to be implemented in Brazilian protected areas. As a result, management with prescribed burns has increasingly replaced strategies based on fire exclusion, which in practice have resulted in large wildfires, with highly negative impacts on fruit and fauna production. In the Indigenous Lands, these fires were carried out respecting traditional knowledge. The indigenous people showed great concern about the effects of fire on fruit plants and important animals. They recommended that the burns be carried out between April and May, as it would result in a greater production of edible fruits ("fruiting burning"). In other tropical savannas in the southern hemisphere, the preferential period tends to be later, in the middle of the dry season, when the grasses are dormant (June to August). However, in the Cerrado, this late period coincides with the flowering and sprouting of several important fruit species. To verify the best burning season, the present work evaluated the effects of fire on flowering and fruit production of theByrsonima sp., Mouriri pusa, Caryocar brasiliense, Anacardium occidentale, Pouteria ramiflora, Hancornia speciosa, Byrsonima verbascifolia, Anacardium humille and Talisia subalbens. The evaluations were carried out in the field, covering 31 Indigenous Lands that cover 104,241.18 Km², where 3,386 prescribed burns were carried out between 2015 and 2018. The burning periods were divided into early (carried out during the rainy season), modal or “fruiting” (carried out during the transition between seasons) and late (carried out in the middle of the dry season, when the grasses are dormant). The results corroborate the traditional knowledge, demonstrating that the modal burns result in higher rates of reproduction and fruit production. Late burns showed intermediate results, followed by early burns. We conclude that management strategies based mainly on forage production, which are usually applied in savannas populated by grazing ungulates, may not be the best management strategy for South American savannas. The effects of fire on fruit plants, which have a particular phenologicalsynchronization with the fauna cycle, also need to be observed during the prescription of burns.Keywords: cerrado biome, fire regimes, native fruits, prescribed burns
Procedia PDF Downloads 2172006 Hand Gesture Detection via EmguCV Canny Pruning
Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae
Abstract:
Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.Keywords: canny pruning, hand recognition, machine learning, skin tracking
Procedia PDF Downloads 1852005 Arabic Character Recognition Using Regression Curves with the Expectation Maximization Algorithm
Authors: Abdullah A. AlShaher
Abstract:
In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We then proceed by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.Keywords: character recognition, regression curves, handwritten Arabic letters, expectation maximization algorithm
Procedia PDF Downloads 1452004 History, Challenges and Solutions for Social Work Education and Recognition in Vietnam
Authors: Thuy Bui Anh, Ngan Nguyen Thi Thanh
Abstract:
Currently, social work in Vietnam is entering the first step in the development process to become a true profession with a strong position in society. However, Spirit of helping and sharing of social work has already existed in the daily life of Vietnamese people for a very long time, becoming a precious heritage passed down from ancestors to the next generations while expanding the territory, building and defending for the country. Following the stream of history, charity work in Vietnam has gradually transformed itself towards a more professional work, especially in the last 2 decades. Accordingly, more than 50 universities and educational institutions in Vietnam have been licensed to train social work, ensuring a stronger foundation on human resources working in this field. Despite the strong growth, social work profession, social work education and the recognition of the role of the social workers still need to be fueled to develop, responded to the increasing demand of Vietnam society.Keywords: education, history, recognition, social work, Vietnam
Procedia PDF Downloads 3192003 Recognition of Gene Names from Gene Pathway Figures Using Siamese Network
Authors: Muhammad Azam, Micheal Olaolu Arowolo, Fei He, Mihail Popescu, Dong Xu
Abstract:
The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than OCR results.Keywords: biological pathway, image understanding, gene name recognition, object detection, Siamese network, VGG
Procedia PDF Downloads 2912002 Classifications of Images for the Recognition of People’s Behaviors by SIFT and SVM
Authors: Henni Sid Ahmed, Belbachir Mohamed Faouzi, Jean Caelen
Abstract:
Behavior recognition has been studied for realizing drivers assisting system and automated navigation and is an important studied field in the intelligent Building. In this paper, a recognition method of behavior recognition separated from a real image was studied. Images were divided into several categories according to the actual weather, distance and angle of view etc. SIFT was firstly used to detect key points and describe them because the SIFT (Scale Invariant Feature Transform) features were invariant to image scale and rotation and were robust to changes in the viewpoint and illumination. My goal is to develop a robust and reliable system which is composed of two fixed cameras in every room of intelligent building which are connected to a computer for acquisition of video sequences, with a program using these video sequences as inputs, we use SIFT represented different images of video sequences, and SVM (support vector machine) Lights as a programming tool for classification of images in order to classify people’s behaviors in the intelligent building in order to give maximum comfort with optimized energy consumption.Keywords: video analysis, people behavior, intelligent building, classification
Procedia PDF Downloads 3782001 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera
Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin
Abstract:
We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.Keywords: human action recognition, pose estimation, D-CNN, deep learning
Procedia PDF Downloads 1462000 Nanocrystalline Cellulose from Oil Palm Fiber
Authors: Ridzuan Ramli, Zianor Azrina Zianon Abdin, Mohammad Dalour Beg, Rosli M. Yunus
Abstract:
Nanocrystalline cellulose (NCC) were produced by using the ultrasound assisted acid hydrolysis from oil palm empty fruit bunch (EFB) pulp with different hydrolysis time then were analyzed by using FESEM and TGA as in comparison with EFB fiber and EFB pulp. Based on the FESEM analysis, it was found that NCC has a rod like shaped under the acid hydrolysis with an assistant of ultrasound. According to thermal stability, the NCC obtained show remarkable sign of high thermal stability compared to EFB fiber and EFB pulp. However, as the hydrolysis time increase, the thermal stability of NCC was deceased. As in conclusion, the NCC can be prepared by using ultrasound assisted acid hydrolysis. The NCC obtained have good thermal stability and have a great potential as the reinforcement in composite materials.Keywords: Nanocrystalline cellulose, ultrasound assisted acid hydrolysis, thermal stability, morphology, empty fruit bunch (EFB)
Procedia PDF Downloads 4791999 Maturity Classification of Oil Palm Fresh Fruit Bunches Using Thermal Imaging Technique
Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Reza Ehsani, Hawa Ze Jaffar, Ishak Aris
Abstract:
Ripeness estimation of oil palm fresh fruit is important processes that affect the profitableness and salability of oil palm fruits. The adulthood or ripeness of the oil palm fruits influences the quality of oil palm. Conventional procedure includes physical grading of Fresh Fruit Bunches (FFB) maturity by calculating the number of loose fruits per bunch. This physical classification of oil palm FFB is costly, time consuming and the results may have human error. Hence, many researchers try to develop the methods for ascertaining the maturity of oil palm fruits and thereby, deviously the oil content of distinct palm fruits without the need for exhausting oil extraction and analysis. This research investigates the potential of infrared images (Thermal Images) as a predictor to classify the oil palm FFB ripeness. A total of 270 oil palm fresh fruit bunches from most common cultivar of oil palm bunches Nigresens according to three maturity categories: under ripe, ripe and over ripe were collected. Each sample was scanned by the thermal imaging cameras FLIR E60 and FLIR T440. The average temperature of each bunches were calculated by using image processing in FLIR Tools and FLIR ThermaCAM researcher pro 2.10 environment software. The results show that temperature content decreased from immature to over mature oil palm FFBs. An overall analysis-of-variance (ANOVA) test was proved that this predictor gave significant difference between underripe, ripe and overripe maturity categories. This shows that the temperature as predictors can be good indicators to classify oil palm FFB. Classification analysis was performed by using the temperature of the FFB as predictors through Linear Discriminant Analysis (LDA), Mahalanobis Discriminant Analysis (MDA), Artificial Neural Network (ANN) and K- Nearest Neighbor (KNN) methods. The highest overall classification accuracy was 88.2% by using Artificial Neural Network. This research proves that thermal imaging and neural network method can be used as predictors of oil palm maturity classification.Keywords: artificial neural network, maturity classification, oil palm FFB, thermal imaging
Procedia PDF Downloads 3601998 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect
Authors: Maha Jazouli
Abstract:
Suicide is one of the most important causes of death in the prison environment, both in Canada and internationally. Rates of attempts of suicide and self-harm have been on the rise in recent years, with hangings being the most frequent method resorted to. The objective of this article is to propose a method to automatically detect in real time suicidal behaviors. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Our proposed system gives us satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.Keywords: suicide detection, Kinect azure, RGB-D camera, SVM, machine learning, gesture recognition
Procedia PDF Downloads 1881997 “Octopub”: Geographical Sentiment Analysis Using Named Entity Recognition from Social Networks for Geo-Targeted Billboard Advertising
Authors: Oussama Hafferssas, Hiba Benyahia, Amina Madani, Nassima Zeriri
Abstract:
Although data nowadays has multiple forms; from text to images, and from audio to videos, yet text is still the most used one at a public level. At an academical and research level, and unlike other forms, text can be considered as the easiest form to process. Therefore, a brunch of Data Mining researches has been always under its shadow, called "Text Mining". Its concept is just like data mining’s, finding valuable patterns in data, from large collections and tremendous volumes of data, in this case: Text. Named entity recognition (NER) is one of Text Mining’s disciplines, it aims to extract and classify references such as proper names, locations, expressions of time and dates, organizations and more in a given text. Our approach "Octopub" does not aim to find new ways to improve named entity recognition process, rather than that it’s about finding a new, and yet smart way, to use NER in a way that we can extract sentiments of millions of people using Social Networks as a limitless information source, and Marketing for product promotion as the main domain of application.Keywords: textmining, named entity recognition(NER), sentiment analysis, social media networks (SN, SMN), business intelligence(BI), marketing
Procedia PDF Downloads 5891996 Physicochemical and Functional significance of Two Lychee (Litchi chinensis Sonn.) Cultivars Gola and Surakhi from Pakistan
Authors: Naila Safdar, Faria Riasat, Azra Yasmin
Abstract:
Lychee is an emerging fruit crop in Pakistan. Two famous cultivars of lychee, Gola and Surakhi, were collected from Khanpur Orchard, Pakistan and their whole fruit (including peel, pulp and seed) was investigated for pomological features and therapeutic activities. Both cultivars differ in shape and size with Gola having large size (3.27cm length, 2.36cm width) and more flesh to seed ratio (8.65g). FTIR spectroscopy and phytochemical tests confirmed presence of different bioactive compounds like phenol, flavonoids, quinones, anthraquinones, tannins, glycosides, and alkaloids, in both lychee fruits. Atomic absorption spectroscopy indicated an increased amount of potassium, magnesium, sodium, iron, and calcium in Gola and Surakhi fruits. Small amount of trace metals, zinc and copper, were also detected in lychee fruit, while heavy metals lead, mercury, and nickel were absent. These two lychee cultivars were also screened for antitumor activity by Potato disc assay with maximum antitumor activity shown by aqueous extract of Surakhi seed (77%) followed by aqueous extract of Gola pulp (74%). Antimicrobial activity of fruit parts was checked by agar well diffusion method against six bacterial strains Enterococcus faecium, Enterococcus faecalis, Staphylococcus aureus, Bacillus subtilis, Bacillus sp. MB083, and Bacillus sp. MB141. Highest antimicrobial activity was shown by methanolic extract of Gola pulp (27mm ± 0.70) and seed (19.5mm ± 0.712) against Enterococcus faecalis. DPPH scavenging assay revealed highest antioxidant activity by aqueous extract of Gola peel (98.10%) followed by n-hexane extract of Surakhi peel (97.73%). Results obtained by reducing power assay also corroborated with the results of DPPH scavenging activity.Keywords: antimicrobial evaluation, antitumor assay, gola, phytoconstituents, reactive oxygen species, Surakhi
Procedia PDF Downloads 408