Search results for: distributed lag model
18070 Operation Strategy of Multi-Energy Storage System Considering Power System Reliability
Authors: Wook-Won Kim, Je-Seok Shin, Jin-O Kim
Abstract:
As the penetration of Energy Storage System (ESS) increases in the power system due to higher performance and lower cost than ever, ESS is expanding its role to the ancillary service as well as the storage of extra energy from the intermittent renewable energy resources. For multi-ESS with different capacity and SOC level each other, it is required to make the optimal schedule of SOC level use the multi-ESS effectively. This paper proposes the energy allocation method for the multiple battery ESS with reliability constraint, in order to make the ESS discharge the required energy as long as possible. A simple but effective method is proposed in this paper, to satisfy the power for the spinning reserve requirement while improving the system reliability. Modelling of ESS is also proposed, and reliability is evaluated by using the combined reliability model which includes the proposed ESS model and conventional generation one. In the case study, it can be observed that the required power is distributed to each ESS adequately and accordingly, the SOC is scheduled to improve the reliability indices such as Loss of Load Probability (LOLP) and Loss of Load Expectation (LOLE).Keywords: multiple energy storage system (MESS), energy allocation method, SOC schedule, reliability constraints
Procedia PDF Downloads 36818069 Internal Cycles from Hydrometric Data and Variability Detected Through Hydrological Modelling Results, on the Niger River, over 1901-2020
Authors: Salif Koné
Abstract:
We analyze hydrometric data at the Koulikoro station on the Niger River; this basin drains 120600 km2 and covers three countries in West Africa, Guinea, Mali, and Ivory Coast. Two subsequent decadal cycles are highlighted (1925-1936 and 1929-1939) instead of the presumed single decadal one from literature. Moreover, the observed hydrometric data shows a multidecadal 40-year period that is confirmed when graphing a spatial coefficient of variation of runoff over decades (starting at 1901-1910). Spatial runoff data are produced on 48 grids (0.5 degree by 0.5 degree) and through semi-distributed versions of both SimulHyd model and GR2M model - variants of a French Hydrologic model – standing for Genie Rural of 2 parameters at monthly time step. Both extremal decades in terms of runoff coefficient of variation are confronted: 1951-1960 has minimal coefficient of variation, and 1981-1990 shows the maximal value of it during the three months of high-water level (August, September, and October). The mapping of the relative variation of these two decadal situations allows hypothesizing as following: the scale of variation between both extremal situations could serve to fix boundary conditions for further simulations using data from climate scenario.Keywords: internal cycles, hydrometric data, niger river, gr2m and simulhyd framework, runoff coefficient of variation
Procedia PDF Downloads 9418068 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life
Authors: Desplanches Maxime
Abstract:
Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression
Procedia PDF Downloads 6918067 The Per Capita Income, Energy production and Environmental Degradation: A Comprehensive Assessment of the existence of the Environmental Kuznets Curve Hypothesis in Bangladesh
Authors: Ashique Mahmud, MD. Ataul Gani Osmani, Shoria Sharmin
Abstract:
In the first quarter of the twenty-first century, the most substantial global concern is environmental contamination, and it has gained the prioritization of both the national and international community. Keeping in mind this crucial fact, this study conducted different statistical and econometrical methods to identify whether the gross national income of the country has a significant impact on electricity production from nonrenewable sources and different air pollutants like carbon dioxide, nitrous oxide, and methane emissions. Besides, the primary objective of this research was to analyze whether the environmental Kuznets curve hypothesis holds for the examined variables. After analyzing different statistical properties of the variables, this study came to the conclusion that the environmental Kuznets curve hypothesis holds for gross national income and carbon dioxide emission in Bangladesh in the short run as well as the long run. This study comes to this conclusion based on the findings of ordinary least square estimations, ARDL bound tests, short-run causality analysis, the Error Correction Model, and other pre-diagnostic and post-diagnostic tests that have been employed in the structural model. Moreover, this study wants to demonstrate that the outline of gross national income and carbon dioxide emissions is in its initial stage of development and will increase up to the optimal peak. The compositional effect will then force the emission to decrease, and the environmental quality will be restored in the long run.Keywords: environmental Kuznets curve hypothesis, carbon dioxide emission in Bangladesh, gross national income in Bangladesh, autoregressive distributed lag model, granger causality, error correction model
Procedia PDF Downloads 15018066 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network
Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar
Abstract:
Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network
Procedia PDF Downloads 10918065 Impact of Task Technology Fit on User Effectiveness, Efficiency and Creativity in Iranian Pharmaceutical Oraganizations
Authors: Milad Keshvardoost, Amir Khanlari, Nader Khalesi
Abstract:
Background: Any firm in the pharmaceutical industry requires efficient and effective management information systems (MIS) to support managerial functions. Purpose: The aim of this study is to investigate the impact of Task-Technology Fit on user effectiveness, efficiency, and creativity in Iranian pharmaceutical companies. Methodology: 345 reliable and validate questionnaires were distributed among selected samples, through the cluster method, to Information system users of eight leading Iranian pharmaceutical companies, based on the likert scale. The proposed model of the article is based on a model with Task technology fit, on user performance with the definition of efficiency, effectiveness, and creativity through mediation effects of perceived usefulness and ease of use. Results: This study confirmed that TTF with definitions of adequacy and compatibility has positive impacts on user performance Conclusion: We concluded that pharmaceutical users of IS, utilizing a system with a precise and intense observation of users' demands, may make facilitation for them to design an exclusive IS framework.Keywords: information systems, user performance, pharmaceuticals, task technology fit
Procedia PDF Downloads 17018064 Energy Consumption, Population and Economic Development Dynamics in Nigeria: An Empirical Evidence
Authors: Evelyn Nwamaka Ogbeide-Osaretin, Bright Orhewere
Abstract:
This study examined the role of the population in the linkage between energy consumption and economic development in Nigeria. Time series data on energy consumption, population, and economic development were used for the period 1995 to 2020. The Autoregressive Distributed Lag -Error Correction Model (ARDL-ECM) was engaged. Economic development had a negative substantial impact on energy consumption in the long run. Population growth had a positive significant effect on energy consumption. Government expenditure was also found to impact the level of energy consumption, while energy consumption is not a function of oil price in Nigeria.Keywords: dynamic analysis, energy consumption, population, economic development, Nigeria
Procedia PDF Downloads 18018063 Open Source Knowledge Management Approach to Manage and Disseminate Distributed Content in a Global Enterprise
Authors: Rahul Thakur, Onkar Chandel
Abstract:
Red Hat is the world leader in providing open source software and solutions. A global enterprise, like Red Hat, has unique issues of connecting employees with content because of distributed offices, multiple teams spread across geographies, multiple languages, and different cultures. Employees, of a global company, create content that is distributed across departments, teams, regions, and countries. This makes finding the best content difficult since owners keep iterating on the existing content. When employees are unable to find the content, they end up creating it once again and in the process duplicating existing material and effort. Also, employees may not find the relevant content and spend time reviewing obsolete duplicate, or irrelevant content. On an average, a person spends 15 minutes/day in failed searches that might result in missed business opportunities, employee frustration, and substandard deliverables. Red Hat Knowledge Management Office (KMO) applied 'open source strategy' to solve the above problems. Under the Open Source Strategy, decisions are taken collectively. The strategy aims at accomplishing common goals with the help of communities. The objectives of this initiative were to save employees' time, get them authentic content, improve their content search experience, avoid duplicate content creation, provide context based search, improve analytics, improve content management workflows, automate content classification, and automate content upload. This session will describe open source strategy, its applicability in content management, challenges, recommended solutions, and outcome.Keywords: content classification, content management, knowledge management, open source
Procedia PDF Downloads 21018062 Control Configuration System as a Key Element in Distributed Control System
Authors: Goodarz Sabetian, Sajjad Moshfe
Abstract:
Control system for hi-tech industries could be realized generally and deeply by a special document. Vast heavy industries such as power plants with a large number of I/O signals are controlled by a distributed control system (DCS). This system comprises of so many parts from field level to high control level, and junior instrument engineers may be confused by this enormous information. The key document which can solve this problem is “control configuration system diagram” for each type of DCS. This is a road map that covers all of activities respect to control system in each industrial plant and inevitable to be studied by whom corresponded. It plays an important role from designing control system start point until the end; deliver the system to operate. This should be inserted in bid documents, contracts, purchasing specification and used in different periods of project EPC (engineering, procurement, and construction). Separate parts of DCS are categorized here in order of importance and a brief description and some practical plan is offered. This article could be useful for all instrument and control engineers who worked is EPC projects.Keywords: control, configuration, DCS, power plant, bus
Procedia PDF Downloads 49118061 The Impact of Exchange Rate Volatility on Real Total Export and Sub-Categories of Real Total Export of Malaysia
Authors: Wong Hock Tsen
Abstract:
This study aims to investigate the impact of exchange rate volatility on real export in Malaysia. The moving standard deviation with order three (MSD(3)) is used for the measurement of exchange rate volatility. The conventional and partially asymmetric autoregressive distributed lag (ARDL) models are used in the estimations. This study finds exchange rate volatility to have significant impact on real total export and some sub-categories of real total export. Moreover, this study finds that the positive or negative exchange rate volatility tends to have positive or negative impact on real export. Exchange rate volatility can be harmful to export of Malaysia.Keywords: exchange rate volatility, autoregressive distributed lag, export, Malaysia
Procedia PDF Downloads 32418060 Power Energy Management For A Grid-Connected PV System Using Rule-Base Fuzzy Logic
Authors: Nousheen Hashmi, Shoab Ahmad Khan
Abstract:
Active collaboration among the green energy sources and the load demand leads to serious issues related to power quality and stability. The growing number of green energy resources and Distributed-Generators need newer strategies to be incorporated for their operations to keep the power energy stability among green energy resources and micro-grid/Utility Grid. This paper presents a novel technique for energy power management in Grid-Connected Photovoltaic with energy storage system under set of constraints including weather conditions, Load Shedding Hours, Peak pricing Hours by using rule-based fuzzy smart grid controller to schedule power coming from multiple Power sources (photovoltaic, grid, battery) under the above set of constraints. The technique fuzzifies all the inputs and establishes fuzzify rule set from fuzzy outputs before defuzzification. Simulations are run for 24 hours period and rule base power scheduler is developed. The proposed fuzzy controller control strategy is able to sense the continuous fluctuations in Photovoltaic power generation, Load Demands, Grid (load Shedding patterns) and Battery State of Charge in order to make correct and quick decisions.The suggested Fuzzy Rule-based scheduler can operate well with vague inputs thus doesn’t not require any exact numerical model and can handle nonlinearity. This technique provides a framework for the extension to handle multiple special cases for optimized working of the system.Keywords: photovoltaic, power, fuzzy logic, distributed generators, state of charge, load shedding, membership functions
Procedia PDF Downloads 48018059 Equivalent Circuit Model for the Eddy Current Damping with Frequency-Dependence
Authors: Zhiguo Shi, Cheng Ning Loong, Jiazeng Shan, Weichao Wu
Abstract:
This study proposes an equivalent circuit model to simulate the eddy current damping force with shaking table tests and finite element modeling. The model is firstly proposed and applied to a simple eddy current damper, which is modelled in ANSYS, indicating that the proposed model can simulate the eddy current damping force under different types of excitations. Then, a non-contact and friction-free eddy current damper is designed and tested, and the proposed model can reproduce the experimental observations. The excellent agreement between the simulated results and the experimental data validates the accuracy and reliability of the equivalent circuit model. Furthermore, a more complicated model is performed in ANSYS to verify the feasibility of the equivalent circuit model in complex eddy current damper, and the higher-order fractional model and viscous model are adopted for comparison.Keywords: equivalent circuit model, eddy current damping, finite element model, shake table test
Procedia PDF Downloads 19118058 The Extended Skew Gaussian Process for Regression
Authors: M. T. Alodat
Abstract:
In this paper, we propose a generalization to the Gaussian process regression(GPR) model called the extended skew Gaussian process for regression(ESGPr) model. The ESGPR model works better than the GPR model when the errors are skewed. We derive the predictive distribution for the ESGPR model at a new input. Also we apply the ESGPR model to FOREX data and we find that it fits the Forex data better than the GPR model.Keywords: extended skew normal distribution, Gaussian process for regression, predictive distribution, ESGPr model
Procedia PDF Downloads 55318057 Camera Model Identification for Mi Pad 4, Oppo A37f, Samsung M20, and Oppo f9
Authors: Ulrich Wake, Eniman Syamsuddin
Abstract:
The model for camera model identificaiton is trained using pretrained model ResNet43 and ResNet50. The dataset consists of 500 photos of each phone. Dataset is divided into 1280 photos for training, 320 photos for validation and 400 photos for testing. The model is trained using One Cycle Policy Method and tested using Test-Time Augmentation. Furthermore, the model is trained for 50 epoch using regularization such as drop out and early stopping. The result is 90% accuracy for validation set and above 85% for Test-Time Augmentation using ResNet50. Every model is also trained by slightly updating the pretrained model’s weightsKeywords: One Cycle Policy, ResNet34, ResNet50, Test-Time Agumentation
Procedia PDF Downloads 20818056 Improving Fault Tolerance and Load Balancing in Heterogeneous Grid Computing Using Fractal Transform
Authors: Saad M. Darwish, Adel A. El-Zoghabi, Moustafa F. Ashry
Abstract:
The popularity of the Internet and the availability of powerful computers and high-speed networks as low-cost commodity components are changing the way we use computers today. These technical opportunities have led to the possibility of using geographically distributed and multi-owner resources to solve large-scale problems in science, engineering, and commerce. Recent research on these topics has led to the emergence of a new paradigm known as Grid computing. To achieve the promising potentials of tremendous distributed resources, effective and efficient load balancing algorithms are fundamentally important. Unfortunately, load balancing algorithms in traditional parallel and distributed systems, which usually run on homogeneous and dedicated resources, cannot work well in the new circumstances. In this paper, the concept of a fast fractal transform in heterogeneous grid computing based on R-tree and the domain-range entropy is proposed to improve fault tolerance and load balancing algorithm by improve connectivity, communication delay, network bandwidth, resource availability, and resource unpredictability. A novel two-dimension figure of merit is suggested to describe the network effects on load balance and fault tolerance estimation. Fault tolerance is enhanced by adaptively decrease replication time and message cost while load balance is enhanced by adaptively decrease mean job response time. Experimental results show that the proposed method yields superior performance over other methods.Keywords: Grid computing, load balancing, fault tolerance, R-tree, heterogeneous systems
Procedia PDF Downloads 49018055 Distributed Generation Connection to the Network: Obtaining Stability Using Transient Behavior
Authors: A. Hadadi, M. Abdollahi, A. Dustmohammadi
Abstract:
The growing use of DGs in distribution networks provide many advantages and also cause new problems which should be anticipated and be solved with appropriate solutions. One of the problems is transient voltage drop and short circuit in the electrical network, in the presence of distributed generation - which can lead to instability. The appearance of the short circuit will cause loss of generator synchronism, even though if it would be able to recover synchronizing mode after removing faulty generator, it will be stable. In order to increase system reliability and generator lifetime, some strategies should be planned to apply even in some situations which a fault prevent generators from separation. In this paper, one fault current limiter is installed due to prevent DGs separation from the grid when fault occurs. Furthermore, an innovative objective function is applied to determine the impedance optimal amount of fault current limiter in order to improve transient stability of distributed generation. Fault current limiter can prevent generator rotor's sudden acceleration after fault occurrence and thereby improve the network transient stability by reducing the current flow in a fast and effective manner. In fact, by applying created impedance by fault current limiter when a short circuit happens on the path of current injection DG to the fault location, the critical fault clearing time improve remarkably. Therefore, protective relay has more time to clear fault and isolate the fault zone without any instability. Finally, different transient scenarios of connection plan sustainability of small scale synchronous generators to the distribution network are presented.Keywords: critical clearing time, fault current limiter, synchronous generator, transient stability, transient states
Procedia PDF Downloads 19618054 Application of Regularized Spatio-Temporal Models to the Analysis of Remote Sensing Data
Authors: Salihah Alghamdi, Surajit Ray
Abstract:
Space-time data can be observed over irregularly shaped manifolds, which might have complex boundaries or interior gaps. Most of the existing methods do not consider the shape of the data, and as a result, it is difficult to model irregularly shaped data accommodating the complex domain. We used a method that can deal with space-time data that are distributed over non-planner shaped regions. The method is based on partial differential equations and finite element analysis. The model can be estimated using a penalized least squares approach with a regularization term that controls the over-fitting. The model is regularized using two roughness penalties, which consider the spatial and temporal regularities separately. The integrated square of the second derivative of the basis function is used as temporal penalty. While the spatial penalty consists of the integrated square of Laplace operator, which is integrated exclusively over the domain of interest that is determined using finite element technique. In this paper, we applied a spatio-temporal regression model with partial differential equations regularization (ST-PDE) approach to analyze a remote sensing data measuring the greenness of vegetation, measure by an index called enhanced vegetation index (EVI). The EVI data consist of measurements that take values between -1 and 1 reflecting the level of greenness of some region over a period of time. We applied (ST-PDE) approach to irregular shaped region of the EVI data. The approach efficiently accommodates the irregular shaped regions taking into account the complex boundaries rather than smoothing across the boundaries. Furthermore, the approach succeeds in capturing the temporal variation in the data.Keywords: irregularly shaped domain, partial differential equations, finite element analysis, complex boundray
Procedia PDF Downloads 14018053 A Theoretical Hypothesis on Ferris Wheel Model of University Social Responsibility
Authors: Le Kang
Abstract:
According to the nature of the university, as a free and responsible academic community, USR is based on a different foundation —academic responsibility, so the Pyramid and the IC Model of CSR could not fully explain the most distinguished feature of USR. This paper sought to put forward a new model— Ferris Wheel Model, to illustrate the nature of USR and the process of achievement. The Ferris Wheel Model of USR shows the university creates a balanced, fairness and neutrality systemic structure to afford social responsibilities; that makes the organization could obtain a synergistic effect to achieve more extensive interests of stakeholders and wider social responsibilities.Keywords: USR, achievement model, ferris wheel model, social responsibilities
Procedia PDF Downloads 72518052 Model Predictive Control of Three Phase Inverter for PV Systems
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
This paper presents a model predictive control (MPC) of a utility interactive three phase inverter (TPI) for a photovoltaic (PV) system at commercial level. The proposed model uses phase locked loop (PLL) to synchronize TPI with the power electric grid (PEG) and performs MPC control in a dq reference frame. TPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a three leg voltage source inverter (VSI). Operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a 35.7 kW PV system in Matlab/Simulink. Implementation and results show simplicity and accuracy, as well as reliability of the model.Keywords: model predictive control, three phase voltage source inverter, PV system, Matlab/simulink
Procedia PDF Downloads 59518051 Distribution Planning with Renewable Energy Units Based on Improved Honey Bee Mating Optimization
Authors: Noradin Ghadimi, Nima Amjady, Oveis Abedinia, Roza Poursoleiman
Abstract:
This paper proposed an Improved Honey Bee Mating Optimization (IHBMO) for a planning paradigm for network upgrade. The proposed technique is a new meta-heuristic algorithm which inspired by mating of the honey bee. The paradigm is able to select amongst several choices equi-cost one assuring the optimum in terms of voltage profile, considering various scenarios of DG penetration and load demand. The distributed generation (DG) has created a challenge and an opportunity for developing various novel technologies in power generation. DG prepares a multitude of services to utilities and consumers, containing standby generation, peaks chopping sufficiency, base load generation. The proposed algorithm is applied over the 30 lines, 28 buses power system. The achieved results demonstrate the good efficiency of the DG using the proposed technique in different scenarios.Keywords: distributed generation, IHBMO, renewable energy units, network upgrade
Procedia PDF Downloads 48718050 Model Observability – A Monitoring Solution for Machine Learning Models
Authors: Amreth Chandrasehar
Abstract:
Machine Learning (ML) Models are developed and run in production to solve various use cases that help organizations to be more efficient and help drive the business. But this comes at a massive development cost and lost business opportunities. According to the Gartner report, 85% of data science projects fail, and one of the factors impacting this is not paying attention to Model Observability. Model Observability helps the developers and operators to pinpoint the model performance issues data drift and help identify root cause of issues. This paper focuses on providing insights into incorporating model observability in model development and operationalizing it in production.Keywords: model observability, monitoring, drift detection, ML observability platform
Procedia PDF Downloads 11218049 Wind Power Mapping and NPV of Embedded Generation Systems in Nigeria
Authors: Oluseyi O. Ajayi, Ohiose D. Ohijeagbon, Mercy Ogbonnaya, Ameh Attabo
Abstract:
The study assessed the potential and economic viability of stand-alone wind systems for embedded generation, taking into account its benefits to small off-grid rural communities at 40 meteorological sites in Nigeria. A specific electric load profile was developed to accommodate communities consisting of 200 homes, a school and a community health centre. This load profile was incorporated within the distributed generation analysis producing energy in the MW range, while optimally meeting daily load demand for the rural communities. Twenty-four years (1987 to 2010) of wind speed data at a height of 10m utilized for the study were sourced from the Nigeria Meteorological Department, Oshodi. The HOMER® software optimizing tool was engaged for the feasibility study and design. Each site was suited to 3MW wind turbines in sets of five, thus 15MW was designed for each site. This design configuration was adopted in order to easily compare the distributed generation system amongst the sites to determine their relative economic viability in terms of life cycle cost, as well as levelised cost of producing energy. A net present value was estimated in terms of life cycle cost for 25 of the 40 meteorological sites. On the other hand, the remaining sites yielded a net present cost; meaning the installations at these locations were not economically viable when utilizing the present tariff regime for embedded generation in Nigeria.Keywords: wind speed, wind power, distributed generation, cost per kilowatt-hour, clean energy, Nigeria
Procedia PDF Downloads 39718048 Unsupervised Learning and Similarity Comparison of Water Mass Characteristics with Gaussian Mixture Model for Visualizing Ocean Data
Authors: Jian-Heng Wu, Bor-Shen Lin
Abstract:
The temperature-salinity relationship is one of the most important characteristics used for identifying water masses in marine research. Temperature-salinity characteristics, however, may change dynamically with respect to the geographic location and is quite sensitive to the depth at the same location. When depth is taken into consideration, however, it is not easy to compare the characteristics of different water masses efficiently for a wide range of areas of the ocean. In this paper, the Gaussian mixture model was proposed to analyze the temperature-salinity-depth characteristics of water masses, based on which comparison between water masses may be conducted. Gaussian mixture model could model the distribution of a random vector and is formulated as the weighting sum for a set of multivariate normal distributions. The temperature-salinity-depth data for different locations are first used to train a set of Gaussian mixture models individually. The distance between two Gaussian mixture models can then be defined as the weighting sum of pairwise Bhattacharyya distances among the Gaussian distributions. Consequently, the distance between two water masses may be measured fast, which allows the automatic and efficient comparison of the water masses for a wide range area. The proposed approach not only can approximate the distribution of temperature, salinity, and depth directly without the prior knowledge for assuming the regression family, but may restrict the complexity by controlling the number of mixtures when the amounts of samples are unevenly distributed. In addition, it is critical for knowledge discovery in marine research to represent, manage and share the temperature-salinity-depth characteristics flexibly and responsively. The proposed approach has been applied to a real-time visualization system of ocean data, which may facilitate the comparison of water masses by aggregating the data without degrading the discriminating capabilities. This system provides an interface for querying geographic locations with similar temperature-salinity-depth characteristics interactively and for tracking specific patterns of water masses, such as the Kuroshio near Taiwan or those in the South China Sea.Keywords: water mass, Gaussian mixture model, data visualization, system framework
Procedia PDF Downloads 14418047 All-or-None Principle and Weakness of Hodgkin-Huxley Mathematical Model
Authors: S. A. Sadegh Zadeh, C. Kambhampati
Abstract:
Mathematical and computational modellings are the necessary tools for reviewing, analysing, and predicting processes and events in the wide spectrum range of scientific fields. Therefore, in a field as rapidly developing as neuroscience, the combination of these two modellings can have a significant role in helping to guide the direction the field takes. The paper combined mathematical and computational modelling to prove a weakness in a very precious model in neuroscience. This paper is intended to analyse all-or-none principle in Hodgkin-Huxley mathematical model. By implementation the computational model of Hodgkin-Huxley model and applying the concept of all-or-none principle, an investigation on this mathematical model has been performed. The results clearly showed that the mathematical model of Hodgkin-Huxley does not observe this fundamental law in neurophysiology to generating action potentials. This study shows that further mathematical studies on the Hodgkin-Huxley model are needed in order to create a model without this weakness.Keywords: all-or-none, computational modelling, mathematical model, transmembrane voltage, action potential
Procedia PDF Downloads 61718046 Using Blockchain Technology to Extend the Vendor Managed Inventory for Sustainability
Authors: Elham Ahmadi, Roshaali Khaturia, Pardis Sahraei, Mohammad Niyayesh, Omid Fatahi Valilai
Abstract:
Nowadays, Information Technology (IT) is changing the way traditional enterprise management concepts work. One of the most dominant IT achievements is the Blockchain Technology. This technology enables the distributed collaboration of stakeholders for their interactions while fulfilling the security and consensus rules among them. This paper has focused on the application of Blockchain technology to enhance one of traditional inventory management models. The Vendor Managed Inventory (VMI) has been considered one of the most efficient mechanisms for vendor inventory planning by the suppliers. While VMI has brought competitive advantages for many industries, however its centralized mechanism limits the collaboration of a pool of suppliers and vendors simultaneously. This paper has studied the recent research for VMI application in industries and also has investigated the applications of Blockchain technology for decentralized collaboration of stakeholders. Focusing on sustainability issue for total supply chain consisting suppliers and vendors, it has proposed a Blockchain based VMI conceptual model. The different capabilities of this model for enabling the collaboration of stakeholders while maintaining the competitive advantages and sustainability issues have been discussed.Keywords: vendor managed inventory, VMI, blockchain technology, supply chain planning, sustainability
Procedia PDF Downloads 22418045 Identification of Flooding Attack (Zero Day Attack) at Application Layer Using Mathematical Model and Detection Using Correlations
Authors: Hamsini Pulugurtha, V.S. Lakshmi Jagadmaba Paluri
Abstract:
Distributed denial of service attack (DDoS) is one altogether the top-rated cyber threats presently. It runs down the victim server resources like a system of measurement and buffer size by obstructing the server to supply resources to legitimate shoppers. Throughout this text, we tend to tend to propose a mathematical model of DDoS attack; we discuss its relevancy to the choices like inter-arrival time or rate of arrival of the assault customers accessing the server. We tend to tend to further analyze the attack model in context to the exhausting system of measurement and buffer size of the victim server. The projected technique uses an associate in nursing unattended learning technique, self-organizing map, to make the clusters of identical choices. Lastly, the abstract applies mathematical correlation and so the standard likelihood distribution on the clusters and analyses their behaviors to look at a DDoS attack. These systems not exclusively interconnect very little devices exchanging personal data, but to boot essential infrastructures news standing of nuclear facilities. Although this interconnection brings many edges and blessings, it to boot creates new vulnerabilities and threats which might be conversant in mount attacks. In such sophisticated interconnected systems, the power to look at attacks as early as accomplishable is of paramount importance.Keywords: application attack, bandwidth, buffer correlation, DDoS distribution flooding intrusion layer, normal prevention probability size
Procedia PDF Downloads 22518044 A Design for Application of Mobile Agent Technology to MicroService Architecture
Authors: Masayuki Higashino, Toshiya Kawato, Takao Kawamura
Abstract:
A monolithic service is based on the N-tier architecture in many cases. In order to divide a monolithic service into microservices, it is necessary to redefine a model as a new microservice by extracting and merging existing models across layers. Refactoring a monolithic service into microservices requires advanced technical capabilities, and it is a difficult way. This paper proposes a design and concept to ease the migration of a monolithic service to microservices using the mobile agent technology. Our proposed approach, mobile agents-based design and concept, enables to ease dividing and merging services.Keywords: mobile agent, microservice, web service, distributed system
Procedia PDF Downloads 16418043 A Survey on Various Technique of Modified TORA over MANET
Authors: Shreyansh Adesara, Sneha Pandiya
Abstract:
The mobile ad-hoc network (MANET) is an important and open area research for the examination and determination of the performance evolution. Temporary ordered routing algorithm (TORA) is adaptable and distributed MANET routing algorithm which is totally dependent on internet MANET Encapsulation protocol (IMEP) for the detection of the link and sensing of the link. If IMEP detect the wrong link failure then the network suffer from congestion and unnecessary route maintenance. Thus, the improvement in link detection method of TORA is introduced by various methods on IMEP by different perspective from different person. There are also different reactive routing protocols like AODV, TORA and DSR has been compared for the knowledge of the routing scenario for different parameter and using different model.Keywords: IMEP, mobile ad-hoc network, protocol, TORA
Procedia PDF Downloads 44118042 Application of Electro-Optical Hybrid Cables in Horizontal Well Production Logging
Authors: Daofan Guo, Dong Yang
Abstract:
For decades, well logging with coiled tubing has relied solely on surface data such as pump pressure, wellhead pressure, depth counter, and weight indicator readings. While this data serves the oil industry well, modern smart logging utilizes real-time downhole information, which automatically increases operational efficiency and optimizes intervention qualities. For example, downhole pressure, temperature, and depth measurement data can be transmitted through the electro-optical hybrid cable in the coiled tubing to surface operators on a real-time base. This paper mainly introduces the unique structural features and various applications of the electro-optical hybrid cables which were deployed into downhole with the help of coiled tubing technology. Fiber optic elements in the cable enable optical communications and distributed measurements, such as distributed temperature and acoustic sensing. The electrical elements provide continuous surface power for downhole tools, eliminating the limitations of traditional batteries, such as temperature, operating time, and safety concerns. The electrical elements also enable cable telemetry operation of cable tools. Both power supply and signal transmission were integrated into an electro-optical hybrid cable, and the downhole information can be captured by downhole electrical sensors and distributed optical sensing technologies, then travels up through an optical fiber to the surface, which greatly improves the accuracy of measurement data transmission.Keywords: electro-optical hybrid cable, underground photoelectric composite cable, seismic cable, coiled tubing, real-time monitoring
Procedia PDF Downloads 14218041 Multiscale Modelling of Citrus Black Spot Transmission Dynamics along the Pre-Harvest Supply Chain
Authors: Muleya Nqobile, Winston Garira
Abstract:
We presented a compartmental deterministic multi-scale model which encompass internal plant defensive mechanism and pathogen interaction, then we consider nesting the model into the epidemiological model. The objective was to improve our understanding of the transmission dynamics of within host and between host of Guignardia citricapa Kiely. The inflow of infected class was scaled down to individual level while the outflow was scaled up to average population level. Conceptual model and mathematical model were constructed to display a theoretical framework which can be used for predicting or identify disease pattern.Keywords: epidemiological model, mathematical modelling, multi-scale modelling, immunological model
Procedia PDF Downloads 459