Search results for: feature exponentiation
1262 Investigation of Complexity Dynamics in a DC Glow Discharge Magnetized Plasma Using Recurrence Quantification Analysis
Authors: Vramori Mitra, Bornali Sarma, Arun K. Sarma
Abstract:
Recurrence is a ubiquitous feature of any real dynamical system. The states in phase space trajectory of a system have an inherent tendency to return to the same state or its close state after certain time laps. Recurrence quantification analysis technique, based on this fundamental feature of a dynamical system, detects evaluation of state under variation of control parameter of the system. The paper presents the investigation of nonlinear dynamical behavior of plasma floating potential fluctuations obtained by using a Langmuir probe in different magnetic field under the variation of discharge voltages. The main measures of recurrence quantification analysis are considered as determinism, linemax and entropy. The increment of the DET and linemax variables asserts that the predictability and periodicity of the system is increasing. The variable linemax indicates that the chaoticity is being diminished with the slump of magnetic field while increase of magnetic field enhancing the chaotic behavior. Fractal property of the plasma time series estimated by DFA technique (Detrended fluctuation analysis) reflects that long-range correlation of plasma fluctuations is decreasing while fractal dimension is increasing with the enhancement of magnetic field which corroborates the RQA analysis.Keywords: detrended fluctuation analysis, chaos, phase space, recurrence
Procedia PDF Downloads 3281261 Roughness Discrimination Using Bioinspired Tactile Sensors
Authors: Zhengkun Yi
Abstract:
Surface texture discrimination using artificial tactile sensors has attracted increasing attentions in the past decade as it can endow technical and robot systems with a key missing ability. However, as a major component of texture, roughness has rarely been explored. This paper presents an approach for tactile surface roughness discrimination, which includes two parts: (1) design and fabrication of a bioinspired artificial fingertip, and (2) tactile signal processing for tactile surface roughness discrimination. The bioinspired fingertip is comprised of two polydimethylsiloxane (PDMS) layers, a polymethyl methacrylate (PMMA) bar, and two perpendicular polyvinylidene difluoride (PVDF) film sensors. This artificial fingertip mimics human fingertips in three aspects: (1) Elastic properties of epidermis and dermis in human skin are replicated by the two PDMS layers with different stiffness, (2) The PMMA bar serves the role analogous to that of a bone, and (3) PVDF film sensors emulate Meissner’s corpuscles in terms of both location and response to the vibratory stimuli. Various extracted features and classification algorithms including support vector machines (SVM) and k-nearest neighbors (kNN) are examined for tactile surface roughness discrimination. Eight standard rough surfaces with roughness values (Ra) of 50 μm, 25 μm, 12.5 μm, 6.3 μm 3.2 μm, 1.6 μm, 0.8 μm, and 0.4 μm are explored. The highest classification accuracy of (82.6 ± 10.8) % can be achieved using solely one PVDF film sensor with kNN (k = 9) classifier and the standard deviation feature.Keywords: bioinspired fingertip, classifier, feature extraction, roughness discrimination
Procedia PDF Downloads 3121260 Automatic Target Recognition in SAR Images Based on Sparse Representation Technique
Authors: Ahmet Karagoz, Irfan Karagoz
Abstract:
Synthetic Aperture Radar (SAR) is a radar mechanism that can be integrated into manned and unmanned aerial vehicles to create high-resolution images in all weather conditions, regardless of day and night. In this study, SAR images of military vehicles with different azimuth and descent angles are pre-processed at the first stage. The main purpose here is to reduce the high speckle noise found in SAR images. For this, the Wiener adaptive filter, the mean filter, and the median filters are used to reduce the amount of speckle noise in the images without causing loss of data. During the image segmentation phase, pixel values are ordered so that the target vehicle region is separated from other regions containing unnecessary information. The target image is parsed with the brightest 20% pixel value of 255 and the other pixel values of 0. In addition, by using appropriate parameters of statistical region merging algorithm, segmentation comparison is performed. In the step of feature extraction, the feature vectors belonging to the vehicles are obtained by using Gabor filters with different orientation, frequency and angle values. A number of Gabor filters are created by changing the orientation, frequency and angle parameters of the Gabor filters to extract important features of the images that form the distinctive parts. Finally, images are classified by sparse representation method. In the study, l₁ norm analysis of sparse representation is used. A joint database of the feature vectors generated by the target images of military vehicle types is obtained side by side and this database is transformed into the matrix form. In order to classify the vehicles in a similar way, the test images of each vehicle is converted to the vector form and l₁ norm analysis of the sparse representation method is applied through the existing database matrix form. As a result, correct recognition has been performed by matching the target images of military vehicles with the test images by means of the sparse representation method. 97% classification success of SAR images of different military vehicle types is obtained.Keywords: automatic target recognition, sparse representation, image classification, SAR images
Procedia PDF Downloads 3661259 Evolving Convolutional Filter Using Genetic Algorithm for Image Classification
Authors: Rujia Chen, Ajit Narayanan
Abstract:
Convolutional neural networks (CNN), as typically applied in deep learning, use layer-wise backpropagation (BP) to construct filters and kernels for feature extraction. Such filters are 2D or 3D groups of weights for constructing feature maps at subsequent layers of the CNN and are shared across the entire input. BP as a gradient descent algorithm has well-known problems of getting stuck at local optima. The use of genetic algorithms (GAs) for evolving weights between layers of standard artificial neural networks (ANNs) is a well-established area of neuroevolution. In particular, the use of crossover techniques when optimizing weights can help to overcome problems of local optima. However, the application of GAs for evolving the weights of filters and kernels in CNNs is not yet an established area of neuroevolution. In this paper, a GA-based filter development algorithm is proposed. The results of the proof-of-concept experiments described in this paper show the proposed GA algorithm can find filter weights through evolutionary techniques rather than BP learning. For some simple classification tasks like geometric shape recognition, the proposed algorithm can achieve 100% accuracy. The results for MNIST classification, while not as good as possible through standard filter learning through BP, show that filter and kernel evolution warrants further investigation as a new subarea of neuroevolution for deep architectures.Keywords: neuroevolution, convolutional neural network, genetic algorithm, filters, kernels
Procedia PDF Downloads 1861258 Random Forest Classification for Population Segmentation
Authors: Regina Chua
Abstract:
To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling
Procedia PDF Downloads 941257 Emerging Film Makers in Tamil Cinema Liberated by Digital Media
Authors: Valarmathi Subramaniam
Abstract:
Ever since the first Indian feature film was produced and released by Shri Dada Saheb Phalke in the year 1931, the Indian Film Industry has grown leaps and bounds. The Indian Film Industry stands as the largest film industry in the world, and it produces more than a thousand films every year with investments and revenues worth several billion rupees. As per the official report published by UNESCO in the year 2017 on their website, it states that in the year 2015, India has produced one thousand nine hundred and seven feature films using digital technology. Not only is the cinema adapted to digital technologies, but the digital technologies also opened up avenues for talents to enter the cinema industry. This paper explores such talents who have emerged in the film industry without any background, neither academic nor from their family background, but holding digital media as their weapon. The research involves two variants of filmmaking technology – Celluloid and Digital. The study used a selective sampling of films that were released from the year 2020-to 2022. The sample has been organized, resulting in popular and fresh talents in the editing phase of filmmaking. There were 48 editors, of which 12 editors were not popular and 6 of them were fresh into the film without any background. Interview methods were used to collect data on what helped them to get into the industry straight. The study found that the digital medium and the digital technology enabled them to get into the film industry.Keywords: digital media, digital in cinema, digital era talents, emerging new talents
Procedia PDF Downloads 1171256 The Impact of Temperamental Traits of Candidates for Aviation School on Their Strategies for Coping with Stress during Selection Exams in Physical Education
Authors: Robert Jedrys, Zdzislaw Kobos, Justyna Skrzynska, Zbigniew Wochynski
Abstract:
Professions connected to aviation require an assessment of the suitability of health, psychological and psychomotor skills and overall physical fitness of the organism, who applies. Assessment of the physical condition is conducted by the committees consisting of aero-medical specialists in clinical medicine and aviation. In addition, psychological predispositions should be evaluated by specialized psychologists familiar with the specifics of the tasks and requirements for the various positions in aviation. Both, physical abilities and general physical fitness of candidates for aviation shall be assessed during the selection exams, which also test the ability to deal with stress what is very important in aviation. Hence, the mentioned exams in physical education not only help to judge on the ranking in candidates in terms of their efficiency and performance, but also allows to evaluate the functioning under stress measured using psychological tests. Moreover, before-test stress is a predictors of successfulness in the next stages of education and practical training in the aviation. The aim of the study was to evaluate the influence of temperamental traits on strategies used for coping with stress during selection exams in physical education, deciding on admission to aviation school. The study involved 30 candidates for fighter pilot training in aviation school . To evaluate the temperament 'The Formal Characteristics of Behavior-Temperament Inventory' (FCB-TI) by B. Zawadzki and J.Strelau was used. To determine the pattern of coping with stress 'The Coping Inventory for Stressful Situations' (CISS) to N. S. Endler and J. D. A. Parker were engaged. Study of temperament and styles of coping with stress was conducted directly before the exam selection of physical education. The results were analyzed with 'Statistica 9' program. The studies showed that:-There is a negative correlation between such a temperament feature as 'perseverance' and preferred style of coping with stress concentrated on the task (r = -0.590; p < 0.004); -There is a positive correlation between such a feature of temperament as 'emotional reactivity,' and preference to deal with a stressful situation with ‘style centered on emotions’ (r = 0.520; p <0.011); -There is a negative correlation between such a feature of temperament as ‘strength’ and ‘style of coping with stress concentrated on emotions’ (r = -0.580; p < 0.004). Studies indicate that temperament traits determine the perception of stress and preferred coping styles used during the selection, as during the exams in physical education.Keywords: aviation, physical education, stress, temperamental traits
Procedia PDF Downloads 2571255 Surface Flattening Assisted with 3D Mannequin Based on Minimum Energy
Authors: Shih-Wen Hsiao, Rong-Qi Chen, Chien-Yu Lin
Abstract:
The topic of surface flattening plays a vital role in the field of computer aided design and manufacture. Surface flattening enables the production of 2D patterns and it can be used in design and manufacturing for developing a 3D surface to a 2D platform, especially in fashion design. This study describes surface flattening based on minimum energy methods according to the property of different fabrics. Firstly, through the geometric feature of a 3D surface, the less transformed area can be flattened on a 2D platform by geodesic. Then, strain energy that has accumulated in mesh can be stably released by an approximate implicit method and revised error function. In some cases, cutting mesh to further release the energy is a common way to fix the situation and enhance the accuracy of the surface flattening, and this makes the obtained 2D pattern naturally generate significant cracks. When this methodology is applied to a 3D mannequin constructed with feature lines, it enhances the level of computer-aided fashion design. Besides, when different fabrics are applied to fashion design, it is necessary to revise the shape of a 2D pattern according to the properties of the fabric. With this model, the outline of 2D patterns can be revised by distributing the strain energy with different results according to different fabric properties. Finally, this research uses some common design cases to illustrate and verify the feasibility of this methodology.Keywords: surface flattening, strain energy, minimum energy, approximate implicit method, fashion design
Procedia PDF Downloads 3341254 Fault Detection and Isolation in Sensors and Actuators of Wind Turbines
Authors: Shahrokh Barati, Reza Ramezani
Abstract:
Due to the countries growing attention to the renewable energy producing, the demand for energy from renewable energy has gone up among the renewable energy sources; wind energy is the fastest growth in recent years. In this regard, in order to increase the availability of wind turbines, using of Fault Detection and Isolation (FDI) system is necessary. Wind turbines include of various faults such as sensors fault, actuator faults, network connection fault, mechanical faults and faults in the generator subsystem. Although, sensors and actuators have a large number of faults in wind turbine but have discussed fewer in the literature. Therefore, in this work, we focus our attention to design a sensor and actuator fault detection and isolation algorithm and Fault-tolerant control systems (FTCS) for Wind Turbine. The aim of this research is to propose a comprehensive fault detection and isolation system for sensors and actuators of wind turbine based on data-driven approaches. To achieve this goal, the features of measurable signals in real wind turbine extract in any condition. The next step is the feature selection among the extract in any condition. The next step is the feature selection among the extracted features. Features are selected that led to maximum separation networks that implemented in parallel and results of classifiers fused together. In order to maximize the reliability of decision on fault, the property of fault repeatability is used.Keywords: FDI, wind turbines, sensors and actuators faults, renewable energy
Procedia PDF Downloads 4001253 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing
Authors: Aleksandra Zysk, Pawel Badura
Abstract:
Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.Keywords: classification, singing, spectral analysis, vocal emission, vocal register
Procedia PDF Downloads 3041252 Using Machine Learning to Classify Human Fetal Health and Analyze Feature Importance
Authors: Yash Bingi, Yiqiao Yin
Abstract:
Reduction of child mortality is an ongoing struggle and a commonly used factor in determining progress in the medical field. The under-5 mortality number is around 5 million around the world, with many of the deaths being preventable. In light of this issue, Cardiotocograms (CTGs) have emerged as a leading tool to determine fetal health. By using ultrasound pulses and reading the responses, CTGs help healthcare professionals assess the overall health of the fetus to determine the risk of child mortality. However, interpreting the results of the CTGs is time-consuming and inefficient, especially in underdeveloped areas where an expert obstetrician is hard to come by. Using a support vector machine (SVM) and oversampling, this paper proposed a model that classifies fetal health with an accuracy of 99.59%. To further explain the CTG measurements, an algorithm based on Randomized Input Sampling for Explanation ((RISE) of Black-box Models was created, called Feature Alteration for explanation of Black Box Models (FAB), and compared the findings to Shapley Additive Explanations (SHAP) and Local Interpretable Model Agnostic Explanations (LIME). This allows doctors and medical professionals to classify fetal health with high accuracy and determine which features were most influential in the process.Keywords: machine learning, fetal health, gradient boosting, support vector machine, Shapley values, local interpretable model agnostic explanations
Procedia PDF Downloads 1441251 Verbal Prefix Selection in Old Japanese: A Corpus-Based Study
Authors: Zixi You
Abstract:
There are a number of verbal prefixes in Old Japanese. However, the selection or the compatibility of verbs and verbal prefixes is among the least investigated topics on Old Japanese language. Unlike other types of prefixes, verbal prefixes in dictionaries are more often than not listed with very brief information such as ‘unknown meaning’ or ‘rhythmic function only’. To fill in a part of this knowledge gap, this paper presents an exhaustive investigation based on the newly developed ‘Oxford Corpus of Old Japanese’ (OCOJ), which included nearly all existing resource of Old Japanese language, with detailed linguistics information in TEI-XML tags. In this paper, we propose the possibility that the following three prefixes, i-, sa-, ta- (with ta- being considered as a variation of sa-), are relevant to split intransitivity in Old Japanese, with evidence that unergative verbs favor i- and that unergative verbs favor sa-(ta-). This might be undermined by the fact that transitives are also found to follow i-. However, with several manifestations of split intransitivity in Old Japanese discussed, the behavior of transitives in verbal prefix selection is no longer as surprising as it may seem to be when one look at the selection of verbal prefix in isolation. It is possible that there are one or more features that played essential roles in determining the selection of i-, and the attested transitive verbs happen to have these features. The data suggest that this feature is a sense of ‘change’ of location or state involved in the event donated by the verb, which is a feature of typical unaccusatives. This is further discussed in the ‘affectedness’ hierarchy. The presentation of this paper, which includes a brief demonstration of the OCOJ, is expected to be of the interest of both specialists and general audiences.Keywords: old Japanese, split intransitivity, unaccusatives, unergatives, verbal prefix selection
Procedia PDF Downloads 4151250 Methods of Livable Goal-Oriented Master Urban Design: A Case Study on Zibo City
Authors: Xiaoping Zhang, Fengying Yan
Abstract:
The implementation of the 'Urban Design Management Measures' requires that the master urban design should aim at creating a livable urban space. However, to our best knowledge, the existing researches and practices of master urban design not only focus less on the livable space but also face a number of problems such as paying more attention to the image of the city, ignoring the people-oriented and lacking dynamic continuity. In order to make the master urban design can better guide the construction of city. Firstly, the paper proposes the livable city hierarchy system to meet the needs of different groups of people and then constructs the framework of livable goal-oriented master urban design based on the theory of livable content and the ideological origin of people-oriented. Secondly, the paper takes the master urban design practice of Zibo as a sample and puts forward the design strategy of strengthening the pattern, improve the quality of space, shape the feature, and establish a series of action plans based on the strategy of urban space development. Finally, the paper explores the method system of livable goal-oriented master urban design from the aspects of safety pattern, morphology pattern, neighborhood scale, open space, street space, public interface, style feature, public participation and action plans.Keywords: livable, master urban design, public participation, zibo city
Procedia PDF Downloads 3161249 Features of Normative and Pathological Realizations of Sibilant Sounds for Computer-Aided Pronunciation Evaluation in Children
Authors: Zuzanna Miodonska, Michal Krecichwost, Pawel Badura
Abstract:
Sigmatism (lisping) is a speech disorder in which sibilant consonants are mispronounced. The diagnosis of this phenomenon is usually based on the auditory assessment. However, the progress in speech analysis techniques creates a possibility of developing computer-aided sigmatism diagnosis tools. The aim of the study is to statistically verify whether specific acoustic features of sibilant sounds may be related to pronunciation correctness. Such knowledge can be of great importance while implementing classifiers and designing novel tools for automatic sibilants pronunciation evaluation. The study covers analysis of various speech signal measures, including features proposed in the literature for the description of normative sibilants realization. Amplitudes and frequencies of three fricative formants (FF) are extracted based on local spectral maxima of the friction noise. Skewness, kurtosis, four normalized spectral moments (SM) and 13 mel-frequency cepstral coefficients (MFCC) with their 1st and 2nd derivatives (13 Delta and 13 Delta-Delta MFCC) are included in the analysis as well. The resulting feature vector contains 51 measures. The experiments are performed on the speech corpus containing words with selected sibilant sounds (/ʃ, ʒ/) pronounced by 60 preschool children with proper pronunciation or with natural pathologies. In total, 224 /ʃ/ segments and 191 /ʒ/ segments are employed in the study. The Mann-Whitney U test is employed for the analysis of stigmatism and normative pronunciation. Statistically, significant differences are obtained in most of the proposed features in children divided into these two groups at p < 0.05. All spectral moments and fricative formants appear to be distinctive between pathology and proper pronunciation. These metrics describe the friction noise characteristic for sibilants, which makes them particularly promising for the use in sibilants evaluation tools. Correspondences found between phoneme feature values and an expert evaluation of the pronunciation correctness encourage to involve speech analysis tools in diagnosis and therapy of sigmatism. Proposed feature extraction methods could be used in a computer-assisted stigmatism diagnosis or therapy systems.Keywords: computer-aided pronunciation evaluation, sigmatism diagnosis, speech signal analysis, statistical verification
Procedia PDF Downloads 3011248 From Shallow Semantic Representation to Deeper One: Verb Decomposition Approach
Authors: Aliaksandr Huminski
Abstract:
Semantic Role Labeling (SRL) as shallow semantic parsing approach includes recognition and labeling arguments of a verb in a sentence. Verb participants are linked with specific semantic roles (Agent, Patient, Instrument, Location, etc.). Thus, SRL can answer on key questions such as ‘Who’, ‘When’, ‘What’, ‘Where’ in a text and it is widely applied in dialog systems, question-answering, named entity recognition, information retrieval, and other fields of NLP. However, SRL has the following flaw: Two sentences with identical (or almost identical) meaning can have different semantic role structures. Let consider 2 sentences: (1) John put butter on the bread. (2) John buttered the bread. SRL for (1) and (2) will be significantly different. For the verb put in (1) it is [Agent + Patient + Goal], but for the verb butter in (2) it is [Agent + Goal]. It happens because of one of the most interesting and intriguing features of a verb: Its ability to capture participants as in the case of the verb butter, or their features as, say, in the case of the verb drink where the participant’s feature being liquid is shared with the verb. This capture looks like a total fusion of meaning and cannot be decomposed in direct way (in comparison with compound verbs like babysit or breastfeed). From this perspective, SRL looks really shallow to represent semantic structure. If the key point in semantic representation is an opportunity to use it for making inferences and finding hidden reasons, it assumes by default that two different but semantically identical sentences must have the same semantic structure. Otherwise we will have different inferences from the same meaning. To overcome the above-mentioned flaw, the following approach is suggested. Assume that: P is a participant of relation; F is a feature of a participant; Vcp is a verb that captures a participant; Vcf is a verb that captures a feature of a participant; Vpr is a primitive verb or a verb that does not capture any participant and represents only a relation. In another word, a primitive verb is a verb whose meaning does not include meanings from its surroundings. Then Vcp and Vcf can be decomposed as: Vcp = Vpr +P; Vcf = Vpr +F. If all Vcp and Vcf will be represented this way, then primitive verbs Vpr can be considered as a canonical form for SRL. As a result of that, there will be no hidden participants caught by a verb since all participants will be explicitly unfolded. An obvious example of Vpr is the verb go, which represents pure movement. In this case the verb drink can be represented as man-made movement of liquid into specific direction. Extraction and using primitive verbs for SRL create a canonical representation unique for semantically identical sentences. It leads to the unification of semantic representation. In this case, the critical flaw related to SRL will be resolved.Keywords: decomposition, labeling, primitive verbs, semantic roles
Procedia PDF Downloads 3661247 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System
Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii
Abstract:
Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression
Procedia PDF Downloads 1581246 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks
Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone
Abstract:
Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing
Procedia PDF Downloads 1881245 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes
Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani
Abstract:
The development of the method to annotate unknown gene functions is an important task in bioinformatics. One of the approaches for the annotation is The identification of the metabolic pathway that genes are involved in. Gene expression data have been utilized for the identification, since gene expression data reflect various intracellular phenomena. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.Keywords: metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning
Procedia PDF Downloads 4031244 Classroom Management Practices of Hotel, Restaurant, and Institution Management Instructors
Authors: Diana Ruth Caga-Anan
Abstract:
Classroom management is a critical skill but the styles are constantly evolving. It is constantly under pressure particularly in the college education level due to diversity in student profiles, modes of delivery, and marketization of higher education. This study sought to analyze the extent of implementation of classroom management practices (CMPs) of the college instructors of the Hotel, Restaurant, and Institution Management of a premier university in the Philippines. It was also determined if their length of teaching affects their classroom management style. A questionnaire with sixteen 'evidenced-based' CMPs grouped into five critical features of classroom management, adopted from the literature search of Simonsen et al. (2008), was administered to 4 instructor-respondents and to their 88 students. Weighted mean scores of each of the CMPs revealed that there were differences between the instructors’ self-scores and their students’ ratings on their implementation of CMPs. The critical feature of classroom management 'actively engage students in observable ways' got the highest mean score, corresponding to 'always' from the instructors’ self-rating and 'frequently' from their students’ ratings. However, 'use a continuum of strategies to respond to inappropriate behaviors' got the lowest scores from both the instructors and their students corresponding only to 'occasionally'. Analysis of variance showed that the only CMP affected by the length of teaching is the practice of 'prompting students to respond'. Based on the findings, some recommendations for the instructors to improve on the critical feature where they scored low are discussed and suggestions are included for future research.Keywords: classroom management, CMPs, critical features, evidence-based classroom management practices
Procedia PDF Downloads 1721243 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection
Authors: Muhammad Ali
Abstract:
Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection
Procedia PDF Downloads 1251242 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification
Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro
Abstract:
Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification
Procedia PDF Downloads 1161241 The Application of Video Segmentation Methods for the Purpose of Action Detection in Videos
Authors: Nassima Noufail, Sara Bouhali
Abstract:
In this work, we develop a semi-supervised solution for the purpose of action detection in videos and propose an efficient algorithm for video segmentation. The approach is divided into video segmentation, feature extraction, and classification. In the first part, a video is segmented into clips, and we used the K-means algorithm for this segmentation; our goal is to find groups based on similarity in the video. The application of k-means clustering into all the frames is time-consuming; therefore, we started by the identification of transition frames where the scene in the video changes significantly, and then we applied K-means clustering into these transition frames. We used two image filters, the gaussian filter and the Laplacian of Gaussian. Each filter extracts a set of features from the frames. The Gaussian filter blurs the image and omits the higher frequencies, and the Laplacian of gaussian detects regions of rapid intensity changes; we then used this vector of filter responses as an input to our k-means algorithm. The output is a set of cluster centers. Each video frame pixel is then mapped to the nearest cluster center and painted with a corresponding color to form a visual map. The resulting visual map had similar pixels grouped. We then computed a cluster score indicating how clusters are near each other and plotted a signal representing frame number vs. clustering score. Our hypothesis was that the evolution of the signal would not change if semantically related events were happening in the scene. We marked the breakpoints at which the root mean square level of the signal changes significantly, and each breakpoint is an indication of the beginning of a new video segment. In the second part, for each segment from part 1, we randomly selected a 16-frame clip, then we extracted spatiotemporal features using convolutional 3D network C3D for every 16 frames using a pre-trained model. The C3D final output is a 512-feature vector dimension; hence we used principal component analysis (PCA) for dimensionality reduction. The final part is the classification. The C3D feature vectors are used as input to a multi-class linear support vector machine (SVM) for the training model, and we used a multi-classifier to detect the action. We evaluated our experiment on the UCF101 dataset, which consists of 101 human action categories, and we achieved an accuracy that outperforms the state of art by 1.2%.Keywords: video segmentation, action detection, classification, Kmeans, C3D
Procedia PDF Downloads 771240 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever
Abstract:
Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.Keywords: deep learning model, dengue fever, prediction, optimization
Procedia PDF Downloads 651239 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain
Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA
Abstract:
In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.Keywords: BER, DWT, extreme leaning machine (ELM), PSNR
Procedia PDF Downloads 3111238 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction
Procedia PDF Downloads 3401237 Folk Dance in Asterio Festivals in Ethiopia: Exploration of Performance, Variants, Symbols, and Therapeutic Role
Authors: Meseret Berhanie Menkir
Abstract:
The present study explores folk dance, one of the folklore texts, its symbols, and its therapeutic role. As a case, the study concentrates on Astrio-Mariam and Merkorios Bera, celebrated on January 30 and February 3 at Deresgie-Mariam Church in Ethiopia. By taking a qualitative stance, the study analyses the meaning of folk dance, explains its role, and describes its types. The data gathered through observation, interview, and focus group discussion techniques are documented in field notes, audio, and video. The data obtained is analyzed using structural-functionalism, psychoanalysis, and semiotics. Accordingly, community members of all ages (mainly the Ethiopian Orthodox Tewahedo Church followers) participate in the performance. While the folk dance is a type of small group dance and group dance, the group has no feature of using men and women performing together. The folk dance's role is a form of healing and spiritual fulfilment besides entertainment. The folk dance also has sword dance characteristics; the study confirmed this feature in content and form. Moreover, the folk dance characterized by frequent shoulder and hand movements Wancha likleka (Horn-mug spin), Doro metet (Chicken drink), and sword dance depict wealth, heroism, and warfare. The instruments used in the performances are also alive, with religious symbols reaching from the drum, incense, and cross to the suffering of Jesus Christ from Hanna to Qeyafa, and references to the 12 Apostles.Keywords: folk dance, festival, ritual, symbol, therapeutic
Procedia PDF Downloads 681236 Visual Speech Perception of Arabic Emphatics
Authors: Maha Saliba Foster
Abstract:
Speech perception has been recognized as a bi-sensory process involving the auditory and visual channels. Compared to the auditory modality, the contribution of the visual signal to speech perception is not very well understood. Studying how the visual modality affects speech recognition can have pedagogical implications in second language learning, as well as clinical application in speech therapy. The current investigation explores the potential effect of speech visual cues on the perception of Arabic emphatics (AEs). The corpus consists of 36 minimal pairs each containing two contrasting consonants, an AE versus a non-emphatic (NE). Movies of four Lebanese speakers were edited to allow perceivers to have partial view of facial regions: lips only, lips-cheeks, lips-chin, lips-cheeks-chin, lips-cheeks-chin-neck. In the absence of any auditory information and relying solely on visual speech, perceivers were above chance at correctly identifying AEs or NEs across vowel contexts; moreover, the models were able to predict the probability of perceivers’ accuracy in identifying some of the COIs produced by certain speakers; additionally, results showed an overlap between the measurements selected by the computer and those selected by human perceivers. The lack of significant face effect on the perception of AEs seems to point to the lips, present in all of the videos, as the most important and often sufficient facial feature for emphasis recognition. Future investigations will aim at refining the analyses of visual cues used by perceivers by using Principal Component Analysis and including time evolution of facial feature measurements.Keywords: Arabic emphatics, machine learning, speech perception, visual speech perception
Procedia PDF Downloads 3061235 Classification of Hyperspectral Image Using Mathematical Morphological Operator-Based Distance Metric
Authors: Geetika Barman, B. S. Daya Sagar
Abstract:
In this article, we proposed a pixel-wise classification of hyperspectral images using a mathematical morphology operator-based distance metric called “dilation distance” and “erosion distance”. This method involves measuring the spatial distance between the spectral features of a hyperspectral image across the bands. The key concept of the proposed approach is that the “dilation distance” is the maximum distance a pixel can be moved without changing its classification, whereas the “erosion distance” is the maximum distance that a pixel can be moved before changing its classification. The spectral signature of the hyperspectral image carries unique class information and shape for each class. This article demonstrates how easily the dilation and erosion distance can measure spatial distance compared to other approaches. This property is used to calculate the spatial distance between hyperspectral image feature vectors across the bands. The dissimilarity matrix is then constructed using both measures extracted from the feature spaces. The measured distance metric is used to distinguish between the spectral features of various classes and precisely distinguish between each class. This is illustrated using both toy data and real datasets. Furthermore, we investigated the role of flat vs. non-flat structuring elements in capturing the spatial features of each class in the hyperspectral image. In order to validate, we compared the proposed approach to other existing methods and demonstrated empirically that mathematical operator-based distance metric classification provided competitive results and outperformed some of them.Keywords: dilation distance, erosion distance, hyperspectral image classification, mathematical morphology
Procedia PDF Downloads 871234 Muhammad`s Vision of Interaction with Supernatural Beings According to the Hadith in Comparison to Parallels of Other Cultures
Authors: Vladimir A. Rozov
Abstract:
Comparative studies of religion and ritual could contribute better understanding of human culture universalities. Belief in supernatural beings seems to be a common feature of the religion. A significant part of the Islamic concepts that concern supernatural beings is based on a tradition based on the Hadiths. They reflect, among other things, his ideas about a proper way to interact with supernatural beings. These ideas to a large extent follow from the pre-Islamic religious experience of the Arabs and had been reflected in a number of ritual actions. Some of those beliefs concern a particular function of clothing. For example, it is known that Muhammad was wrapped in clothes during the revelation of the Quran. The same thing was performed by pre-Islamic soothsayers (kāhin) and by rival opponents of Muhammad during their trances. Muhammad also turned the clothes inside out during religious rituals (prayer for rain). Besides these specific ways of clothing which prove the external similarity of Muhammad with the soothsayers and other people who claimed the connection with supernatural forces, the pre-Islamic soothsayers had another characteristic feature which is physical flaws. In this regard, it is worth to note Muhammad's so-called "Seal the Prophecy" (h̠ ātam an- nubūwwa) -protrusion or outgrowth on his back. Another interesting feature of Muhammad's behavior was his attitude to eating onion and garlic. In particular, the Prophet didn`t eat them and forbade people who had tasted these vegetables to enter mosques, until the smell ceases to be felt. The reason for this ban on eating onion and garlic is caused by a belief that the smell of these products prevents communication with otherworldly forces. The materials of the Hadith also suggest that Muhammad shared faith in the apotropical properties of water. Both of these ideas have parallels in other cultures of the world. Muhammad's actions supposed to provide an interaction with the supernatural beings are not accidental. They have parallels in the culture of pre-Islamic Arabia as well as in many past and present world cultures. The latter fact can be explained by the similarity of the universal human beliefs in supernatural beings and how they should be interacted with. Later a number of similar ideas shared by the Prophet Muhammad was legitimized by the Islamic tradition and formed the basis of popular Islamic rituals. Thus, these parallels emphasize the commonality of human notions of supernatural beings and also demonstrate the significance of the pre-Islamic cultural context in analyzing the genesis of Islamic religious beliefs.Keywords: hadith, Prophet Muhammad, ritual, supernatural beings
Procedia PDF Downloads 3891233 DC Bus Voltage Ripple Control of Photo Voltaic Inverter in Low Voltage Ride-Trough Operation
Authors: Afshin Kadri
Abstract:
Using Renewable Energy Resources (RES) as a type of DG unit is developing in distribution systems. The connection of these generation units to existing AC distribution systems changes the structure and some of the operational aspects of these grids. Most of the RES requires to power electronic-based interfaces for connection to AC systems. These interfaces consist of at least one DC/AC conversion unit. Nowadays, grid-connected inverters must have the required feature to support the grid under sag voltage conditions. There are two curves in these conditions that show the magnitude of the reactive component of current as a function of voltage drop value and the required minimum time value, which must be connected to the grid. This feature is named low voltage ride-through (LVRT). Implementing this feature causes problems in the operation of the inverter that increases the amplitude of high-frequency components of the injected current and working out of maximum power point in the photovoltaic panel connected inverters are some of them. The important phenomenon in these conditions is ripples in the DC bus voltage that affects the operation of the inverter directly and indirectly. The losses of DC bus capacitors which are electrolytic capacitors, cause increasing their temperature and decreasing its lifespan. In addition, if the inverter is connected to the photovoltaic panels directly and has the duty of maximum power point tracking, these ripples cause oscillations around the operating point and decrease the generating energy. Using a bidirectional converter in the DC bus, which works as a buck and boost converter and transfers the ripples to its DC bus, is the traditional method to eliminate these ripples. In spite of eliminating the ripples in the DC bus, this method cannot solve the problem of reliability because it uses an electrolytic capacitor in its DC bus. In this work, a control method is proposed which uses the bidirectional converter as the fourth leg of the inverter and eliminates the DC bus ripples using an injection of unbalanced currents into the grid. Moreover, the proposed method works based on constant power control. In this way, in addition, to supporting the amplitude of grid voltage, it stabilizes its frequency by injecting active power. Also, the proposed method can eliminate the DC bus ripples in deep voltage drops, which cause increasing the amplitude of the reference current more than the nominal current of the inverter. The amplitude of the injected current for the faulty phases in these conditions is kept at the nominal value and its phase, together with the phase and amplitude of the other phases, are adjusted, which at the end, the ripples in the DC bus are eliminated, however, the generated power decreases.Keywords: renewable energy resources, voltage drop value, DC bus ripples, bidirectional converter
Procedia PDF Downloads 76