Search results for: cytokine gene
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1641

Search results for: cytokine gene

1341 C-eXpress: A Web-Based Analysis Platform for Comparative Functional Genomics and Proteomics in Human Cancer Cell Line, NCI-60 as an Example

Authors: Chi-Ching Lee, Po-Jung Huang, Kuo-Yang Huang, Petrus Tang

Abstract:

Background: Recent advances in high-throughput research technologies such as new-generation sequencing and multi-dimensional liquid chromatography makes it possible to dissect the complete transcriptome and proteome in a single run for the first time. However, it is almost impossible for many laboratories to handle and analysis these “BIG” data without the support from a bioinformatics team. We aimed to provide a web-based analysis platform for users with only limited knowledge on bio-computing to study the functional genomics and proteomics. Method: We use NCI-60 as an example dataset to demonstrate the power of the web-based analysis platform and data delivering system: C-eXpress takes a simple text file that contain the standard NCBI gene or protein ID and expression levels (rpkm or fold) as input file to generate a distribution map of gene/protein expression levels in a heatmap diagram organized by color gradients. The diagram is hyper-linked to a dynamic html table that allows the users to filter the datasets based on various gene features. A dynamic summary chart is generated automatically after each filtering process. Results: We implemented an integrated database that contain pre-defined annotations such as gene/protein properties (ID, name, length, MW, pI); pathways based on KEGG and GO biological process; subcellular localization based on GO cellular component; functional classification based on GO molecular function, kinase, peptidase and transporter. Multiple ways of sorting of column and rows is also provided for comparative analysis and visualization of multiple samples.

Keywords: cancer, visualization, database, functional annotation

Procedia PDF Downloads 618
1340 Long Non-Coding RNAs Mediated Regulation of Diabetes in Humanized Mouse

Authors: Md. M. Hossain, Regan Roat, Jenica Christopherson, Colette Free, Zhiguang Guo

Abstract:

Long noncoding RNA (lncRNA) mediated post-transcriptional gene regulation, and their epigenetic landscapes have been shown to be involved in many human diseases. However, their regulation in diabetes through governing islet’s β-cell function and survival needs to be elucidated. Due to the technical and ethical constraints, it is difficult to study their role in β-cell function and survival in human under in vivo condition. In this study, humanized mice have been developed through transplanting human pancreatic islet under the kidney capsule of NOD.SCID mice and induced β-cell death leading to diabetes condition to study lncRNA mediated regulation. For this, human islets from 3 donors (3000 IEQ, purity > 80%) were transplanted under the kidney capsule of STZ induced diabetic NOD.scid mice. After at least 2 weeks of normoglycecemia, lymphocytes from diabetic NOD mice were adoptively transferred and islet grafts were collected once blood glucose reached > 200 mg/dl. RNA from human donor islets, islet grafts from humanized mice with either adoptive lymphocyte transfer (ALT) or PBS control (CTL) were ribodepleted; barcoded fragment libraries were constructed and sequenced on the Ion Proton sequencer. lncRNA expression in isolated human islets, islet grafts from humanized mice with and without induced β-cell death and their regulation in human islets function in vitro under glucose challenge, cytokine mediated inflammation and induced apoptotic condition were investigated. Out of 3155 detected lncRNAs, 299 that highly expressed in islets were found to be significantly downregulated and 224 upregulated in ALT compared to CTL. Most of these are found to be collocated within 5 kb upstream and 1 kb downstream of 788 up- and 624 down-regulated mRNAs. Genomic Regions Enrichment of Annotations Analysis revealed deregulated and collocated genes are related to pancreas endocrine development; insulin synthesis, processing, and secretion; pancreatitis and diabetes. Many of them, that found to be located within enhancer domains for islet specific gene activity, are associated to the deregulation of known islet/βcell specific transcription factors and genes that are important for β-cell differentiation, identity, and function. RNA sequencing analysis revealed aberrant lncRNA expression which is associated to the deregulated mRNAs in β-cell function as well as in molecular pathways related to diabetes. A distinct set of candidate lncRNA isoforms were identified as highly enriched and specific to human islets, which are deregulated in human islets from donors with different BMIs and with type 2 diabetes. These RNAs show an interesting regulation in cultured human islets under glucose stimulation and with induced β-cell death by cytokines. Aberrant expression of these lncRNAs was detected in the exosomes from the media of islets cultured with cytokines. Results of this study suggest that the islet specific lncRNAs are deregulated in human islet with β-cell death, hence important in diabetes. These lncRNAs might be important for human β-cell function and survival thus could be used as biomarkers and novel therapeutic targets for diabetes.

Keywords: β-cell, humanized mouse, pancreatic islet, LncRNAs

Procedia PDF Downloads 163
1339 CSPG4 Molecular Target in Canine Melanoma, Osteosarcoma and Mammary Tumors for Novel Therapeutic Strategies

Authors: Paola Modesto, Floriana Fruscione, Isabella Martini, Simona Perga, Federica Riccardo, Mariateresa Camerino, Davide Giacobino, Cecilia Gola, Luca Licenziato, Elisabetta Razzuoli, Katia Varello, Lorella Maniscalco, Elena Bozzetta, Angelo Ferrari

Abstract:

Canine and human melanoma, osteosarcoma (OSA), and mammary carcinomas are aggressive tumors with common characteristics making dogs a good model for comparative oncology. Novel therapeutic strategies against these tumors could be useful to both species. In humans, chondroitin sulphate proteoglycan 4 (CSPG4) is a marker involved in tumor progression and could be a candidate target for immunotherapy. The anti-CSPG4 DNA electrovaccination has shown to be an effective approach for canine malignant melanoma (CMM) [1]. An immunohistochemistry evaluation of CSPG4 expression in tumour tissue is generally performed prior to electrovaccination. To assess the possibility to perform a rapid molecular evaluation and in order to validate these spontaneous canine tumors as the model for human studies, we investigate the CSPG4 gene expression by RT qPCR in CMM, OSA, and canine mammary tumors (CMT). The total RNA was extracted from RNAlater stored tissue samples (CMM n=16; OSA n=13; CMT n=6; five paired normal tissues for CMM, five paired normal tissues for OSA and one paired normal tissue for CMT), retro-transcribed and then analyzed by duplex RT-qPCR using two different TaqMan assays for the target gene CSPG4 and the internal reference gene (RG) Ribosomal Protein S19 (RPS19). RPS19 was selected from a panel of 9 candidate RGs, according to NormFinder analysis following the protocol already described [2]. Relative expression was analyzed by CFX Maestro™ Software. Student t-test and ANOVA were performed (significance set at P<0.05). Results showed that gene expression of CSPG4 in OSA tissues is significantly increased by 3-4 folds when compared to controls. In CMT, gene expression of the target was increased from 1.5 to 19.9 folds. In melanoma, although an increasing trend was observed, no significant differences between the two groups were highlighted. Immunohistochemistry analysis of the two cancer types showed that the expression of CSPG4 within CMM is concentrated in isles of cells compared to OSA, where the distribution of positive cells is homogeneous. This evidence could explain the differences in gene expression results.CSPG4 immunohistochemistry evaluation in mammary carcinoma is in progress. The evidence of CSPG4 expression in a different type of canine tumors opens the way to the possibility of extending the CSPG4 immunotherapy marker in CMM, OSA, and CMT and may have an impact to translate this strategy modality to human oncology.

Keywords: canine melanoma, canine mammary carcinomas, canine osteosarcoma, CSPG4, gene expression, immunotherapy

Procedia PDF Downloads 174
1338 Assessing Brain Targeting Efficiency of Ionisable Lipid Nanoparticles Encapsulating Cas9 mRNA/gGFP Following Different Routes of Administration in Mice

Authors: Meiling Yu, Nadia Rouatbi, Khuloud T. Al-Jamal

Abstract:

Background: Treatment of neurological disorders with modern medical and surgical approaches remains difficult. Gene therapy, allowing the delivery of genetic materials that encodes potential therapeutic molecules, represents an attractive option. The treatment of brain diseases with gene therapy requires the gene-editing tool to be delivered efficiently to the central nervous system. In this study, we explored the efficiency of different delivery routes, namely intravenous (i.v.), intra-cranial (i.c.), and intra-nasal (i.n.), to deliver stable nucleic acid-lipid particles (SNALPs) containing gene-editing tools namely Cas9 mRNA and sgRNA encoding for GFP as a reporter protein. We hypothesise that SNALPs can reach the brain and perform gene-editing to different extents depending on the administration route. Intranasal administration (i.n.) offers an attractive and non-invasive way to access the brain circumventing the blood–brain barrier. Successful delivery of gene-editing tools to the brain offers a great opportunity for therapeutic target validation and nucleic acids therapeutics delivery to improve treatment options for a range of neurodegenerative diseases. In this study, we utilised Rosa26-Cas9 knock-in mice, expressing GFP, to study brain distribution and gene-editing efficiency of SNALPs after i.v.; i.c. and i.n. routes of administration. Methods: Single guide RNA (sgRNA) against GFP has been designed and validated by in vitro nuclease assay. SNALPs were formulated and characterised using dynamic light scattering. The encapsulation efficiency of nucleic acids (NA) was measured by RiboGreen™ assay. SNALPs were incubated in serum to assess their ability to protect NA from degradation. Rosa26-Cas9 knock-in mice were i.v., i.n., or i.c. administered with SNALPs to test in vivo gene-editing (GFP knockout) efficiency. SNALPs were given as three doses of 0.64 mg/kg sgGFP following i.v. and i.n. or a single dose of 0.25 mg/kg sgGFP following i.c.. knockout efficiency was assessed after seven days using Sanger Sequencing and Inference of CRISPR Edits (ICE) analysis. In vivo, the biodistribution of DiR labelled SNALPs (SNALPs-DiR) was assessed at 24h post-administration using IVIS Lumina Series III. Results: Serum-stable SNALPs produced were 130-140 nm in diameter with ~90% nucleic acid loading efficiency. SNALPs could reach and stay in the brain for up to 24h following i.v.; i.n. and i.c. administration. Decreasing GFP expression (around 50% after i.v. and i.c. and 20% following i.n.) was confirmed by optical imaging. Despite the small number of mice used, ICE analysis confirmed GFP knockout in mice brains. Additional studies are currently taking place to increase mice numbers. Conclusion: Results confirmed efficient gene knockout achieved by SNALPs in Rosa26-Cas9 knock-in mice expressing GFP following different routes of administrations in the following order i.v.= i.c.> i.n. Each of the administration routes has its pros and cons. The next stages of the project involve assessing gene-editing efficiency in wild-type mice and replacing GFP as a model target with therapeutic target genes implicated in Motor Neuron Disease pathology.

Keywords: CRISPR, nanoparticles, brain diseases, administration routes

Procedia PDF Downloads 101
1337 Evolutionary Genomic Analysis of Adaptation Genomics

Authors: Agostinho Antunes

Abstract:

The completion of the human genome sequencing in 2003 opened a new perspective into the importance of whole genome sequencing projects, and currently multiple species are having their genomes completed sequenced, from simple organisms, such as bacteria, to more complex taxa, such as mammals. This voluminous sequencing data generated across multiple organisms provides also the framework to better understand the genetic makeup of such species and related ones, allowing to explore the genetic changes underlining the evolution of diverse phenotypic traits. Here, recent results from our group retrieved from comparative evolutionary genomic analyses of varied species will be considered to exemplify how gene novelty and gene enhancement by positive selection might have been determinant in the success of adaptive radiations into diverse habitats and lifestyles.

Keywords: adaptation, animals, evolution, genomics

Procedia PDF Downloads 429
1336 Al₂O₃ Nano-Particles Impact on Pseudomonas Putida Gene Expression: Implications for Environmental Risk

Authors: Nina Doskocz, Katarzyna Affek, Magdalena Matczuk, Monika Załęska-Radziwiłł

Abstract:

Wastewater treatment is a critical environmental issue, especially in the face of increasing urbanization and industrialization. One of the emerging issues related to wastewater is the presence of nanoparticles (NPs) - tiny particles with dimensions measured in nanometers. These nanoparticles are widely used in various industries, including medicine, electronics, and consumer products. With technological advances, NPs are increasingly finding their way into water and wastewater systems, posing new environmental challenges that require urgent research and regulation. Therefore, research on the impact of nanoparticles on wastewater treatment processes is critical to protect environmental health and ensure sustainable development in the face of advancing nanotechnology. Traditional ecotoxicological tests are often inadequate for routine analysis as they do not provide insight into the mechanisms of toxicity of these compounds. The development of (geno)toxicity biomarkers for nanoparticles will greatly aid in the rapid assessment and prediction of the effects of current and emerging nanomaterials on various organisms. However, despite growing interest in gene expression responses to nanoparticle-induced stress, the toxic mechanisms of action and defense responses against nanoparticle toxicity remain poorly understood. The aim of our research was to investigate the expression of several molecular biomarkers related to essential cellular functions - such as oxidative stress, xenobiotic detoxification, and mitochondrial electron transport - in Pseudomonas putida in response to Al₂O₃ nanoparticles found in wastewater, both before and after biological treatment, as well as in their native form. Real-time PCR (qPCR) was used to assess gene expression changes after 1 hour and 16 hours of exposure to Al₂O₃ NPs and wastewater containing these nanoparticles, both before and after biological treatment. In addition, gene expression measurements were performed on P. putida in the presence of bulk Al₂O₃ (pristine and in wastewater). The results showed increased expression of ahpC, katE and ctaD genes, indicating oxidative stress, increased detoxification capacity and impaired mitochondrial function. Both untreated and treated wastewater containing nanoparticles caused significant changes in gene expression, demonstrating the persistent bioactivity and potential toxicity of these nanoparticles. Nanoparticles exhibited greater reactivity and bioavailability compared to their bulk counterparts.

Keywords: nanoparticles, wastewater, gene expression, qPCR

Procedia PDF Downloads 17
1335 Association of Non Synonymous SNP in DC-SIGN Receptor Gene with Tuberculosis (Tb)

Authors: Saima Suleman, Kalsoom Sughra, Naeem Mahmood Ashraf

Abstract:

Mycobacterium tuberculosis is a communicable chronic illness. This disease is being highly focused by researchers as it is present approximately in one third of world population either in active or latent form. The genetic makeup of a person plays an important part in producing immunity against disease. And one important factor association is single nucleotide polymorphism of relevant gene. In this study, we have studied association between single nucleotide polymorphism of CD-209 gene (encode DC-SIGN receptor) and patients of tuberculosis. Dry lab (in silico) and wet lab (RFLP) analysis have been carried out. GWAS catalogue and GEO database have been searched to find out previous association data. No association study has been found related to CD-209 nsSNPs but role of CD-209 in pulmonary tuberculosis have been addressed in GEO database.Therefore, CD-209 has been selected for this study. Different databases like ENSEMBLE and 1000 Genome Project has been used to retrieve SNP data in form of VCF file which is further submitted to different software to sort SNPs into benign and deleterious. Selected SNPs are further annotated by using 3-D modeling techniques using I-TASSER online software. Furthermore, selected nsSNPs were checked in Gujrat and Faisalabad population through RFLP analysis. In this study population two SNPs are found to be associated with tuberculosis while one nsSNP is not found to be associated with the disease.

Keywords: association, CD209, DC-SIGN, tuberculosis

Procedia PDF Downloads 309
1334 Identification of Anaplasma Species in Sheep of Khouzestan Province by PCR

Authors: Masoud Soltanialvar, Ali Bagherpour

Abstract:

The aim of this study was to determinate the variety of Anaplasma species among sheep of khouzestan province, Iran. From April 2013 to June 2013, a total of 200 blood samples were collected via the jugular vein from healthy sheep (100), randomly. The extracted DNA from blood cells were amplified by Anaplasma-all primers, which amplify an approximately 1468bp DNA fragment from region of 16S rRNA gene from various members of the genus Anaplasma. For raising the test sensivity, the PCR products were amplified with the primers, which were designed from the region flanked by the first primers. The amplified nested PCR product had an expected PCR product with 345 nucleotides in length. In 100 sheep blood samples, 7 samples were Anaplasma spp. positive by first PCR and nested PCR. The results showed that 2 of total 100 blood samples (2%) were A.phagocytophilum positive by specific nested PCR based on 16S rRNA gene. The extracted DNA from positive Anaplasma spp. samples were amplified by Anaplasma ovis specific primers, which amplify an approximately 866bp DNA fragment from region of msp4 gene. 5 out of 100 sheep blood samples (5%) were positive for Anaplasma ovis. This study is the first molecular detection of A. ovis and A.phagocytophilum from sheep in Iran.

Keywords: Iran, anaplasma species, sheep, A. ovis, A. phagocytophilum, PCR

Procedia PDF Downloads 523
1333 Measures of Phylogenetic Support for Phylogenomic and the Whole Genomes of Two Lungfish Restate Lungfish and Origin of Land Vertebrates

Authors: Yunfeng Shan, Xiaoliang Wang, Youjun Zhou

Abstract:

Whole-genome data from two lungfish species, along with other species, present a valuable opportunity to reassess the longstanding debate regarding the evolutionary relationships among tetrapods, lungfishes, and coelacanths. However, the use of bootstrap support has become outdated for large-scale phylogenomic data. Without robust phylogenetic support, the phylogenetic trees become meaningless. Therefore, it is necessary to re-evaluate the phylogenies of tetrapods, lungfishes, and coelacanths using novel measures of phylogenetic support specifically designed for phylogenomic data, as the previous phylogenies were based on 100% bootstrap support. Our findings consistently provide strong evidence favoring lungfish as the closest living relative of tetrapods. This conclusion is based on high gene support confidence with confidence intervals exceeding 95%, high internode certainty, and high gene concordance factor. The evidence stems from two datasets containing recently deciphered whole genomes of two lungfish species, as well as five previous datasets derived from lungfish transcriptomes. These results yield fresh insights into the three hypotheses regarding the phylogenies of tetrapods, lungfishes, and coelacanths. Importantly, these hypotheses are not mere conjectures but are substantiated by a significant number of genes. Analyzing real biological data further demonstrates that the inclusion of additional taxa diminishes the number of orthologues and leads to more diverse tree topologies. Consequently, gene trees and species trees may not be identical even when whole-genome sequencing data is utilized. However, it is worth noting that many gene trees can accurately reflect the species tree if an appropriate number of taxa, typically ranging from six to ten, are sampled. Therefore, it is crucial to carefully select the number of taxa and an appropriate outgroup while excluding fast-evolving taxa as outgroups to mitigate the adverse effects of long-branch attraction (LBA) and achieve an accurate reconstruction of the species tree. This is particularly important as more whole-genome sequencing data becomes available.

Keywords: gene support confidence (GSC), origin of land vertebrates, coelacanth, two whole genomes of lungfishes, confidence intervals

Procedia PDF Downloads 87
1332 Genome-Wide Significant SNPs Proximal to Nicotinic Receptor Genes Impact Cognition in Schizophrenia

Authors: Mohammad Ahangari

Abstract:

Schizophrenia is a psychiatric disorder with symptoms that include cognitive deficits and nicotine has been suggested to have an effect on cognition. In recent years, the advents of Genome-Wide Association Studies(GWAS) has evolved our understanding about the genetic causes of complex disorders such as schizophrenia and studying the role of genome-wide significant genes could potentially lead to the development of new therapeutic agents for treatment of cognitive deficits in schizophrenia. The current study identified six Single Nucleotide Polymorphisms (SNP) from schizophrenia and smoking GWAS that are located on or in close proximity to the nicotinic receptor gene cluster (CHRN) and studied their association with cognition in an Irish sample of 1297 cases and controls using linear regression analysis. Further on, the interaction between CHRN gene cluster and Dopamine receptor D2 gene (DRD2) during working memory was investigated. The effect of these polymorphisms on nicotinic and dopaminergic neurotransmission, which is disrupted in schizophrenia, have been characterized in terms of their effects on memory, attention, social cognition and IQ as measured by a neuropsychological test battery and significant effects in two polymorphisms were found across global IQ domain of the test battery.

Keywords: cognition, dopamine, GWAS, nicotine, schizophrenia, SNPs

Procedia PDF Downloads 346
1331 Fam111b Gene Dysregulation Contributes to the Malignancy in Fibrosarcoma, Poor Clinical Outcomes in Poiktmp and a Low-cost Method for Its Mutation Screening

Authors: Cenza Rhoda, Falone Sunda, Elvis Kidzeru, Nonhlanhla P. Khumalo, Afolake Arowolo

Abstract:

Introduction: The human FAM111B gene mutations are associated with POIKTMP, a rare multi-organ fibrosing disease. Recent studies also reported the overexpression of FAM111B in specific cancers. However, the role of FAM111B in these pathologies, particularly fibrosarcoma, remains unknown. Materials and Methods: FAM111B RNA expression in some cancer cell lines was assessed in silico and validated in vitro in these cell lines and skin fibroblasts derived from the South African family member affected by POIKTMP with the heterozygous FAM111B gene mutation: NM_198947.4: c.1861T>G (p. Tyr621Asp or Y621D) by qPCR and western blot. The cellular function of FAM111B was also studied in HT1080 using various cell-based functional assays and a simple and cost-effective PCR-RFLP method for genotyping/screening FAM111B gene mutations described. Results: Expression studies showed upregulated FAM111B mRNA and protein in the cancer cells. High FAM111B expression with robust nuclear localization occurred in HT1080. Additionally, expression data and cell-based assays indicated that FAM111B led to the upregulation of cell migration and decreased cell apoptosis and cell proliferation modulation. FAM111B Y621D mutation showed similar effects on cell migration but minimal impact on cell apoptosis. FAM111B mRNA and protein expression were markedly downregulated (p ≤ 0.05) in the patient's skin-derived fibroblasts. Lastly, the PCR-RFLP method successfully genotyped FAM111B Y621D gene mutation. Discussion: FAM111B is a cancer-associated nuclear protein: Its modulation by mutations may enhance cell migration and proliferation and decrease apoptosis, as seen in cancers and POIKTMP/fibrosis, thus representing a viable therapeutic target in these disorders. Furthermore, the PCR-RFLP method could prove a valuable tool for FAM111B mutation validation or screening in resource-constrained laboratories.

Keywords: FAM111B, POIKTMP, cancer, fibrosis, PCR-RFLP

Procedia PDF Downloads 121
1330 Choosing Mountains Over the Beach: Evaluating the Effect of Altitude on Covid Brain Severity and Treatment

Authors: Kennedy Zinn, Chris Anderson

Abstract:

Chronic Covid syndrome (CCS) is a condition in which individuals who test positive for Covid-19 experience persistent symptoms after recovering from the virus. CCS affects every organ system, including the central nervous system. Neurological “long-haul” symptoms last from a few weeks to several months and include brain fog, chronic fatigue, dyspnea, mood dysregulation, and headaches. Data suggest that 10-30% of individuals testing positive for Covid-19 develop CCS. Current literature indicates a decreased quality of life in persistent symptoms. CCS is a pervasive and pernicious COVID-19 sequelae. More research is needed to understand risk factors, impact, and possible interventions. Research frequently cites cytokine storming as noteworthy etiology in CCS. Cytokine storming is a malfunctional immune response and facilitates multidimensional interconnected physiological responses. The most prominent responses include abnormal blood flow, hypoxia/hypoxemia, inflammation, and endothelial damage. Neurological impairments and pathogenesis in CCS parallel that of traumatic brain injury (TBI). Both exhibit impairments in memory, cognition, mood, sustained attention, and chronic fatigue. Evidence suggests abnormal blood flow, inflammation, and hypoxemia as shared causal factors. Cytokine storming is also typical in mTBI. The shared characteristics in symptoms and etiology suggest potential parallel routes of investigation that allow for better understanding of CCS. Research on the effect of altitude in mTBI varies. Literature finds decreased rates of concussions at higher altitudes. Other studies suggest that at a higher altitude, pre-existing mTBI symptoms are exacerbated. This may mean that in CCS, the geographical location where individuals live and the location where individuals experienced acute Covid-19 symptoms may influence the severity and risk of developing CCS. It also suggests that clinics which treat mTBI patients could also provide benefits for those with CCS. This study aims to examine the relationships between altitude and CCS as a risk factor and investigate the longevity and severity of symptoms in different altitudes. Existing patient data from a concussion clinic using fMRI scans and self-reported symptoms will be used for approximately 30 individuals with CCS symptoms. The association between acclimated altitude and CCS severity will be analyzed. Patients will be classified into low, medium, and high altitude groups and compared for differences on fMRI severity scores and self-reported measures. It is anticipated that individuals living in lower altitudes are at higher risk of developing more severe neuropsychological symptoms in CCS. It is also anticipated that a treatment approach for mTBI will also be beneficial to those with CCS.

Keywords: altitude, chronic covid syndrome, concussion, covid brain, EPIC treatment, fMRI, traumatic brain injury

Procedia PDF Downloads 132
1329 Mutations in rpoB, katG and inhA Genes: The Association with Resistance to Rifampicin and Isoniazid in Egyptian Mycobacterium tuberculosis Clinical Isolates

Authors: Ayman K. El Essawy, Amal M. Hosny, Hala M. Abu Shady

Abstract:

The rapid detection of TB and drug resistance, both optimizes treatment and improves outcomes. In the current study, respiratory specimens were collected from 155 patients. Conventional susceptibility testing and MIC determination were performed for rifampicin (RIF) and isoniazid (INH). Genotype MTBDRplus assay, which is a molecular genetic assay based on the DNA-STRIP technology and specific gene sequencing with primers for rpoB, KatG, and mab-inhA genes were used to detect mutations associated with resistance to rifampicin and isoniazid. In comparison to other categories, most of rifampicin resistant (61.5%) and isoniazid resistant isolates (47.1%) were from patients relapsed in treatment. The genotypic profile (using Genotype MTBDRplus assay) of multi-drug resistant (MDR) isolates showed missing of katG wild type 1 (WT1) band and appearance of mutation band katG MUT2. For isoniazid mono-resistant isolates, 80% showed katG MUT1, 20% showed katG MUT1, and inhA MUT1, 20% showed only inhA MUT1. Accordingly, 100% of isoniazid resistant strains were detected by this assay. Out of 17 resistant strains, 16 had mutation bands for katG distinguished high resistance to isoniazid. The assay could clearly detect rifampicin resistance among 66.7% of MDR isolates that showed mutation band rpoB MUT3 while 33.3% of them were considered as unknown. One mono-resistant rifampicin isolate did not show rifampicin mutation bands by Genotype MTBDRplus assay, but it showed an unexpected mutation in Codon 531 of rpoB by DNA sequence analysis. Rifampicin resistance in this strain could be associated with a mutation in codon 531 of rpoB (based on molecular sequencing), and Genotype MTBDRplus assay could not detect the associated mutation. If the results of Genotype MTBDRplus assay and sequencing were combined, this strain shows hetero-resistance pattern. Gene sequencing of eight selected isolates, previously tested by Genotype MTBDRplus assay, could detect resistance mutations mainly in codon 315 (katG gene), position -15 in inhA promotes gene for isoniazid resistance and codon 531 (rpoB gene) for rifampicin resistance. Genotyping techniques allow distinguishing between recurrent cases of reinfection or reactivation and supports epidemiological studies.

Keywords: M. tuberculosis, rpoB, KatG, inhA, genotype MTBDRplus

Procedia PDF Downloads 166
1328 Pharmacogenetic Analysis of Inter-Ethnic Variability in the Uptake Transporter SLCO1B1 Gene in Colombian, Mozambican, and Portuguese Populations

Authors: Mulata Haile Nega, Derebew Fikadu Berhe, Vera Ribeiro Marques

Abstract:

There is no epidemiologic data on this gene polymorphism in several countries. Therefore, this study aimed to assess the genotype and allele frequencies of the gene variant in three countries. This study involved healthy individuals from Colombia, Mozambique, and Portugal. Genomic DNA was isolated from blood samples using the Qiamp DNA Extraction Kit (Qiagen). The isolated DNA was genotyped using Polymerase Chain Reaction (PCR) - Restriction Fragment Length Polymorphism. Microstat and GraphPad quick cal software were used for the Chi-square test and evaluation of Hardy-Weinberg equilibrium, respectively. A total of 181 individuals’ blood sample was analyzed. Overall, TT (74.0%) genotype was the highest, and CC (7.8%) was the lowest. Country wise genotypic frequencies were Colombia 47(70.2%) TT, 12(17.9%) TC and 8(11.9%) CC; Mozambique 47(88.7%) TT, 5(9.4%) TC, and 1(1.9%) CC; and Portugal 40(65.6%) TT, 16(26.2%) TC, and 5(8.2%) CC. The reference (T) allele was highest among Mozambicans (93.4%) compared to Colombians (79.1%) and Portuguese (78.7%). Mozambicans showed statistically significant genotypic and allelic frequency differences compared to Colombians (p<0.01) and Portuguese (p <0.01). Overall and country-wise, the CC genotype was less frequent and relatively high for Colombians and Portuguese populations. This finding may imply statins risk-benefit variability associated with CC genotype among these populations that needs further understanding.

Keywords: c.521T>C, polymorphism, SLCO1B1, SNP, statins

Procedia PDF Downloads 134
1327 Differences in Cognitive Functioning over the Course of Chemotherapy in Patients Suffering from Multiple Myeloma and the Possibility to Predict Their Cognitive State on the Basis of Biological Factors

Authors: Magdalena Bury-Kaminska, Aneta Szudy-Szczyrek, Aleksandra Nowaczynska, Olga Jankowska-Lecka, Marek Hus, Klaudia Kot

Abstract:

Introduction: The aim of the research was to determine the changes in cognitive functioning in patients with plasma cell myeloma by comparing patients’ state before the treatment and during chemotherapy as well as to determine the biological factors that can be used to predict patients’ cognitive state. Methods: The patients underwent the research procedure twice: before chemotherapy and after 4-6 treatment cycles. A psychological test and measurement of the following biological variables were carried out: TNF-α (tumor necrosis factor), IL-6 (interleukin 6), IL-10 (interleukin 10), BDNF (brain-derived neurotrophic factor). The following research methods were implemented: the Montreal Cognitive Assessment (MoCA), Battery of Tests for Assessing Cognitive Functions PU1, experimental and clinical trials based on the Choynowski’s Memory Scale, Stroop Color-Word Interference Test (SCWT), depression measurement questionnaire. Results: The analysis of the research showed better cognitive functions of patients during chemotherapy in comparison to the phase before it. Moreover, neurotrophin BDNF allows to predict the level of selected cognitive functions (semantic fluency and execution control) already at the diagnosis stage. After 4-6 cycles, it is also possible to draw conclusions concerning the extent of working memory based on the level of BDNF. Cytokine TNF-α allows us to predict the level of letter fluency during anti-cancer treatment. Conclusions: It is possible to presume that BDNF has a protective influence on patients’ cognitive functions and working memory and that cytokine TNF-α co-occurs with a diminished execution control and better material grouping in terms of phonological fluency. Acknowledgment: This work was funded by the National Science Center in Poland [grant no. 2017/27/N/HS6/02057.

Keywords: chemobrain, cognitive impairment, non−central nervous system cancers, hematologic diseases

Procedia PDF Downloads 152
1326 Genetic Diversity of Wild Population of Heterobranchus Spp. Based on Mitochondria DNA Cytochrome C Oxidase Subunit I Gene Analysis

Authors: M. Y. Abubakar, Ipinjolu J. K., Yuzine B. Esa, Magawata I., Hassan W. A., Turaki A. A.

Abstract:

Catfish (Heterobranchus spp.) is a major freshwater fish that are widely distributed in Nigeria waters and are gaining rapid aquaculture expansion. However, indiscriminate artificial crossbreeding of the species with others poses a threat to their biodiversity. There is a paucity of information about the genetic variability, hence this insight on the genetic variability is badly needed, not only for the species conservation but for aquaculture expansion. In this study, we tested the level of Genetic diversity, population differentiation and phylogenetic relationship analysis on 35 individuals of two populations of Heterobranchus bidorsalis and 29 individuals of three populations of Heterobranchus longifilis using the mitochondrial cytochrome c oxidase subunit I (mtDNA COI) gene sequence. Nucleotide sequences of 650 bp fragment of the COI gene of the two species were compared. In the whole 4 and 5 haplotypes were distinguished in the populations of H. bidorsalis & H. longifilis with accession numbers (MG334168 - MG334171 & MG334172 to MG334176) respectively. Haplotypes diversity indices revealed a range of 0.59 ± 0.08 to 0.57 ± 0.09 in H. bidorsalis and 0.000 to 0.001051 ± 0.000945 in H. longifilis population, respectively. Analysis of molecular variance (AMOVA) revealed no significant variation among H. bidorsalis population of the Niger & Benue Rivers, detected significant genetic variation was between the Rivers of Niger, Kaduna and Benue population of H. longifilis. Two main clades were recovered, showing a clear separation between H. bidorsalis and H. longifilis in the phylogenetic tree. The mtDNA COI genes studied revealed high gene flow between populations with no distinct genetic differentiation between the populations as measured by the fixation index (FST) statistic. However, a proportion of population-specific haplotypes was observed in the two species studied, suggesting a substantial degree of genetic distinctiveness for each of the population investigated. These findings present the description of the species character and accessions of the fish’s genetic resources, through gene sequence submitted in Genetic database. The data will help to protect their valuable wild resource and contribute to their recovery and selective breeding in Nigeria.

Keywords: AMOVA, genetic diversity, Heterobranchus spp., mtDNA COI, phylogenetic tree

Procedia PDF Downloads 139
1325 Hsa-miR-192-5p, and Hsa-miR-129-5p Prominent Biomarkers in Regulation Glioblastoma Cancer Stem Cells Genes Microenvironment

Authors: Rasha Ahmadi

Abstract:

Glioblastoma is one of the most frequent brain malignancies, having a high mortality rate and limited survival in individuals with this malignancy. Despite different treatments and surgery, recurrence of glioblastoma cancer stem cells may arise as a subsequent tumor. For this reason, it is crucial to research the markers associated with glioblastoma stem cells and specifically their microenvironment. In this study, using bioinformatics analysis, we analyzed and nominated genes in the microenvironment pathways of glioblastoma stem cells. In this study, an appropriate database was selected for analysis by referring to the GEO database. This dataset comprised gene expression patterns in stem cells derived from glioblastoma patients. Gene clusters were divided as high and low expression. Enrichment databases such as Enrichr, STRING, and GEPIA were utilized to analyze the data appropriately. Finally, we extracted the potential genes 2700 high-expression and 1100 low-expression genes are implicated in the metabolic pathways of glioblastoma cancer progression. Cellular senescence, MAPK, TNF, hypoxia, zimosterol biosynthesis, and phosphatidylinositol metabolism pathways were substantially expressed and the metabolic pathways were downregulated. After assessing the association between protein networks, MSMP, SOX2, FGD4 ,and CNTNAP3 genes with high expression and DMKN and SBSN genes with low were selected. All of these genes were observed in the survival curve, with a survival of fewer than 10 percent over around 15 months. hsa-mir-192-5p, hsa-mir-129-5p, hsa-mir-215-5p, hsa-mir-335-5p, and hsa-mir-340-5p played key function in glioblastoma cancer stem cells microenviroments. We introduced critical genes through integrated and regular bioinformatics studies by assessing the amount of gene expression profile data that can play an important role in targeting genes involved in the energy and microenvironment of glioblastoma cancer stem cells. Have. This study indicated that hsa-mir-192-5p, and hsa-mir-129-5p are appropriate candidates for this.

Keywords: Glioblastoma, Cancer Stem Cells, Biomarker Discovery, Gene Expression Profiles, Bioinformatics Analysis, Tumor Microenvironment

Procedia PDF Downloads 144
1324 Application of ATP7B Gene Mutation Analysis in Prenatal Diagnosis of Wilson’s Disease

Authors: Huong M. T. Nguyen, Hoa A. P. Nguyen, Chi V. Phan, Mai P. T. Nguyen, Ngoc D. Ngo, Van T. Ta, Hai T. Le

Abstract:

Wilson’s disease is an autosomal recessive disorder of copper metabolism, which is caused by mutation in copper- transporting P-type ATPase (ATP7B). The mechanism of this disease is a failure of hepatic excretion of copper to the bile, and it leads to copper deposits in the liver and other organs. Most clinical symptoms of Wilson’s disease can present as liver disease and/or neurologic disease. Objective: The goal of the study is prenatal diagnosis for pregnant women at high risk of Wilson’s disease in Northern Vietnam. Material and method: Three probands with clinically diagnosed liver disease were detected in the mutations of 21 exons and exon-intron boundaries of the ATP7B gene by direct Sanger-sequencing. Prenatal diagnoses were performed by amniotic fluid sampling from pregnant women in the 16th-18th weeks of pregnancy after the genotypes of parents with the probands were identified. Result: A total of three different mutations of the probands, including of S105*, P1052L, P1273G, were detected. Among three fetuses which underwent prenatal genetic testing, one fetus was homozygote; two fetuses were carriers. Conclusion: Genetic testing provided a useful method for prenatal diagnosis, and is a basis for genetic counseling.

Keywords: ATP7B gene, genetic testing, prenatal diagnosis, pedigree, Wilson disease

Procedia PDF Downloads 455
1323 Angiotensin Converting Enzyme Gene Polymorphism Studies: A Case-Control Study

Authors: Salina Y. Saddick

Abstract:

Mild gestational hyperglycemia (MGH) is a very common complication of pregnancy that is characterized by intolerance to glucose. The association of angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism to MGH has been previously reported. In this study, we evaluated the association between ACE polymorphism and the risk of MGH in a Saudi population. We conducted a case-control study in a population of 100 MGH patients and 100 control subjects. ACE gene polymorphism was analyzed by the novel approach of tetraprimer amplification refractory mutation system (ARMS)-polymerase chain reaction (PCR). The frequency of ACE polymorphism was not associated with either alleles or genotypes in MGH patients. Glucose concentration was found to be significantly associated with the MGH group. Our study suggests that ACE genotypes were not associated with ACE polymorphism in a Saudi population.

Keywords: MGH, ACE, insertion polymorphism, deletion polymorphism

Procedia PDF Downloads 319
1322 Pioglitazone Ameliorates Methotrexate-Induced Renal Endothelial Dysfunction via Amending Detrimental Changes in Antioxidant Profile, Systemic Cytokines and Apoptotic Factors

Authors: Sahar M. El-Gowilly, Mai M. Helmy, Hanan M. El-Gowelli

Abstract:

Methotrexate (MTX) is widely used in treatment of cancers and autoimmune diseases. However, nephrotoxicity is one of the most important side effects of MTX. The peroxisome proliferator-activated receptor gamma agonist, pioglitazone (PIO), is known to exert anti-inflammatory and reno-protective effects in various kidney injuries. The purpose of this study was to investigate the potential involvement of endothelial damage in MTX-induced renal injury and to elaborate the possible protective effect of PIO against MTX-induced nephropathy. Compared with saline-treated rats, treatment with MTX (7 mg/kg for 3 day) caused significant elevations in serum levels of urea and creatinine, increased renal nitrate/nitrite level and impaired renovascular responsiveness of isolated perfused kidney to endothelium-dependent vasodilations induced by acetylcholine (0.01-2.43 nmol) and isoprenaline (1µmol). These effects were abolished by concurrent treatment with PIO (2.5 mg/kg, for 5 days starting two days before MTX). Alternatively, MTX treatment did not affect endothelium-independent renovascular relaxation induced by sodium nitroprusside (1-30 μmole). The possibility that alterations in renal antioxidants, circulating cytokine and apoptotic factor (Fas) levels contributed to MTX-PIO interaction was assessed. PIO treatment abrogated renal oxidative stress (decreased reduced glutathione and catalase activity and increased malondialdehyde), elevated serum cytokine (interleukin-6, interleukin-10, tumor necrosis factor-alpha and transforming growth factor-beta1) and Fas induced by MTX. Histologically, MTX caused defused tubular cells swelling and vacuolization associated with endothelial damage in renal arterioles. These effects disappeared upon co-treated with PIO. Collectively, PIO abolished MTX-induced endothelium dysfunction and nephrotoxicity via ameliorating oxidative stress and rectifying cytokines and Fas abnormalities caused by MTX.

Keywords: methotrexate, pioglitazone, endothelium, kidney

Procedia PDF Downloads 312
1321 Genomics of Aquatic Adaptation

Authors: Agostinho Antunes

Abstract:

The completion of the human genome sequencing in 2003 opened a new perspective into the importance of whole genome sequencing projects, and currently multiple species are having their genomes completed sequenced, from simple organisms, such as bacteria, to more complex taxa, such as mammals. This voluminous sequencing data generated across multiple organisms provides also the framework to better understand the genetic makeup of such species and related ones, allowing to explore the genetic changes underlining the evolution of diverse phenotypic traits. Here, recent results from our group retrieved from comparative evolutionary genomic analyses of selected marine animal species will be considered to exemplify how gene novelty and gene enhancement by positive selection might have been determinant in the success of adaptive radiations into diverse habitats and lifestyles.

Keywords: comparative genomics, adaptive evolution, bioinformatics, phylogenetics, genome mining

Procedia PDF Downloads 533
1320 Pioglitazone Ameliorates Methotrexate-Induced Renal Endothelial Dysfunction via Amending Detrimental Changes in Antioxidant Profile, Systemic Cytokines and Fas Production

Authors: Sahar M. El-Gowilly, Mai M. Helmy, Hanan M. El-Gowelli

Abstract:

Methotrexate (MTX) is widely used in treatment of cancers and autoimmune diseases. However, nephrotoxicity is one of its most important side effects. The peroxisome proliferator-activated receptor gamma agonist, pioglitazone, is known to exert antiinflammatory and reno-protective effects in various kidney injuries. The purpose of this study was to investigate the potential involvement of endothelial damage in MTX-induced renal injury and to elaborate the possible protective effect of pioglitazone against MTX-induced endothelial impairment. Compared with saline-treated rats, treatment with MTX (7 mg/kg for 3 day) caused significant elevations in serum levels of urea and creatinine, increased renal nitrate/nitrite level and impaired renovascular responsiveness of isolated perfused kidney to endothelium-dependent vasodilations induced by acetylcholine (0.01-2.43 nmol) and isoprenaline (1µmol). These effects were abolished by concurrent treatment with pioglitazone (2.5 mg/kg, for 5 days starting two days before MTX). Alternatively, MTX treatment did not affect endothelium-independent renovascular relaxation induced by sodium nitroprusside (0.001-10 μmole). The possibility that alterations in renal antioxidants, circulating cytokine and apoptotic factor (Fas) levels contributed to MTX-pioglitazone interaction was assessed. Pioglitazone treatment abrogated renal oxidative stress (decreased reduced glutathione and catalase activity and increased malondialdehyde), elevated serum cytokine (interleukin-6, interleukin-10, tumor necrosis factor-alpha and transforming growth factor-beta1) and Fas induced by MTX. Histologically, MTX caused defused tubular cells swelling and vacuolization associated with endothelial damage in renal arterioles. These effects disappeared upon co-treated with pioglitazone. Collectively, pioglitazone abolished MTX-induced endothelium dysfunction and nephrotoxicity via ameliorating oxidative stress and rectifying cytokines and Fas abnormalities caused by MTX.

Keywords: methotrexate, pioglitazone, endothelium, kidney

Procedia PDF Downloads 499
1319 MMP-2 Gene Polymorphism and Its Influence on Serum MMP-2 Levels in Pre-Eclampsia in Indian Population

Authors: Ankush Kalra, Mirza Masroor, Usha Manaktala, B. C. Koner, T. K. Mishra

Abstract:

Introduction: Pre-eclampsia affects 3-5% of pregnancies worldwide and increases maternal-fetal morbidity and mortality. Reduced placental perfusion induces the release of biomolecules by the placenta into maternal circulation causing endothelial dysfunction. Zinc dependent matrix metalloproteinase-2 (MMP-2) may be up-regulated and interact with circulating factors of oxidative stress and inflammation to produce endothelial dysfunction in pre-eclampsia. Aim: To study the functional genetic polymorphism of MMP-2 gene (g-1306 C>T) in pre-eclampsia and its effect on serum MMP-2 levels in these patients. Method: Hundred pre-eclampsia patients and hundred age and gestation period matched healthy pregnant women with their consent were recruited in the study. Serum MMP-2 levels in all subjects were estimated using standard ELISA kits. MMP-2 gene (g.- 1306 C>T) SNPs were genotyped using whole blood by ASO-PCR. Result: The pre-eclampsia patients had higher serum levels of MMP-2 compared to the healthy pregnant (p < 0.05). Also the MMP-2 genotype was associated with significant alteration in the serum MMP-2 concentration in these patients (p < 0.05). Conclusion: This study results suggest an association of MMP-2 genetic polymorphism and serum levels of MMP-2 to the path physiology of hypertensive disorder of pregnancy.

Keywords: allele specific oligonucleotide polymerase chain reaction (ASO-PCR), enzyme linked immunosorbent assay (ELISA), matrix metalloproteinase-2 (MMP-2), pre-eclampsia

Procedia PDF Downloads 329
1318 TARF: Web Toolkit for Annotating RNA-Related Genomic Features

Authors: Jialin Ma, Jia Meng

Abstract:

Genomic features, the genome-based coordinates, are commonly used for the representation of biological features such as genes, RNA transcripts and transcription factor binding sites. For the analysis of RNA-related genomic features, such as RNA modification sites, a common task is to correlate these features with transcript components (5'UTR, CDS, 3'UTR) to explore their distribution characteristics in terms of transcriptomic coordinates, e.g., to examine whether a specific type of biological feature is enriched near transcription start sites. Existing approaches for performing these tasks involve the manipulation of a gene database, conversion from genome-based coordinate to transcript-based coordinate, and visualization methods that are capable of showing RNA transcript components and distribution of the features. These steps are complicated and time consuming, and this is especially true for researchers who are not familiar with relevant tools. To overcome this obstacle, we develop a dedicated web app TARF, which represents web toolkit for annotating RNA-related genomic features. TARF web tool intends to provide a web-based way to easily annotate and visualize RNA-related genomic features. Once a user has uploaded the features with BED format and specified a built-in transcript database or uploaded a customized gene database with GTF format, the tool could fulfill its three main functions. First, it adds annotation on gene and RNA transcript components. For every features provided by the user, the overlapping with RNA transcript components are identified, and the information is combined in one table which is available for copy and download. Summary statistics about ambiguous belongings are also carried out. Second, the tool provides a convenient visualization method of the features on single gene/transcript level. For the selected gene, the tool shows the features with gene model on genome-based view, and also maps the features to transcript-based coordinate and show the distribution against one single spliced RNA transcript. Third, a global transcriptomic view of the genomic features is generated utilizing the Guitar R/Bioconductor package. The distribution of features on RNA transcripts are normalized with respect to RNA transcript landmarks and the enrichment of the features on different RNA transcript components is demonstrated. We tested the newly developed TARF toolkit with 3 different types of genomics features related to chromatin H3K4me3, RNA N6-methyladenosine (m6A) and RNA 5-methylcytosine (m5C), which are obtained from ChIP-Seq, MeRIP-Seq and RNA BS-Seq data, respectively. TARF successfully revealed their respective distribution characteristics, i.e. H3K4me3, m6A and m5C are enriched near transcription starting sites, stop codons and 5’UTRs, respectively. Overall, TARF is a useful web toolkit for annotation and visualization of RNA-related genomic features, and should help simplify the analysis of various RNA-related genomic features, especially those related RNA modifications.

Keywords: RNA-related genomic features, annotation, visualization, web server

Procedia PDF Downloads 208
1317 Bioinformatics Approach to Support Genetic Research in Autism in Mali

Authors: M. Kouyate, M. Sangare, S. Samake, S. Keita, H. G. Kim, D. H. Geschwind

Abstract:

Background & Objectives: Human genetic studies can be expensive, even unaffordable, in developing countries, partly due to the sequencing costs. Our aim is to pilot the use of bioinformatics tools to guide scientifically valid, locally relevant, and economically sound autism genetic research in Mali. Methods: The following databases, NCBI, HGMD, and LSDB, were used to identify hot point mutations. Phenotype, transmission pattern, theoretical protein expression in the brain, the impact of the mutation on the 3D structure of the protein) were used to prioritize selected autism genes. We used the protein database, Modeller, and clustal W. Results: We found Mef2c (Gly27Ala/Leu38Gln), Pten (Thr131IIle), Prodh (Leu289Met), Nme1 (Ser120Gly), and Dhcr7 (Pro227Thr/Glu224Lys). These mutations were associated with endonucleases BseRI, NspI, PfrJS2IV, BspGI, BsaBI, and SpoDI, respectively. Gly27Ala/Leu38Gln mutations impacted the 3D structure of the Mef2c protein. Mef2c protein sequences across species showed a high percentage of similarity with a highly conserved MADS domain. Discussion: Mef2c, Pten, Prodh, Nme1, and Dhcr 7 gene mutation frequencies in the Malian population will be very informative. PCR coupled with restriction enzyme digestion can be used to screen the targeted gene mutations. Sanger sequencing will be used for confirmation only. This will cut down considerably the sequencing cost for gene-to-gene mutation screening. The knowledge of the 3D structure and potential impact of the mutations on Mef2c protein informed the protein family and altered function (ex. Leu38Gln). Conclusion & Future Work: Bio-informatics will positively impact autism research in Mali. Our approach can be applied to another neuropsychiatric disorder.

Keywords: bioinformatics, endonucleases, autism, Sanger sequencing, point mutations

Procedia PDF Downloads 83
1316 Gene Prediction in DNA Sequences Using an Ensemble Algorithm Based on Goertzel Algorithm and Anti-Notch Filter

Authors: Hamidreza Saberkari, Mousa Shamsi, Hossein Ahmadi, Saeed Vaali, , MohammadHossein Sedaaghi

Abstract:

In the recent years, using signal processing tools for accurate identification of the protein coding regions has become a challenge in bioinformatics. Most of the genomic signal processing methods is based on the period-3 characteristics of the nucleoids in DNA strands and consequently, spectral analysis is applied to the numerical sequences of DNA to find the location of periodical components. In this paper, a novel ensemble algorithm for gene selection in DNA sequences has been presented which is based on the combination of Goertzel algorithm and anti-notch filter (ANF). The proposed algorithm has many advantages when compared to other conventional methods. Firstly, it leads to identify the coding protein regions more accurate due to using the Goertzel algorithm which is tuned at the desired frequency. Secondly, faster detection time is achieved. The proposed algorithm is applied on several genes, including genes available in databases BG570 and HMR195 and their results are compared to other methods based on the nucleotide level evaluation criteria. Implementation results show the excellent performance of the proposed algorithm in identifying protein coding regions, specifically in identification of small-scale gene areas.

Keywords: protein coding regions, period-3, anti-notch filter, Goertzel algorithm

Procedia PDF Downloads 387
1315 The Difference of Serum Tnf-α Levels between Patients Schizophrenic Male with Smoking and Healthy Control

Authors: Rona Hanani Simamora, Bahagia Loebis, M. Surya Husada

Abstract:

Background: The exact cause of schizophrenia is not known, although several etiology theories have been proposed for the disease, including immune dysfunction or autoimmune mechanisms. Cytokines including Tnf-α has an important role in the pathophysiology of schizophrenia and the effects of pharmacological treatment with antipsychotics. Nicotine is widespread effects on the brain, immune system and cytokine levels. Smoking among schizophrenic patients could play a role in the altered cytokine profiles of schizophrenia such as Tnf-α. Aims: To determine differences of serum Tnf-α levels between schizophrenic patients with smoking in male and healthy control. Methods: This study was a comparative analytic study, divided into two groups: 1) group of male schizophrenic patients with smoking (n1=30) with inclusion criteria were patients who have been diagnosed schizophrenic based PPDGJ-III, 20-60 years old, male, smoking, chronic schizophrenic patients in the stable phase and willing to participate this study. Exclusion criteria were having other mental disorders and comorbidity with other medical illnesses. 2) healthy control group (n2=30) with inclusion criteria were 20-60 years old, male, smoking, willing to participate this study. Exclusion criteria were having mental disorder, a family history of psychiatric disorders, the other medical illnesses, a history of alcohol and other substances abuse (except caffeine and nicotine). Serum Tnf-α were analyzed using the Quantikine HS Human Tnf –α Immunoassay. Results: Serum Tnf-α level measure in patient schizophrenia male with smoking and compared with the healthy control subjects. Tnf-α levels were significantly higher in patients schizophrenic male with smoking (25,79±27,96) to healthy control subjects (2,74±2,19), by using the Mann Whitney U test showed a statistically significant difference was observed for serum Tnf-α level (p < 0,001). Conclusions: Schizophrenia is a highly heterogeneous disorder, and this study shows an increase Tnf-α as pro-inflammation cytokines in schizophrenics. These results suggest an immune abnormalities may be involved in the etiology and pathophysiology of schizophrenia.

Keywords: male, schizophrenic, smoking, Tnf Alpha

Procedia PDF Downloads 249
1314 Biosafety Study of Genetically Modified CEMB Sugarcane on Animals for Glyphosate Tolerance

Authors: Aminah Salim, Idrees Ahmed Nasir, Abdul Qayyum Rao, Muhammad Ali, Muhammad Sohail Anjum, Ayesha Hameed, Bushra Tabassum, Anwar Khan, Arfan Ali, Mariyam Zameer, Tayyab Husnain

Abstract:

Risk assessment of transgenic herbicide tolerant sugarcane having CEMB codon optimized cp4EPSPS gene was done in present study. Fifteen days old chicks taken from K&Ns Company were randomly assorted into four groups with eight chicks in each group namely control chicken group fed with commercial diet, non-transgenic group fed with non-experimental sugarcane and transgenic group fed with transgenic sugarcane with minimum and maximum level. Body weights, biochemical analysis for Urea, alkaline phosphatase, alanine transferase, aspartate transferase, creatinine and bilirubin determination and histological examination of chicks fed with four types of feed was taken at fifteen days interval and no significant difference was observed in body weight biochemical and histological studies of all four groups. Protein isolated from the serum sample was analyzed through dipstick and SDS-PAGE, showing the absence of transgene protein in the serum sample of control and experimental groups. Moreover the amplification of cp4EPSPS gene with gene specific primers of DNA isolated from chicks blood and also from commercial diet was done to determine the presence and mobility of any nucleotide fragment of the transgene in/from feed and no amplification was obtained in feed as well as in blood extracted DNA of any group. Also no mRNA expression of cp4EPSPS gene was obtained in any tissue of four groups of chicks. From the results it is clear that there is no deleterious or harmful effect of the CEMB codon optimized transgenic cp4EPSPS sugarcane on the chicks health.

Keywords: chicks, cp4EPSPS, glyphosate, sugarcane

Procedia PDF Downloads 372
1313 Genetic Determinants of Ovarian Response to Gonadotropin Stimulation in Women Undergoing Assisted Reproductive Treatment

Authors: D. Tohlob, E. Abo Hashem, N. Ghareeb, M. Ghanem, R. Elfarahaty, S. A. Roberts, P. Pemberton, L. Mohiyiddeen, W. G. Newman

Abstract:

Gonadotropin stimulation is used in females undergoing assisted reproductive treatment for ovulation induction, but ovarian response is variable and unpredictable in these women. More effective protocols and individualization of treatment are needed to increase the success rate of IVF/ICSI cycles. We genotyped seven variants reported in previous studies to be associated with ovarian response (number of ova retrieved and total gonadotropin dose) in women undergoing IVF treatment including FSHR variants Asn 680 Ser (c.2039 A > G), Thr 307 Ala (c. 919 > A), -29 G > A, HRG c.610 C > T gene, BMP15 -9 C > G, AMH Ile 49 Ser (c.146 G > T), and AMHR -489A˃G in 118 Egyptian females attending Mansoura Integrated Fertility Center in Egypt, these females were undergoing their first cycle of controlled ovarian hyper stimulation for IVF/ICSI treatment. They were analyzed by TaqMan allelic discrimination assay in Manchester Center of Genomic Medicine. We found no evidence of any significant difference (p value < 0.05) in the number of eggs retrieved or the gonadotropin dose used between individuals in all genotypes except for HRG c.610 C > T gene polymorphism where regression analysis gives a p value of 0.04 with a fewer eggs number in TT genotyped females. These results indicate that these variants do not provide sufficient clinically relevant data to individualize the treatment protocols.

Keywords: controlled ovarian hyperstimulation, gene variants, ovarian response, assisted reproduction

Procedia PDF Downloads 319
1312 Genetic Characteristics of Chicken Anemia Virus Circulating in Northern Vietnam

Authors: Hieu Van Dong, Giang Thi Huong Tran, Giap Van Nguyen, Tung Duy Dao, Vuong Nghia Bui, Le Thi My Huynh, Yohei Takeda, Haruko Ogawa, Kunitoshi Imai

Abstract:

Chicken anemia virus (CAV) has a ubiquitous and worldwide distribution in chicken production. Our group previously reported high seroprevalence of CAV in chickens in northern Vietnam. In the present study, 330 tissue samples collected from commercial and breeder chicken farms in eleven provinces in northern Vietnam were tested for the CAV infection. We found that 157 out of 330 (47.58%) chickens were positive with CAV genes by real-time PCR method. Nine CAV strains obtained from the different location and time were forwarded to the full-length sequence of CAV VP1 gene. Phylogenetic analysis of the Vietnamese CAV vp1 gene indicated that the CAVs circulating in northern Vietnam were divided into three distinct genotypes, II, III, and V, but not clustered with the vaccine strains. Among the three genotypes, genotype III was the major one widely spread in Vietnam, and that included three sub-genotypes, IIIa, IIIb, and IIIc. The Vietnamese CAV strains were closely related to the Chinese, Taiwanese, and USA strains. All the CAV isolates had glutamine at amino acid position 394 in the VP1 gene, suggesting that they might be highly pathogenic strains. One strain was defined to be genotype V, which had not been reported for Vietnamese CAVs. Additional studies are required to further evaluate the pathogenicity of CAV strains circulating in Vietnam.

Keywords: chicken anemia virus, genotype, genetic characteristics, Vietnam

Procedia PDF Downloads 167