Search results for: cell recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5284

Search results for: cell recognition

4984 Parametric Analysis of Syn-gas Fueled SOFC with Internal Reforming

Authors: Sanjay Tushar Choudhary

Abstract:

This paper focuses on the thermodynamic analysis of Solid Oxide Fuel Cell (SOFC). In the present work the SOFC has been modeled to work with internal reforming of fuel which takes place at high temperature and direct energy conversion from chemical energy to electrical energy takes place. The fuel-cell effluent is a high-temperature steam which can be used for co-generation purposes. Syn-gas has been used here as fuel which is essentially produced by steam reforming of methane in the internal reformer of the SOFC. A thermodynamic model of SOFC has been developed for planar cell configuration to evaluate various losses in the energy conversion process within the fuel cell. Cycle parameters like fuel utilization ratio and the air-recirculation ratio have been varied to evaluate the thermodynamic performance of the fuel cell. Output performance parameters like terminal voltage, cell-efficiency and power output have been evaluated for various values of current densities. It has been observed that a combination of a lower value of air-circulation ratio and higher values of fuel utilization efficiency gives a better overall thermodynamic performance.

Keywords: current density, SOFC, suel utilization factor, recirculation ratio

Procedia PDF Downloads 508
4983 Synergistic Effects of the Substrate-Ligand Interaction in Metal-Organic Complexes on the De-electronation Kinetics of a Vitamin C Fuel Cell

Authors: Muskan Parmar, Musthafa Ottakam Thotiyl

Abstract:

The rising need for portable energy sources has led to advancements in direct liquid fuel cells (DLFCs) using various fuels like alcohol, ammonia, hydrazine, and vitamin C. Traditional precious metal catalysts improve reaction speeds but are expensive and prone to poisoning. Our study reveals how non-precious metal organometallic complexes, combined with smartly designed ligands, can significantly boost performance. The key is a unique interaction between the substrate (fuel) and the ligand, which creates a "dragging" effect that enhances reaction rates. By using this approach with a ferricyanide/ferrocyanide half-cell reaction, we developed a vitamin C fuel cell without precious metals. This fuel cell achieves an open circuit voltage of ∼950 mV, a peak power density of ∼97 mW cm⁻², and a peak current density of ∼215 mA cm⁻². Impressively, its performance is about 1.7 times better than traditional precious metal-based DLFCs. This highlights the potential of substrate ligand chemistry in the creation of sustainable DLFCs for efficient energy conversion.

Keywords: molecular electrocatalysts, vitamin C fuel cell, proton charge assembly, ferricyanide half-cell chemistry

Procedia PDF Downloads 21
4982 Satureja bachtiarica Bunge Induce Apoptosis via Mitochondrial Intrinsic Pathway and G1 Cell Cycle Arrest

Authors: Hamed Karimian, Noraziah Nordin, Mohamad Ibrahim Noordin, Syam Mohan, Mahboubeh Razavi, Najihah Mohd Hashim, Happipah Mohd Ali

Abstract:

Satureja bachtiarica Bunge is a perennial medicinal plant belonging to the Lamiaceae family and endemic species in Iran. Satureja bachtiarica Bunge with the local name of Marzeh koohi is edible vegetable use as flavoring agent, anti-bacterial and to relieve cough and indigestion. In this study, the anti-cancer effect of Satureja bachtiarica Bunge on the MDA-MB-231 cell line as an Breast cancer cell model has been analyzed for the first time. Satureja bachtiarica Bunge was extracted using different solvents in the order of increasing polarity. Cytotoxicity activity of hexane extract of Satureja bachtiarica Bunge (SBHE) was observed using MTT assay. Acridine orange/Propidium iodide staining was used to detect early apoptosis; Annexin-V-FITC assay was carried out to observe the detection of cell-surface Phosphatidylserine (PS), with Annexin-Vserving as a marker for apoptotic cells. Caspase 3/7, 8 and-9 assays showed significantly activation of caspase-9 where lead intrinsic mitochondrial pathway. Bcl-2/Bax expressions and cell cycle arrest were also investigated. SBHE had exhibited significantly higher cytotoxicity against MDA-MB-231 Cell line compare to other cell lines. A significant increase in chromatin condensation in the cell nucleus was observed by fluorescence analysis. Treatment of MDA-MB-231 cells with SBHE encouraged apoptosis, by down-regulating Bcl-2 and up-regulating Bax, which lead the activation of caspase 9. Moreover, SBHE treatment significantly arrested MDA-MB-231 cells in the G1 phase. Together, the results presented in this study demonstrated that SBHE inhibited the proliferation of MDA-MB-231 cells, leading cell cycle arrest and programmed cell death, which was confirmed to be through the mitochondrial pathway.

Keywords: Satureja bachtiarica Bunge, MDA-MB-231, apoptosis, annexin-V, cell cycle

Procedia PDF Downloads 337
4981 Recognition of Gene Names from Gene Pathway Figures Using Siamese Network

Authors: Muhammad Azam, Micheal Olaolu Arowolo, Fei He, Mihail Popescu, Dong Xu

Abstract:

The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than OCR results.

Keywords: biological pathway, image understanding, gene name recognition, object detection, Siamese network, VGG

Procedia PDF Downloads 291
4980 Modeling the Reliability of a Fuel Cell and the Influence of Mechanical Aspects on the Production of Electrical Energy

Authors: Raed Kouta

Abstract:

A fuel cell is a multi-physical system. Its electrical performance depends on chemical, electrochemical, fluid, and mechanical parameters. Many studies focus on physical and chemical aspects. Our study contributes to the evaluation of the influence of mechanical aspects on the performance of a fuel cell. This study is carried out as part of a reliability approach. Reliability modeling allows to consider the uncertainties of the incoming parameters and the probabilistic modeling of the outgoing parameters. The fuel cell studied is the one often used in land, sea, or air transport. This is the Low-Temperature Proton Exchange Membrane Fuel Cell (PEMFC). This battery can provide the required power level. One of the main scientific and technical challenges in mastering the design and production of a fuel cell is to know its behavior in its actual operating environment. The study proposes to highlight the influence on the production of electrical energy: Mechanical design and manufacturing parameters and their uncertainties (Young module, GDL porosity, permeability, etc.). The influence of the geometry of the bipolar plates is also considered. An experimental design is proposed with two types of materials as well as three geometric shapes for three joining pressures. Other experimental designs are also proposed for studying the influence of uncertainties of mechanical parameters on cell performance. - Mechanical (static, dynamic) and thermal (tightening - compression, vibrations (road rolling and tests on vibration-climatic bench, etc.) loads. This study is also carried out according to an experimental scheme on a fuel cell system for vibration loads recorded on a vehicle test track with three temperatures and three expected performance levels. The work will improve the coupling between mechanical, physical, and chemical phenomena.

Keywords: fuel cell, mechanic, reliability, uncertainties

Procedia PDF Downloads 188
4979 Metal Nanoparticles Caused Death of Metastatic MDA-MB-231 Cells

Authors: O. S. Adeyemi, C. G. Whiteley

Abstract:

The present study determined the toxic potential of metal nanoparticles in cell culture system. Silver and gold nanoparticles were synthesized and characterized following established "green" protocols. The synthesized nanoparticles, in varying concentrations ranging from 0.1–100 µM were evaluated for toxicity in metastatic MDA-MB-231 cells. The nanoparticles promoted a generation of reactive oxygen species and reduced cell viability to less than 50% in the demonstration of cellular toxicity. The nanoparticles; gold and the silver-gold mixture had IC50 values of 56.65 and 18.44 µM respectively. The IC50 concentration for silver nanoparticles could not be determined. Furthermore, the probe of the cell death using flow cytometry and confocal microscopy revealed the partial involvement of apoptosis as well as necrosis. Our results revealed cellular toxicity caused by the nanoparticles but the mechanism remains yet undefined.

Keywords: cell death, nanomedicine, nanotoxicology, toxicity

Procedia PDF Downloads 394
4978 Cell Surface Display of Xylanase on Escherichia coli by TibA Autotransporter

Authors: Yeng Min Yi, Rosli Md Illias, Salehhuddin Hamdan

Abstract:

Industrial biocatalysis is mainly based on the use of cell free or intracellular enzyme systems. However, the expensive cost and relatively lower operational stability of free enzymes limit practical use in industries. Cell surface display system can be used as a cost-efficient alternative to overcome the laborious purification and substrate transport limitation. In this research, TibA autotransporter from E. coli was used to display Aspergillus fumigatus xylanase (xyn). The amplified xyn was fused in between N-terminal signal peptide and C-terminal β-barrel of TibA. The cloned was transformed and expressed in E. coli BL21 (DE3). Outer membrane localization of TibA-xyn fusion protein was confirmed by SDS PAGE and western blot with expected size of 62.5 kDa. Functional display of xyn was examined by activity assay. Cell surface displayed xyn exhibited the highest activity at 37 °c, 0.3 mM IPTG. As a summary, TibA displaying system has the potential for further industrial applications. Moreover, this is the first report of the display of xylanase using TibA on the surface of E. coli.

Keywords: biocatalysis, cell surface display, Escherichia coli, TibA autotransporter

Procedia PDF Downloads 281
4977 Optimization of Heterojunction Solar Cell Using AMPS-1D

Authors: Benmoussa Dennai, H. Benslimane, A. Helmaoui

Abstract:

Photo voltaic conversion is the direct conversion of electromagnetic energy into electrical energy continuously. This electromagnetic energy is the most solar radiation. In this work we performed a computer modelling using AMPS 1D optimization of hetero-junction solar cells GaInP/GaAs configuration for p/ n. We studied the influence of the thickness the base layer in the cell offers on the open circuit voltage, the short circuit current and efficiency.

Keywords: optimization, photovoltaic cell, GaInP / GaAs AMPS-1D, hetetro-junction

Procedia PDF Downloads 417
4976 Fabrication of Hybrid Scaffolds Consisting of Cell-laden Electrospun Micro/Nanofibers and PCL Micro-structures for Tissue Regeneration

Authors: MyungGu Yeo, JongHan Ha, Gi-Hoon Yang, JaeYoon Lee, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim

Abstract:

Tissue engineering is a rapidly growing interdisciplinary research area that may provide options for treating damaged tissues and organs. As a promising technique for regenerating various tissues, this technology requires biomedical scaffolds, which serve as an artificial extracellular matrix (ECM) to support neotissue growth. Electrospun micro/nanofibers have been used widely in tissue engineering because of their high surface-area-to-volume ratio and structural similarity to extracellular matrix. However, low mechanical sustainability, low 3D shape-ability, and low cell infiltration have been major limitations to their use. In this work, we propose new hybrid scaffolds interlayered with cell-laden electrospun micro/nano fibers and poly(caprolactone) microstructures. Also, we applied various concentrations of alginate and electric field strengths to determine optimal conditions for the cell-electrospinning process. The combination of cell-laden bioink (2 ⅹ 10^5 osteoblast-like MG63 cells/mL, 2 wt% alginate, 2 wt% poly(ethylene oxide), and 0.7 wt% lecithin) and a 0.16 kV/mm electric field showed the highest cell viability and fiber formation in this process. Using these conditions and PCL microstructures, we achieved mechanically stable hybrid scaffolds. In addition, the cells embedded in the fibrous structure were viable and proliferated. We suggest that the cell-embedded hybrid scaffolds fabricated using the cell-electrospinning process may be useful for various soft- and hard-tissue regeneration applications.

Keywords: bioink, cell-laden scaffold, micro/nanofibers, poly(caprolactone)

Procedia PDF Downloads 380
4975 Classifications of Images for the Recognition of People’s Behaviors by SIFT and SVM

Authors: Henni Sid Ahmed, Belbachir Mohamed Faouzi, Jean Caelen

Abstract:

Behavior recognition has been studied for realizing drivers assisting system and automated navigation and is an important studied field in the intelligent Building. In this paper, a recognition method of behavior recognition separated from a real image was studied. Images were divided into several categories according to the actual weather, distance and angle of view etc. SIFT was firstly used to detect key points and describe them because the SIFT (Scale Invariant Feature Transform) features were invariant to image scale and rotation and were robust to changes in the viewpoint and illumination. My goal is to develop a robust and reliable system which is composed of two fixed cameras in every room of intelligent building which are connected to a computer for acquisition of video sequences, with a program using these video sequences as inputs, we use SIFT represented different images of video sequences, and SVM (support vector machine) Lights as a programming tool for classification of images in order to classify people’s behaviors in the intelligent building in order to give maximum comfort with optimized energy consumption.

Keywords: video analysis, people behavior, intelligent building, classification

Procedia PDF Downloads 378
4974 Chemical Bath Deposition Technique (CBD) of Cds Used in Closed Space Sublimation (CSS) of CdTe Solar Cell

Authors: Zafar Mahmood, Fahimullah Babar, Surriyia Naz, Hafiz Ur Rehman

Abstract:

Cadmium Sulphide (CdS) was deposited on a Tec 15 glass substrate with the help of CBD (chemical bath deposition process) and then cadmium telluride CdTe was deposited on CdS with the help of CSS (closed spaced sublimation technique) for the construction of a solar cell. The thicknesses of all the deposited materials were measured with the help of Elipsometry. The IV graphs were drawn in order to observe the current voltage output. The efficiency of the cell was graphed with the fill factor as well (graphs not given here).The efficiency came out to be approximately 16.5 % and the CIGS (copper- indium –gallium- selenide) maximum efficiency is 20 %.The efficiency of a solar cell can further be enhanced by adapting quality materials, good experimental devices and proper procedures. The grain size was analyzed with the help of scanning electron microscope using RBS (Rutherford backscattering spectroscopy).

Keywords: CBD, CdS, CdTe, CSS

Procedia PDF Downloads 364
4973 DSC2 Promotes the Proliferation, Metastasis and Drug Resistance of Lung Cancer by Activating the PI3K/AKT Pathway

Authors: Qi LI, Xu Lin, Nengming Lin

Abstract:

Objective: The aim of this study was to investigate the role of desmocollin 2 (DSC2) protein in the proliferation, migration and drug resistance of lung cancer cells. Method: CCK-8 assays and colony formation assays were used to evaluate the effect of dsc2 regulation on cancer cell viability and colony formation. Transwell assays and wound healing assays were also performed. Cell flow double staining was used to detect the apoptosis rate of cells with DSC2, which was added cisplatin. Western blot assay was used to detect cell cycle, PI3k/Akt and apoptosis-related proteins. Results: Our data showed that dsc2 is upregulated in clinical lung cancer tissues compared with pericarcinomatous tissues, and it is differentially expressed in lung cancer cell lines. The down-regulation of dsc2 in A549 and H358 lung cancer cells significantly suppressed the cell proliferation, metastasis, and motility. In contrast, the opposite effects were observed in overexpression of dsc2 both in H23 and PC9 cell lines. In addition to lung adenocarcinoma cell lines, we also examined its expression in lung squamous cell lines, such as H226. Western blotting showed that dsc2 could reduce the level of phosphorylated Akt (Ser 473) and p-mTOR. Thus, it is speculated that dsc2 up-regulation promotes proliferation and invasiveness through activation of the PI3K/AKT pathway. Also, knockdown of dsc2 in A549 and H226 could significantly decreased in the levels of cyclinB and wee1 protein. Additionally, flow cytometry showed that dsc2 knockdown combined with cisplatin could significantly enhance cell apoptosis rate. Conclusion: These data suggest that dsc2 promotes the proliferation and migration of lung cancer cells in vitro. Also, the results suggested that dsc2 could affect the cell cycle and apoptosis of lung cells. Furthermore, knockdown of dsc2 could sensitize cisplatin in both lung adenocarcinoma and lung squamous cell lines. Thus we suggested that dsc2 can be used as a therapeutic target for lung cancer.

Keywords: desmocollin 2, cisplatin, lung cancer, PI3K/AKT, lung squamous cell

Procedia PDF Downloads 76
4972 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera

Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin

Abstract:

We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.

Keywords: human action recognition, pose estimation, D-CNN, deep learning

Procedia PDF Downloads 146
4971 Modeling of Oxygen Supply Profiles in Stirred-Tank Aggregated Stem Cells Cultivation Process

Authors: Vytautas Galvanauskas, Vykantas Grincas, Rimvydas Simutis

Abstract:

This paper investigates a possible practical solution for reasonable oxygen supply during the pluripotent stem cells expansion processes, where the stem cells propagate as aggregates in stirred-suspension bioreactors. Low glucose and low oxygen concentrations are preferred for efficient proliferation of pluripotent stem cells. However, strong oxygen limitation, especially inside of cell aggregates, can lead to cell starvation and death. In this research, the oxygen concentration profile inside of stem cell aggregates in a stem cell expansion process was predicted using a modified oxygen diffusion model. This profile can be realized during the stem cells cultivation process by manipulating the oxygen concentration in inlet gas or inlet gas flow. The proposed approach is relatively simple and may be attractive for installation in a real pluripotent stem cell expansion processes.

Keywords: aggregated stem cells, dissolved oxygen profiles, modeling, stirred-tank, 3D expansion

Procedia PDF Downloads 305
4970 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect

Authors: Maha Jazouli

Abstract:

Suicide is one of the most important causes of death in the prison environment, both in Canada and internationally. Rates of attempts of suicide and self-harm have been on the rise in recent years, with hangings being the most frequent method resorted to. The objective of this article is to propose a method to automatically detect in real time suicidal behaviors. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Our proposed system gives us satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.

Keywords: suicide detection, Kinect azure, RGB-D camera, SVM, machine learning, gesture recognition

Procedia PDF Downloads 188
4969 “Octopub”: Geographical Sentiment Analysis Using Named Entity Recognition from Social Networks for Geo-Targeted Billboard Advertising

Authors: Oussama Hafferssas, Hiba Benyahia, Amina Madani, Nassima Zeriri

Abstract:

Although data nowadays has multiple forms; from text to images, and from audio to videos, yet text is still the most used one at a public level. At an academical and research level, and unlike other forms, text can be considered as the easiest form to process. Therefore, a brunch of Data Mining researches has been always under its shadow, called "Text Mining". Its concept is just like data mining’s, finding valuable patterns in data, from large collections and tremendous volumes of data, in this case: Text. Named entity recognition (NER) is one of Text Mining’s disciplines, it aims to extract and classify references such as proper names, locations, expressions of time and dates, organizations and more in a given text. Our approach "Octopub" does not aim to find new ways to improve named entity recognition process, rather than that it’s about finding a new, and yet smart way, to use NER in a way that we can extract sentiments of millions of people using Social Networks as a limitless information source, and Marketing for product promotion as the main domain of application.

Keywords: textmining, named entity recognition(NER), sentiment analysis, social media networks (SN, SMN), business intelligence(BI), marketing

Procedia PDF Downloads 589
4968 Fabrication of Silicon Solar Cells Using All Sputtering Process

Authors: Ching-Hua Li, Sheng-Hui Chen

Abstract:

Sputtering is a popular technique with many advantages for thin film deposition. To fabricate a hydrogenated silicon thin film using sputtering process for solar cell applications, the ion bombardment during sputtering will generate microstructures (voids and columnar structures) to form silicon dihydride bodings as defects. The properties of heterojunction silicon solar cells were studied by using boron grains and silicon-boron targets. Finally, an 11.7% efficiency of solar cell was achieved by using all sputtering process.

Keywords: solar cell, sputtering process, pvd, alloy target

Procedia PDF Downloads 580
4967 User-Friendly Task Creation Using a CAD Integrated Robotic System on a Real Workcell

Authors: Alireza Changizi, Arash Rezaei, Jamal Muhammad, Jyrki Latokartano, Minna Lanz

Abstract:

Offline programming (OLP) is a new method in robot programming which is used widely in the industry nowadays which is a simulation base method that can produce the robot codes for motion according to virtual world in the simulation software. In this project Delmia v5 is used as simulation software. First the work cell component was modelled by Catia v5 and all of them was imported to a process file in Delmia and placed roughly to form the virtual work cell. Then robot was added to the work cell from the Delmia library. Work cell was calibrated corresponding to real world work cell to have accurate code. Tool calibration is the first step of calibration scheme and then work cell equipment can be calibrated using 6 point calibration method. Finally generated code needs to be reformed to match related controller code instruction. At the last stage IO were set to accomplish robots cooperation and make their motion synchronized. The pros and cons also will be discussed to clarify the presented results show the feasibility of the method and its effect on production line efficiency. Finally the positive and negative points of the implementation will be discussed.

Keywords: robotic, automated, production, offline programming, CAD

Procedia PDF Downloads 387
4966 Characterization of a LiFeOP₄ Battery Cell with Mechanical Responses

Authors: Ki-Yong Oh, Eunji Kwak, Due Su Son, Siheon Jung

Abstract:

A pouch type of 10 Ah LiFePO₄ battery cell is characterized with two mechanical responses: swelling and bulk force. Both responses vary upon the state of charge significantly, whereas voltage shows flat responses, suggesting that mechanical responses can become a sensitive gauge to characterize microstructure transformation of a battery cell. The derivative of swelling s with respect to capacity Q, (ds/dQ) and the derivative of force F with respect to capacity Q, (dF/dQ) more clearly identify phase transitions of cathode and anode electrodes in the overall charge process than the derivative of voltage V with respect to capacity Q, (dV/dQ). Especially, the force versus swelling curves over the state of charge clearly elucidates three different stiffness over the state of charge oriented from phase transitions: the α-phase, the β-phase, and the metastable solid-solution phase. The observation from mechanical responses suggests that macro-scale mechanical responses of a battery cell are directly correlated to microscopic transformation of a battery cell.

Keywords: force response, LiFePO₄ battery, strain response, stress response, swelling response

Procedia PDF Downloads 170
4965 Numerical Study on Response of Polymer Electrolyte Fuel Cell (PEFCs) with Defects under Different Load Conditions

Authors: Muhammad Faizan Chinannai, Jaeseung Lee, Mohamed Hassan Gundu, Hyunchul Ju

Abstract:

Fuel cell is known to be an effective renewable energy resource which is commercializing in the present era. It is really important to know about the improvement in performance even when the system faces some defects. This study was carried out to analyze the performance of the Polymer electrolyte fuel cell (PEFCs) under different operating conditions such as current density, relative humidity and Pt loadings considering defects with load changes. The purpose of this study is to analyze the response of the fuel cell system with defects in Balance of Plants (BOPs) and catalyst layer (CL) degradation by maintaining the coolant flow rate as such to preserve the cell temperature at the required level. Multi-Scale Simulation of 3D two-phase PEFC model with coolant was carried out under different load conditions. For detailed analysis and performance comparison, extensive contours of temperature, current density, water content, and relative humidity are provided. The simulation results of the different cases are compared with the reference data. Hence the response of the fuel cell stack with defects in BOP and CL degradations can be analyzed by the temperature difference between the coolant outlet and membrane electrode assembly. The results showed that the Failure of the humidifier increases High-Frequency Resistance (HFR), air flow defects and CL degradation results in the non-uniformity of current density distribution and high cathode activation overpotential, respectively.

Keywords: PEM fuel cell, fuel cell modeling, performance analysis, BOP components, current density distribution, degradation

Procedia PDF Downloads 214
4964 Optimization of Heterojunction Solar Cell Using AMPS-1D

Authors: Benmoussa Dennai, H. Benslimane, A. Helmaoui

Abstract:

Photovoltaic conversion is the direct conversion of electromagnetic energy into electrical energy continuously. This electromagnetic energy is the most solar radiation. In this work we performed a computer modelling using AMPS 1D optimization of hetero-junction solar cells GaInP / GaAs configuration for p / n. We studied the influence of the thickness the base layer in the cell offers on the open circuit voltage, the short circuit current and efficiency.

Keywords: optimization, photovoltaic cell, GaInP / GaAs AMPS-1D, hetetro-junction

Procedia PDF Downloads 518
4963 Energy Management of Hybrid Energy Source Composed of a Fuel Cell and Supercapacitor for an Electric Vehicle

Authors: Mejri Achref

Abstract:

This paper proposes an energy management strategy for an electrical hybrid vehicle which is composed of a Proton Exchange Membrane (PEM) fuel cell and a supercapacitor storage device. In this paper, the mathematical model for the proposed power train, comprising the PEM Fuel Cell, supercapacitor, boost converter, inverter, and vehicular structure, was modeled in MATLAB/Simulink. The proposed algorithm is evaluated for the Highway Fuel Economy Test (HWFET) driving cycle. The obtained results demonstrate the effectiveness of the proposed energy management strategy in reduction of hydrogen consumption.

Keywords: proton exchange membrane fuel cell, hybrid vehicle, hydrogen consumption, energy management strategy

Procedia PDF Downloads 178
4962 Cdk1 Gates Cell Cycle-Dependent tRNA Synthesis by Regulating RNA Polymerase III Activity

Authors: Maricarmen Herrera, Pierre Chymkowitch, Joe Robertson, Jens Eriksson, Jorrit Enserink

Abstract:

tRNA genes are transcribed by RNA polymerase III. During recent years, it has become clear that tDNA transcription fluctuates during the cell cycle. However, the mechanism by which the cell cycle controls the amplitude of tDNA transcription remains unknown. We found that the cyclin Clb5 recruits the cyclin dependent kinase Cdk1 to tRNA genes to sharply increase tRNA synthesis during a brief interval in the cell cycle. We show that Cdk1 promotes the interaction of TFIIIB with TFIIIC, that it stimulates the recruitment of TFIIIC to tRNA genes, that it prevents the formation of an overly stable TFIIIB-tDNA complex and that it augments the dynamics of RNA polymerase III. Furthermore, we identify Bdp1 as a novel Cdk1 substrate, and phosphorylation of Bdp1 is required for the cell cycle-dependent increase in tDNA transcription. In addition, we show that phosphorylation of the Cdk1 substrate Nup60 mediates formation of a Nup60-Nup2 complex at tRNA genes, which is also required for cell cycle-dependent tDNA transcription. Together, our findings indicate that Cdk1 activity gates tRNA synthesis by regulating the dynamics of the TFIIIB-TFIIIC-RNAPIII complex, and that it may promote the formation of a nuclear pore microenvironment conducive to efficient tDNA transcription.

Keywords: Cdk1, cell cycle, RNAPIII machinery, tRNA

Procedia PDF Downloads 181
4961 2D and 3D Breast Cancer Cells Behave Differently to the Applied Free Palbociclib or the Palbociclib-Loaded Nanoparticles

Authors: Maryam Parsian, Pelin Mutlu, Ufuk Gunduz

Abstract:

Two-dimensional cell culture affords simplicity and low cost, but it has serious limitations; lacking cell-cell and cell-matrix interactions that are present in tissues. Cancer cells grown in 3D culture systems have distinct phenotypes of adhesion, growth, migration, invasion as well as profiles of gene and protein expression. These interactions cause the 3D-cultured cells to acquire morphological and cellular characteristics relevant to in vivo tumors. Palbociclib is a chemotherapeutic agent for the treatment of ER-positive and HER-negative metastatic breast cancer. Poly-amidoamine (PAMAM) dendrimer is a well-defined, special three-dimensional structure and has a multivalent surface and internal cavities that can play an essential role in drug delivery systems. In this study, palbociclib is loaded onto the magnetic PAMAM dendrimer. Hanging droplet method was used in order to form 3D spheroids. The possible toxic effects of both free drug and drug loaded nanoparticles were evaluated in 2D and 3D MCF-7, MD-MB-231 and SKBR-3 breast cancer cell culture models by performing MTT cell viability and Alamar Blue assays. MTT analysis was performed with six different doses from 1000 µg/ml to 25 µg/ml. Drug unloaded PAMAM dendrimer did not demonstrate significant toxicity on all breast cancer cell lines. The results showed that 3D spheroids are clearly less sensitive than 2D cell cultures to free palbociclib. Also, palbociclib loaded PAMAM dendrimers showed more toxic effect than free palbociclib in all cell lines at 2D and 3D cultures. The results suggest that the traditional cell culture method (2D) is insufficient for mimicking the actual tumor tissue. The response of the cancer cells to anticancer drugs is different in the 2D and 3D culture conditions. This study showed that breast cancer cells are more resistant to free palbociclib in 3D cultures than in 2D cultures. However, nanoparticle loaded drugs can be more cytotoxic when compared to free drug.

Keywords: 2D and 3D cell culture, breast cancer, palbociclibe, PAMAM magnetic nanoparticles

Procedia PDF Downloads 149
4960 The Methods of Immobilization of Laccase for Direct Transfer in an Enzymatic Fuel Cell

Authors: Afshin Farahbakhsh, Hoda Khodadadi

Abstract:

In this paper, we compare five methods of biological fuel cell fabrication by combining a Shewanella oneidensis microbial anode and a laccase-modified air-breathing cathode. As a result of biofuel cell laccase with graphite nanofibers, carbon surface (PAMAN) on the pt/hpg electrode, graphite sheets MWCNT and with (PG) and (MWCNT) showed, respectively. Describes methods for creating controllable and reproducible bio-anodes and demonstrates the versatility of hybrid biological fuel cells. The laccase-based biocathodes prepared either with the crude extract or with the purified enzyme can provide electrochemically active and stable biomaterials. The laccase-based biocathodes prepared either with the crude extract or with the purified enzyme can provide electrochemically active and stable biomaterials. When the device was fed with transdermal extracts, containing only 30μM of glucose, the average peak power was proportionally lower (0.004mW). The result of biofuel cell with graphite nanofibers showed the enzymatic fuel cell reaches 0.5 V at open circuit voltage with both, ethanol and methanol and the maximum current density observed for E2electrode was 228.94mAcm.

Keywords: enzymatic electrode, fuel cell, immobilization, laccase

Procedia PDF Downloads 261
4959 Logistic Model Tree and Expectation-Maximization for Pollen Recognition and Grouping

Authors: Endrick Barnacin, Jean-Luc Henry, Jack Molinié, Jimmy Nagau, Hélène Delatte, Gérard Lebreton

Abstract:

Palynology is a field of interest for many disciplines. It has multiple applications such as chronological dating, climatology, allergy treatment, and even honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time-consuming task that requires the intervention of experts in the field, which is becoming increasingly rare due to economic and social conditions. So, the automation of this task is a necessity. Pollen slides analysis is mainly a visual process as it is carried out with the naked eye. That is the reason why a primary method to automate palynology is the use of digital image processing. This method presents the lowest cost and has relatively good accuracy in pollen retrieval. In this work, we propose a system combining recognition and grouping of pollen. It consists of using a Logistic Model Tree to classify pollen already known by the proposed system while detecting any unknown species. Then, the unknown pollen species are divided using a cluster-based approach. Success rates for the recognition of known species have been achieved, and automated clustering seems to be a promising approach.

Keywords: pollen recognition, logistic model tree, expectation-maximization, local binary pattern

Procedia PDF Downloads 182
4958 Anti-Proliferative Effect of Chanterelle (Cantharellus) Mushroom Extracts on Glioblastoma Multiforme Cell Line U87MG

Authors: Justyna Moskwa, Patryk Nowakowski, Sylwia K. Naliwajko, Renata Markiewicz-Zukowska, Krystyna Gromkowska-Kepka, Anna Puscion-Jakubik, Konrad Mielcarek, Maria H. Borawska

Abstract:

For centuries, mushrooms have been used in folk medicine; however, knowledge of the composition and properties of fungi comes from the last twenty years. Mushrooms show antibacterial, antioxidant, antitumor and immune-stimulating properties; however, there is a lack of reports, on anticancer treatment of brain gliomas. The aim of this study was to examine influence of Chanterelle mushroom (Cantharellus Adans. ex Fr.) ethanolic (CHE) and water (CHW) extracts, on glioblastoma multiforme cell line (U87MG). Anti-proliferative activity of CHE and CHW in concentration (50-1000 µg/mL) was determined by a cytotoxicity test and DNA binding by [³H]-thymidine incorporation after 24, 48 and 72h of incubation with U87MG glioblastoma cell line. The statistical analysis was performed using Statistica v. 13.0 software. Significant differences were assumed for p < 0.05. We examined that CHE extracts in all the tested concentrations (50, 100, 250, 500, 1000 µg/mL) after all hours of incubation significantly decreased cell viability (p < 0.05) on U87MG cell line, which was confirmed by the significant (p < 0.05) reduction of DNA synthesis. Our results suggest that only CHE extract a cytotoxic and anti-proliferation activities on U87MG cell line.

Keywords: anticancer, food, glioblastoma, mushroom

Procedia PDF Downloads 161
4957 Environmental Pb-Free Cu Front Electrode for Si-Base Solar Cell Application

Authors: Wen-Hsi Lee, C.G. Kao

Abstract:

In this study, Cu paste was prepared and printed with narrow line screen printing process on polycrystalline Si solar cell which has already finished the back Al printing and deposition of double anti-reflection coatings (DARCs). Then, two-step firing process was applied to sinter the front electrode and obtain the ohmic contact between front electrode and solar cell. The first step was in air atmosphere. In this process, PbO-based glass frit etched the DARCs and Ag recrystallized at the surface of Si, constructing the preliminary contact. The second step was in reducing atmosphere. In this process, CuO reduced to Cu and sintered. Besides, Ag nanoparticles recrystallized in the glass layer at interface due to the interactions between H2, Ag and PbO-based glass frit and the volatility of Pb, constructing the ohmic contact between electrode and solar cell. By experiment and analysis, reaction mechanism in each stage was surmised, and it was also proven that ohmic contact and good sheet resistance for front electrode could both be obtained by applying newly-invented paste and process.

Keywords: front electrode, solar cell, ohmic contact, screen printing, paste

Procedia PDF Downloads 332
4956 Statistical Pattern Recognition for Biotechnological Process Characterization Based on High Resolution Mass Spectrometry

Authors: S. Fröhlich, M. Herold, M. Allmer

Abstract:

Early stage quantitative analysis of host cell protein (HCP) variations is challenging yet necessary for comprehensive bioprocess development. High resolution mass spectrometry (HRMS) provides a high-end technology for accurate identification alongside with quantitative information. Hereby we describe a flexible HRMS assay platform to quantify HCPs relevant in microbial expression systems such as E. Coli in both up and downstream development by means of MVDA tools. Cell pellets were lysed and proteins extracted, purified samples not further treated before applying the SMART tryptic digest kit. Peptides separation was optimized using an RP-UHPLC separation platform. HRMS-MSMS analysis was conducted on an Orbitrap Velos Elite applying CID. Quantification was performed label-free taking into account ionization properties and physicochemical peptide similarities. Results were analyzed using SIEVE 2.0 (Thermo Fisher Scientific) and SIMCA (Umetrics AG). The developed HRMS platform was applied to an E. Coli expression set with varying productivity and the corresponding downstream process. Selected HCPs were successfully quantified within the fmol range. Analysing HCP networks based on pattern analysis facilitated low level quantification and enhanced validity. This approach is of high relevance for high-throughput screening experiments during upstream development, e.g. for titer determination, dynamic HCP network analysis or product characterization. Considering the downstream purification process, physicochemical clustering of identified HCPs is of relevance to adjust buffer conditions accordingly. However, the technology provides an innovative approach for label-free MS based quantification relying on statistical pattern analysis and comparison. Absolute quantification based on physicochemical properties and peptide similarity score provides a technological approach without the need of sophisticated sample preparation strategies and is therefore proven to be straightforward, sensitive and highly reproducible in terms of product characterization.

Keywords: process analytical technology, mass spectrometry, process characterization, MVDA, pattern recognition

Procedia PDF Downloads 249
4955 Analysis of Cell Cycle Status in Radiation Non-Targeted Hepatoma Cells Using Flow Cytometry: Evidence of Dose Dependent Response

Authors: Sharmi Mukherjee, Anindita Chakraborty

Abstract:

Cellular irradiation incites complex responses including arrest of cell cycle progression. This article accentuates the effects of radiation on cell cycle status of radiation non-targeted cells. Human Hepatoma HepG2 cells were exposed to increasing doses of γ radiations (1, 2, 4, 6 Gy) and their cell culture media was transferred to non-targeted HepG2 cells cultured in other Petri plates. These radiation non-targeted cells cultured in the ICCM (Irradiated cell conditioned media) were the bystander cells on which cell cycle analysis was performed using flow cytometry. An apparent decrease in the distribution of bystander cells at G0/G1 phase was observed with increased radiation doses upto 4 Gy representing a linear relationship. This was accompanied by a gradual increase in cellular distribution at G2/M phase. Interestingly the number of cells in G2/M phase at 1 and 2 Gy irradiation was not significantly different from each other. However, the percentage of G2 phase cells at 4 and 6 Gy doses were significantly higher than 2 Gy dose indicating the IC50 dose to be between 2 and 4 Gy. Cell cycle arrest is an indirect indicator of genotoxic damage in cells. In this study, bystander stress signals through the cell culture media of irradiated cells disseminated the radiation induced DNA damages in the non-targeted cells which resulted in arrest of the cell cycle progression at G2/M phase checkpoint. This implies that actual radiation biological effects represent a penumbra with effects encompassing a larger area than the actual beam. This article highlights the existence of genotoxic damages as bystander effects of γ rays in human Hepatoma cells by cell cycle analysis and opens up avenues for appraisal of bystander stress communications between tumor cells. Contemplation of underlying signaling mechanisms can be manipulated to maximize damaging effects of radiation with minimum dose and thus has therapeutic applications.

Keywords: bystander effect, cell cycle, genotoxic damage, hepatoma

Procedia PDF Downloads 184