Search results for: bulk traps
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 784

Search results for: bulk traps

484 Does "R and D" Investment Drive Economic Growth? Evidence from Africa

Authors: Boopen Seetanah, R. V. Sannassee, Sheereen Fauzel, Robin Nunkoo

Abstract:

The bulk of research on the impact of research and development (R&D) has been carried out in developed economies where the intensity of R&D expenditure has been relatively high and stable for many years. However, there is a paucity of similar studies in developing countries. In this paper, we provide empirical estimates of the impact of R&D investment on economic growth in a developing African economy (Mauritius) where R&D expenditure intensity has been low initially, but rising, albeit moderately in recent years. Using a dynamic time series analysis over the period 1980 to 2014 in a Vector Autoregressive framework, R & D is shown to have a positive and significant effect on the economic progress of the island, although the impact is considerably less when compared to both other ingredients of growth and also to reported elasticities fromdeveloped economies . Interestingly, there is evidence of bicausality between R & D and growth. furthermore, R & D positively impacts on both domestic and foreign investment, suggesting the possibilities of indirect effects.

Keywords: R & D, VECM, Africa, Mauritius

Procedia PDF Downloads 409
483 Temperature Dependent Current-Voltage (I-V) Characteristics of CuO-ZnO Nanorods Based Heterojunction Solar Cells

Authors: Venkatesan Annadurai, Kannan Ethirajalu, Anu Roshini Ramakrishnan

Abstract:

Copper oxide (CuO) and zinc oxide (ZnO) based coaxial (CuO-ZnO nanorods) heterojunction has been the interest of various research communities for solar cells, light emitting diodes (LEDs) and photodetectors applications. Copper oxide (CuO) is a p-type material with the band gap of 1.5 eV and it is considered to be an attractive absorber material in solar cells applications due to its high absorption coefficient and long minority carrier diffusion length. Similarly, n-type ZnO nanorods possess many attractive advantages over thin films such as, the light trapping ability and photosensitivity owing to the presence of oxygen related hole-traps at the surface. Moreover, the abundant availability, non-toxicity, and inexpensiveness of these materials make them suitable for potentially cheap, large area, and stable photovoltaic applications. However, the efficiency of the CuO-ZnO nanorods heterojunction based devices is greatly affected by interface defects which generally lead to the poor performance. In spite of having much potential, not much work has been carried out to understand the interface quality and transport mechanism involved across the CuO-ZnO nanorods heterojunction. Therefore, a detailed investigation of CuO-ZnO heterojunction is needed to understand the interface which affects its photovoltaic performance. Herein, we have fabricated the CuO-ZnO nanorods based heterojunction by simple hydrothermal and electrodeposition technique and investigated its interface quality by carrying out temperature (300 –10 K) dependent current-voltage (I-V) measurements under dark and illumination of visible light. Activation energies extracted from the temperature dependent I-V characteristics reveals that recombination and tunneling mechanism across the interfacial barrier plays a significant role in the current flow.

Keywords: heterojunction, electrical transport, nanorods, solar cells

Procedia PDF Downloads 201
482 HyDUS Project; Seeking a Wonder Material for Hydrogen Storage

Authors: Monica Jong, Antonios Banos, Tom Scott, Chris Webster, David Fletcher

Abstract:

Hydrogen, as a clean alternative to methane, is relatively easy to make, either from water using electrolysis or from methane using steam reformation. However, hydrogen is much trickier to store than methane, and without effective storage, it simply won’t pass muster as a suitable methane substitute. Physical storage of hydrogen is quite inefficient. Storing hydrogen as a compressed gas at pressures up to 900 times atmospheric is volumetrically inefficient and carries safety implications, whilst storing it as a liquid requires costly and constant cryogenic cooling to minus 253°C. This is where DU steps in as a possible solution. Across the periodic table, there are many different metallic elements that will react with hydrogen to form a chemical compound known as a hydride (or metal hydride). From a chemical perspective, the ‘king’ of the hydride forming metals is palladium because it offers the highest hydrogen storage volumetric capacity. However, this material is simply too expensive and scarce to be used in a scaled-up bulk hydrogen storage solution. Depleted Uranium is the second most volumetrically efficient hydride-forming metal after palladium. The UK has accrued a significant amount of DU because of manufacturing nuclear fuel for many decades, and that is currently without real commercial use. Uranium trihydride (UH3) contains three hydrogen atoms for every uranium atom and can chemically store hydrogen at ambient pressure and temperature at more than twice the density of pure liquid hydrogen for the same volume. To release the hydrogen from the hydride, all you do is heat it up. At temperatures above 250°C, the hydride starts to thermally decompose, releasing hydrogen as a gas and leaving the Uranium as a metal again. The reversible nature of this reaction allows the hydride to be formed and unformed again and again, enabling its use as a high-density hydrogen storage material which is already available in large quantities because of its stockpiling as a ‘waste’ by-product. Whilst the tritium storage credentials of Uranium have been rigorously proven at the laboratory scale and at the fusion demonstrator JET for over 30 years, there is a need to prove the concept for depleted uranium hydrogen storage (HyDUS) at scales towards that which is needed to flexibly supply our national power grid with energy. This is exactly the purpose of the HyDUS project, a collaborative venture involving EDF as the interested energy vendor, Urenco as the owner of the waste DU, and the University of Bristol with the UKAEA as the architects of the technology. The team will embark on building and proving the world’s first pilot scale demonstrator of bulk chemical hydrogen storage using depleted Uranium. Within 24 months, the team will attempt to prove both the technical and commercial viability of this technology as a longer duration energy storage solution for the UK. The HyDUS project seeks to enable a true by-product to wonder material story for depleted Uranium, demonstrating that we can think sustainably about unlocking the potential value trapped inside nuclear waste materials.

Keywords: hydrogen, long duration storage, storage, depleted uranium, HyDUS

Procedia PDF Downloads 121
481 Experimental Study of Hydrogen and Water Vapor Extraction from Helium with Zeolite Membranes for Tritium Processes

Authors: Rodrigo Antunes, Olga Borisevich, David Demange

Abstract:

The Tritium Laboratory Karlsruhe (TLK) has identified zeolite membranes as most promising for tritium processes in the future fusion reactors. Tritium diluted in purge gases or gaseous effluents, and present in both molecular and oxidized forms, can be pre-concentrated by a stage of zeolite membranes followed by a main downstream recovery stage (e.g., catalytic membrane reactor). Since 2011 several membrane zeolite samples have been tested to measure the membrane performances in the separation of hydrogen and water vapor from helium streams. These experiments were carried out in the ZIMT (Zeolite Inorganic Membranes for Tritium) facility where mass spectrometry and cold traps were used to measure the membranes’ performances. The membranes were tested at temperatures ranging from 25 °C up to 130 °C, at feed pressures between 1 and 3 bar, and typical feed flows of 2 l/min. During this experimental campaign, several zeolite-type membranes were studied: a hollow-fiber MFI nanocomposite membrane purchased from IRCELYON (France), and tubular MFI-ZSM5, NaA and H-SOD membranes purchased from Institute for Ceramic Technologies and Systems (IKTS, Germany). Among these membranes, only the MFI-based showed relevant performances for the H2/He separation, with rather high permeances (~0.5 – 0.7 μmol/sm2Pa for H2 at 25 °C for MFI-ZSM5), however with a limited ideal selectivity of around 2 for H2/He regardless of the feed concentration. Both MFI and NaA showed higher separation performances when water vapor was used instead; for example, at 30 °C, the separation factor for MFI-ZSM5 is approximately 10 and 38 for 0.2% and 10% H2O/He, respectively. The H-SOD evidenced to be considerably defective and therefore not considered for further experiments. In this contribution, a comprehensive analysis of the experimental methods and results obtained for the separation performance of different zeolite membranes during the past four years in inactive environment is given. These results are encouraging for the experimental campaign with molecular and oxidized tritium that will follow in 2017.

Keywords: gas separation, nuclear fusion, tritium processes, zeolite membranes

Procedia PDF Downloads 217
480 Analyzing the Efficiency of Initiatives Taken against Disinformation during Election Campaigns: Case Study of Young Voters

Authors: Fatima-Zohra Ghedir

Abstract:

Social media platforms have been actively working on solutions and combined their efforts with media, policy makers, educators and researchers to protect citizens and prevent interferences in information, political discourses and elections. Facebook, for instance, deleted fake accounts, implemented fake accounts and fake content detection algorithms, partnered with news agencies to manually fact check content and changed its newsfeeds display. Twitter and Instagram regularly communicate on their efforts and notify their users of improvements and safety guidelines. More funds have been allocated to media literacy programs to empower citizens in prevision of the coming elections. This paper investigates the efficiency of these initiatives and analyzes the metrics to measure their success or failure. The objective is also to determine the segments of population more prone to fall in disinformation traps during the elections despite the measures taken over the last four years. This study will also examine the groups who were positively impacted by these measures. This paper relies on both desk and field methodologies. For this study, a survey was administered to French students aged between 17 and 29 years old. Semi-guided interviews were conducted on a similar audience. The analysis of the survey and of the interviews show that respondents were exposed to the initiatives described above and are aware of the existence of disinformation issues. However, they do not understand what disinformation really entails or means. For instance, for most of them, disinformation is synonymous of the opposite point of view without taking into account the truthfulness of the content. Besides, they still consume and believe the information shared by their friends and family, with little questioning about the ways their closed ones get informed.

Keywords: democratic elections, disinformation, foreign interference, social media, success metrics

Procedia PDF Downloads 85
479 Searching Linguistic Synonyms through Parts of Speech Tagging

Authors: Faiza Hussain, Usman Qamar

Abstract:

Synonym-based searching is recognized to be a complicated problem as text mining from unstructured data of web is challenging. Finding useful information which matches user need from bulk of web pages is a cumbersome task. In this paper, a novel and practical synonym retrieval technique is proposed for addressing this problem. For replacement of semantics, user intent is taken into consideration to realize the technique. Parts-of-Speech tagging is applied for pattern generation of the query and a thesaurus for this experiment was formed and used. Comparison with Non-Context Based Searching, Context Based searching proved to be a more efficient approach while dealing with linguistic semantics. This approach is very beneficial in doing intent based searching. Finally, results and future dimensions are presented.

Keywords: natural language processing, text mining, information retrieval, parts-of-speech tagging, grammar, semantics

Procedia PDF Downloads 283
478 Advances in the Environmentally Friendly Management of Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae)

Authors: Farhan Nayyar, A. Batool

Abstract:

The red palm weevil (RPW), being the most invasive insect pest of palm family, is considered as the most dangerous pest around the globe. As three out of four life stages of weevils are concealed inside the host plants, leaving only the adult stage for controlling it. The use of sex pheromone (Ferrugineol) for the management of red palm weevil is considered as the most rewarding technique of IPM. The current studies were conducted to find the relative potential of four different treatments including Sex pheromone, sex pheromone + date fruit + sugarcane pieces, sex pheromone + ethyl acetate and sex pheromone + jaggary water applied on the attraction behavior of weevils. The treatments were applied randomly at two different locations of Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan including Germ Plasm Unit (GPU) and fruit nursery farm having date palm plants of different ages of four varieties of date palm. The treatments were applied for three consecutive months, including February, March, and April 2022. The pheromone traps were installed at the height of two feet under shade on the western side of date palm plants. The results revealed that among the treatments, T4 consisting of Jaggary water and sex pheromone was found as the most effective treatment and attracted the maximum number of 127 weevils followed by T3 consisting of ethyl acetate and sex pheromone, attracting 53 weevils. In contrast to this, T2 consisting of sex pheromone and date fruit was found as the least effective treatment in attracting red palm weevil and attracted only 15 adult weevils. Among the two selected locations, the population of red palm weevil was found comparatively higher at GPU compared to the nursery farm, Dera Ismail Khan. In conclusion, T4 may be used for the effective and safer management of red palm weevil.

Keywords: red palm weevil, integrated management, sex pheromones, Jaggary water

Procedia PDF Downloads 70
477 The Influence of Microsilica on the Cluster Cracks' Geometry of Cement Paste

Authors: Maciej Szeląg

Abstract:

The changing nature of environmental impacts, in which cement composites are operating, are causing in the structure of the material a number of phenomena, which result in volume deformation of the composite. These strains can cause composite cracking. Cracks are merging by propagation or intersect to form a characteristic structure of cracks known as the cluster cracks. This characteristic mesh of cracks is crucial to almost all building materials, which are working in service loads conditions. Particularly dangerous for a cement matrix is a sudden load of elevated temperature – the thermal shock. Resulting in a relatively short period of time a large value of a temperature gradient between the outer surface and the material’s interior can result in cracks formation on the surface and in the volume of the material. In the paper, in order to analyze the geometry of the cluster cracks of the cement pastes, the image analysis tools were used. Tested were 4 series of specimens made of two different Portland cement. In addition, two series include microsilica as a substitute for the 10% of the cement. Within each series, specimens were performed in three w/b indicators (water/binder): 0.4; 0.5; 0.6. The cluster cracks were created by sudden loading the samples by elevated temperature of 250°C. Images of the cracked surfaces were obtained via scanning at 2400 DPI. Digital processing and measurements were performed using ImageJ v. 1.46r software. To describe the structure of the cluster cracks three stereological parameters were proposed: the average cluster area - A ̅, the average length of cluster perimeter - L ̅, and the average opening width of a crack between clusters - I ̅. The aim of the study was to identify and evaluate the relationships between measured stereological parameters, and the compressive strength and the bulk density of the modified cement pastes. The tests of the mechanical and physical feature have been carried out in accordance with EN standards. The curves describing the relationships have been developed using the least squares method, and the quality of the curve fitting to the empirical data was evaluated using three diagnostic statistics: the coefficient of determination – R2, the standard error of estimation - Se, and the coefficient of random variation – W. The use of image analysis allowed for a quantitative description of the cluster cracks’ geometry. Based on the obtained results, it was found a strong correlation between the A ̅ and L ̅ – reflecting the fractal nature of the cluster cracks formation process. It was noted that the compressive strength and the bulk density of cement pastes decrease with an increase in the values of the stereological parameters. It was also found that the main factors, which impact on the cluster cracks’ geometry are the cement particles’ size and the general content of the binder in a volume of the material. The microsilica caused the reduction in the A ̅, L ̅ and I ̅ values compared to the values obtained by the classical cement paste’s samples, which is caused by the pozzolanic properties of the microsilica.

Keywords: cement paste, cluster cracks, elevated temperature, image analysis, microsilica, stereological parameters

Procedia PDF Downloads 227
476 Analysis of Overall Thermo-Elastic Properties of Random Particulate Nanocomposites with Various Interphase Models

Authors: Lidiia Nazarenko, Henryk Stolarski, Holm Altenbach

Abstract:

In the paper, a (hierarchical) approach to analysis of thermo-elastic properties of random composites with interphases is outlined and illustrated. It is based on the statistical homogenization method – the method of conditional moments – combined with recently introduced notion of the energy-equivalent inhomogeneity which, in this paper, is extended to include thermal effects. After exposition of the general principles, the approach is applied in the investigation of the effective thermo-elastic properties of a material with randomly distributed nanoparticles. The basic idea of equivalent inhomogeneity is to replace the inhomogeneity and the surrounding it interphase by a single equivalent inhomogeneity of constant stiffness tensor and coefficient of thermal expansion, combining thermal and elastic properties of both. The equivalent inhomogeneity is then perfectly bonded to the matrix which allows to analyze composites with interphases using techniques devised for problems without interphases. From the mechanical viewpoint, definition of the equivalent inhomogeneity is based on Hill’s energy equivalence principle, applied to the problem consisting only of the original inhomogeneity and its interphase. It is more general than the definitions proposed in the past in that, conceptually and practically, it allows to consider inhomogeneities of various shapes and various models of interphases. This is illustrated considering spherical particles with two models of interphases, Gurtin-Murdoch material surface model and spring layer model. The resulting equivalent inhomogeneities are subsequently used to determine effective thermo-elastic properties of randomly distributed particulate composites. The effective stiffness tensor and coefficient of thermal extension of the material with so defined equivalent inhomogeneities are determined by the method of conditional moments. Closed-form expressions for the effective thermo-elastic parameters of a composite consisting of a matrix and randomly distributed spherical inhomogeneities are derived for the bulk and the shear moduli as well as for the coefficient of thermal expansion. Dependence of the effective parameters on the interphase properties is included in the resulting expressions, exhibiting analytically the nature of the size-effects in nanomaterials. As a numerical example, the epoxy matrix with randomly distributed spherical glass particles is investigated. The dependence of the effective bulk and shear moduli, as well as of the effective thermal expansion coefficient on the particle volume fraction (for different radii of nanoparticles) and on the radius of nanoparticle (for fixed volume fraction of nanoparticles) for different interphase models are compared to and discussed in the context of other theoretical predictions. Possible applications of the proposed approach to short-fiber composites with various types of interphases are discussed.

Keywords: effective properties, energy equivalence, Gurtin-Murdoch surface model, interphase, random composites, spherical equivalent inhomogeneity, spring layer model

Procedia PDF Downloads 165
475 Electrostatic and Dielectric Measurements for Hair Building Fibers from DC to Microwave Frequencies

Authors: K. Y. You, Y. L. Then

Abstract:

In the recent years, the hair building fiber has become popular, in other words, it is an effective method which helps people who suffer hair loss or sparse hair since the hair building fiber is capable to create a natural look of simulated hair rapidly. In the markets, there are a lot of hair fiber brands that have been designed to formulate an intense bond with hair strands and make the hair appear more voluminous instantly. However, those products have their own set of properties. Thus, in this report, some measurement techniques are proposed to identify those products. Up to five different brands of hair fiber are tested. The electrostatic and dielectric properties of the hair fibers are macroscopically tested using design DC and high-frequency microwave techniques. Besides, the hair fibers are microscopically analysis by magnifying the structures of the fiber using scanning electron microscope (SEM). From the SEM photos, the comparison of the uniformly shaped and broken rate of the hair fibers in the different bulk samples can be observed respectively.

Keywords: hair fiber, electrostatic, dielectric properties, broken rate, microwave techniques

Procedia PDF Downloads 296
474 The Duty of Sea Carrier to Transship the Cargo in Case of Vessel Breakdown

Authors: Mojtaba Eshraghi Arani

Abstract:

Concluding the contract for carriage of cargo with the shipper (through bill of lading or charterparty), the carrier must transport the cargo from loading port to the port of discharge and deliver it to the consignee. Unless otherwise agreed in the contract, the carrier must avoid from any deviation, transfer of cargo to another vessel or unreasonable stoppage of carriage in-transit. However, the vessel might break down in-transit for any reason and becomes unable to continue its voyage to the port of discharge. This is a frequent incident in the carriage of goods by sea which leads to important dispute between the carrier/owner and the shipper/charterer (hereinafter called “cargo interests”). It is a generally accepted rule that in such event, the carrier/owner must repair the vessel after which it will continue its voyage to the destination port. The dispute will arise in the case that temporary repair of the vessel cannot be done in the short or reasonable term. There are two options for the contract parties in such a case: First, the carrier/owner is entitled to repair the vessel while having the cargo onboard or discharged in the port of refugee, and the cargo interests must wait till the breakdown is rectified at any time, whenever. Second, the carrier/owner will be responsible to charter another vessel and transfer the entirety of cargo to the substitute vessel. In fact, the main question revolves around the duty of carrier/owner to perform transfer of cargo to another vessel. Such operation which is called “trans-shipment” or “transhipment” (in terms of the oil industry it is usually called “ship-to-ship” or “STS”) needs to be done carefully and with due diligence. In fact, the transshipment operation for various cargoes might be different as each cargo requires its own suitable equipment for transfer to another vessel, so this operation is often costly. Moreover, there is a considerable risk of collision between two vessels in particular in bulk carriers. Bulk cargo is also exposed to the shortage and partial loss in the process of transshipment especially during bad weather. Concerning tankers which carry oil and petrochemical products, transshipment, is most probably followed by sea pollution. On the grounds of the above consequences, the owners are afraid of being held responsible for such operation and are reluctant to perform in the relevant disputes. The main argument raised by them is that no regulation has recognized such duty upon their shoulders so any such operation must be done under the auspices of the cargo interests and all costs must be reimbursed by themselves. Unfortunately, not only the international conventions including Hague rules, Hague-Visby Rules, Hamburg rules and Rotterdam rules but also most domestic laws are silent in this regard. The doctrine has yet to analyse the issue and no legal researches was found out in this regard. A qualitative method with the concept of interpretation of data collection has been used in this paper. The source of the data is the analysis of regulations and cases. It is argued in this article that the paramount rule in the maritime law is “the accomplishment of the voyage” by the carrier/owner in view of which, if the voyage can only be finished by transshipment, then the carrier/owner will be responsible to carry out this operation. The duty of carrier/owner to apply “due diligence” will strengthen this reasoning. Any and all costs and expenses will also be on the account pf the owner/carrier, unless the incident is attributable to any cause arising from the cargo interests’ negligence.

Keywords: cargo, STS, transshipment, vessel, voyage

Procedia PDF Downloads 85
473 Molecular Dynamics Simulations of the Structural, Elastic and Thermodynamic Properties of Cubic GaBi

Authors: M. Zemouli, K. Amara, M. Elkeurti, Y. Benallou

Abstract:

We present the molecular dynamic simulations results of the structural and dynamical properties of the zinc-blende GaBi over a wide range of temperature (300-1000) K. Our simulation where performed in the framework of the three-body Tersoff potential, which accurately reproduces the lattice constants and elastic constants of the GaBi. A good agreement was found between our calculated results and the available theoretical data of the lattice constant, the bulk modulus and the cohesive energy. Our study allows us to predict the thermodynamic properties such as the specific heat and the lattice thermal expansion. In addition, this method allows us to check its ability to predict the phase transition of this compound. In particular, the transition pressure to the rock-salt phase is calculated and the results are compared with other available works.

Keywords: Gallium compounds, molecular dynamics simulations, interatomic potential thermodynamic properties, structural phase transition

Procedia PDF Downloads 417
472 Liquid Chromatographic Determination of Alprazolam with ACE Inhibitors in Bulk, Respective Pharmaceutical Products and Human Serum

Authors: Saeeda Nadir Ali, Najma Sultana, Muhammad Saeed Arayne, Amtul Qayoom

Abstract:

Present study describes a simple and a fast liquid chromatographic method using ultraviolet detector for simultaneous determination of anxiety relief medicine alprazolam with ACE inhibitors i.e; lisinopril, captopril and enalapril employing purospher star C18 (25 cm, 0.46 cm, 5 µm). Separation was achieved within 5 min at ambient temperature via methanol: water (8:2 v/v) with pH adjusted to 2.9, monitoring the detector response at 220 nm. Optimum parameters were set up as per ICH (2006) guidelines. Calibration range was found out to be 0.312-10 µg mL-1 for alprazolam and 0.625-20 µg mL-1 for all the ACE inhibitors with correlation coefficients > 0.998 and detection limits 85, 37, 68 and 32 ng mL-1 for lisinopril, captopril, enalapril and alprazolam respectively. Intra-day, inter-day precision and accuracy of the assay were in acceptable range of 0.05-1.62% RSD and 98.85-100.76% recovery. Method was determined to be robust and effectively useful for the estimation of studied drugs in dosage formulations and human serum without obstruction of excipients or serum components.

Keywords: alprazolam, ACE inhibitors, RP HPLC, serum

Procedia PDF Downloads 491
471 Onboard Heat, Pressure and Boil-Off Gas Treatment for Stacked NGH Tank Containers

Authors: Hee Jin Kang

Abstract:

Despite numerous studies on the reserves and availability of natural gas hydrates, the technology of transporting natural gas hydrates in large quantities to sea has not been put into practical use. Several natural gas hydrate transport technologies presented by the International Maritime Organization (IMO) are under preparation for commercialization. Among them, NGH tank container concept modularized transportation unit to prevent sintering effect during sea transportation. The natural gas hydrate can be vaporized in a certain part during the transportation. Unprocessed BOG increases the pressure inside the tank. Also, there is a risk of fire if you export the BOG out of the tank without proper handling. Therefore, in this study, we have studied the concept of technology to properly process BOG to modularize natural gas hydrate and to transport it to sea for long distance. The study is expected to contribute to the practical use of NGH tank container, which is a modular transport concept proposed to solve the sintering problem that occurs when transporting natural gas hydrate in the form of bulk cargo.

Keywords: Natural gas hydrate, tank container, marine transportation, boil-off gas

Procedia PDF Downloads 321
470 Molecular Dynamics Simulations of the Structural, Elastic, and Thermodynamic Properties of Cubic AlBi

Authors: M. Zemouli, K. Amara, M. Elkeurti, Y. Benallou

Abstract:

We present a theoretical study of the structural, elastic and thermodynamic properties of the zinc-blende AlBi for a wide temperature range. The simulation calculation is performed in the framework of the molecular dynamics method using the three-body Tersoff potential which reproduces provide, with reasonable accuracy, the lattice constants and elastic constants. Our results for the lattice constant, the bulk modulus and cohesive energy are in good agreement with other theoretical available works. Other thermodynamic properties such as the specific heat and the lattice thermal expansion can also be predicted. In addition, this method allows us to check its ability to predict the phase transition of this compound. In particular, the transition pressure to the rock-salt phase is calculated and the results are compared with other available works.

Keywords: aluminium compounds, molecular dynamics simulations, interatomic potential, thermodynamic properties, structural phase transition

Procedia PDF Downloads 278
469 First Principal Calculation of Structural, Elastic and Thermodynamic Properties of Yttrium-Copper Intermetallic Compound

Authors: Ammar Benamrani

Abstract:

This work investigates the equation of state parameters, elastic constants, and several other physical properties of (B2-type) Yttrium-Copper (YCu) rare earth intermetallic compound using the projected augmented wave (PAW) pseudopotentials method as implemented in the Quantum Espresso code. Using both the local density approximation (LDA) and the generalized gradient approximation (GGA), the finding of this research on the lattice parameter of YCu intermetallic compound agree very well with the experimental ones. The obtained results of the elastic constants and the Debye temperature are also in general in good agreement compared to the theoretical ones reported previously in literature. Furthermore, several thermodynamic properties of YCu intermetallic compound have been studied using quasi-harmonic approximations (QHA). The calculated data on the thermodynamic properties shows that the free energy and both isothermal and adiabatic bulk moduli decrease gradually with increasing of the temperature, while all other thermodynamic quantities increase with the temperature.

Keywords: Yttrium-Copper intermetallic compound, thermo_pw package, elastic constants, thermodynamic properties

Procedia PDF Downloads 127
468 Geometric Optimisation of Piezoelectric Fan Arrays for Low Energy Cooling

Authors: Alastair Hales, Xi Jiang

Abstract:

Numerical methods are used to evaluate the operation of confined face-to-face piezoelectric fan arrays as pitch, P, between the blades is varied. Both in-phase and counter-phase oscillation are considered. A piezoelectric fan consists of a fan blade, which is clamped at one end, and an extremely low powered actuator. This drives the blade tip’s oscillation at its first natural frequency. Sufficient blade tip speed, created by the high oscillation frequency and amplitude, is required to induce vortices and downstream volume flow in the surrounding air. A single piezoelectric fan may provide the ideal solution for low powered hot spot cooling in an electronic device, but is unable to induce sufficient downstream airflow to replace a conventional air mover, such as a convection fan, in power electronics. Piezoelectric fan arrays, which are assemblies including multiple fan blades usually in face-to-face orientation, must be developed to widen the field of feasible applications for the technology. The potential energy saving is significant, with a 50% power demand reduction compared to convection fans even in an unoptimised state. A numerical model of a typical piezoelectric fan blade is derived and validated against experimental data. Numerical error is found to be 5.4% and 9.8% using two data comparison methods. The model is used to explore the variation of pitch as a function of amplitude, A, for a confined two-blade piezoelectric fan array in face-to-face orientation, with the blades oscillating both in-phase and counter-phase. It has been reported that in-phase oscillation is optimal for generating maximum downstream velocity and flow rate in unconfined conditions, due at least in part to the beneficial coupling between the adjacent blades that leads to an increased oscillation amplitude. The present model demonstrates that confinement has a significant detrimental effect on in-phase oscillation. Even at low pitch, counter-phase oscillation produces enhanced downstream air velocities and flow rates. Downstream air velocity from counter-phase oscillation can be maximally enhanced, relative to that generated from a single blade, by 17.7% at P = 8A. Flow rate enhancement at the same pitch is found to be 18.6%. By comparison, in-phase oscillation at the same pitch outputs 23.9% and 24.8% reductions in peak downstream air velocity and flow rate, relative to that generated from a single blade. This optimal pitch, equivalent to those reported in the literature, suggests that counter-phase oscillation is less affected by confinement. The optimal pitch for generating bulk airflow from counter-phase oscillation is large, P > 16A, due to the small but significant downstream velocity across the span between adjacent blades. However, by considering design in a confined space, counterphase pitch should be minimised to maximise the bulk airflow generated from a certain cross-sectional area within a channel flow application. Quantitative values are found to deviate to a small degree as other geometric and operational parameters are varied, but the established relationships are maintained.

Keywords: piezoelectric fans, low energy cooling, power electronics, computational fluid dynamics

Procedia PDF Downloads 196
467 Effect of Ion Irradiation on the Microstructure and Properties of Chromium Coatings on Zircaloy-4 Substrate

Authors: Alexia Wu, Joel Ribis, Jean-Christophe Brachet, Emmanuel Clouet, Benoit Arnal, Elodie Rouesne, Stéphane Urvoy, Justine Roubaud, Yves Serruys, Frederic Lepretre

Abstract:

To enhance the safety of Light Water Reactor, accident tolerant fuel (ATF) claddings materials are under development. In the framework of CEA-AREVA-EDF collaborative program on ATF cladding materials, CEA has engaged specific studies on chromium coated zirconium alloys. Especially for Loss-of-Coolant-Accident situations, chromium coated claddings have shown some additional 'coping' time before achieving full embrittlement of the oxidized cladding, when compared to uncoated references – both tested in steam environment up to 1300°C. Nevertheless, the behavior of chromium coatings and the stability of the Zr-Cr interface under neutron irradiation remain unknown. Two main points are addressed: 1. Bulk Cr behavior under irradiation: Due to its BCC crystallographic structure, Cr is prone to Ductile-to-Brittle-Transition at quite high temperature. Irradiation could be responsible for a significant additional DBTT shift towards higher temperatures. 2. Zircaloy/Cr interface behavior under irradiation: Preliminary TEM examinations of un-irradiated samples revealed a singular Zircaloy-4/Cr interface with nanometric intermetallic phase layers. Such particular interfaces highlight questions of how they would behave under irradiation - intermetallic zirconium phases are known to be more or less stable under irradiations. Another concern is a potential enhancement of chromium diffusion into the zirconium-alpha based substrate. The purpose of this study is then to determine the behavior of such coatings after ion irradiations, as a surrogate to neutron irradiation. Ion irradiations were performed at the Jannus-Saclay facility (France). 20 MeV Kr8+ ions at 400°C with a flux of 2.8x1011 ions.cm-2.s-1 were used to irradiate chromium coatings of 1-2 µm thick on Zircaloy-4 sheets substrate. At the interface, the calculated damage is close to 10 dpa (SRIM, Quick Calculation Damage mode). Thin foil samples were prepared with FIB for both as-received and irradiated coated samples. Transmission Electron Microscopy (TEM) and in-situ tensile tests in a Scanning Electron Microscope are being used to characterize the un-irradiated and irradiated materials. High Resolution TEM highlights a great complexity of the interface before irradiation since it is formed of an alternation of intermetallic phases – C14 and C15. The interfaces formed by these intermetallic phases with chromium and zirconium show semi-coherency. Chemical analysis performed before irradiation shows some iron enrichment at the interface. The chromium coating bulk microstructures and properties are also studied before and after irradiation. On-going in-situ tensile tests focus on the capacity of chromium coatings to sustain some plastic deformation when tested up to 350°C. The stability of the Cr/Zr interface is shown after ion irradiation up to 10 dpa. This observation constitutes the first result after irradiation on these new coated claddings materials.

Keywords: accident tolerant fuel, HRTEM, interface, ion-irradiation

Procedia PDF Downloads 337
466 Electron Spin Resonance of Conduction and Spin Waves Dynamics Investigations in Bi-2223 Superconductor for Decoding Pairing Mechanism

Authors: S. N. Ekbote, G. K. Padam, Manju Arora

Abstract:

Electron spin resonance (ESR) spectroscopic investigations of (Bi, Pb)₂Sr₂Ca₂Cu₃O₁₀₋ₓ (Bi-2223) bulk samples were carried out in both the normal and superconducting states. A broad asymmetric resonance signal with side signals is obtained in the normal state, and all of them disappear in the superconducting state. The temperature and angular orientation effects on these signals suggest that the broad asymmetric signal arises from electron spin resonance of conduction electrons (CESR) and the side signals from exchange interactions as Platzman-Wolff type spin waves. The disappearance of CESR and spin waves in a superconducting state demonstrates the role of exchange interactions in Cooper pair formation.

Keywords: Bi-2223 superconductor, CESR, ESR, exchange interactions, spin waves

Procedia PDF Downloads 101
465 The Role of Metal-Induced Gap States in the Superconducting Qubit Decoherence at Low-Dimension

Authors: Dominik Szczesniak, Sabre Kais

Abstract:

In the present communication, we analyze selected local aspects of the metal-induced gap states (MIGSs) that may be responsible for the magnetic flux noise in some of the superconducting qubit modalities at low-dimension. The presented theoretical analysis stems from the earlier bulk considerations and is aimed at further explanation of the decoherence effect by recognizing its universal character. Specifically, the analysis is carried out by using the complex band structure method for arbitrary low-dimensional junctions. This allows us to provide the most fundamental and general observations for the systems of interest. In particular, herein, we investigate in detail the MIGSs behavior in the momentum space as a function of the potential fluctuations and the electron-electron interaction magnitude at the interface. In what follows, this study is meant to provide a direct relationship between the MIGSs behavior, the discussed decoherence effect, and the intrinsic properties of the low-dimensional Josephson junctions.

Keywords: superconducting qubits, metal-induced gap states, decoherence, low-dimension

Procedia PDF Downloads 116
464 Infrastructure Project Management and Implementation: A Case Study Of the Mokolo-Crocodile Water Augmentation Project in South Africa

Authors: Elkington Sibusiso Mnguni

Abstract:

The Mokolo-Crocodile Water Augmentation Project (MCWAP) is located in the Limpopo Province in the northern-western part of South Africa. Its purpose is to increase water supply by 30 million cubic meters per year to meet current and future demand for users, including power stations, mining houses, and the local municipality in the Lephalale area. This paper documents the planning and implementation aspects of the MCWAP infrastructure project. The study will add to the body of knowledge with respect to bulk water infrastructure development in water-scarce regions. The method used to gather and collate relevant data and information was the desktop study. The key finding was that the project was successfully completed in 2015 using conventional project management and construction methods. The project is currently being operated and maintained by the National Department of Water and Sanitation.

Keywords: construction, contract management, infrastructure project, project management

Procedia PDF Downloads 275
463 Land Use and Natal Multimammate Mouse Abundance in Lassa Fever Endemic Villages of Eastern Sierra Leone

Authors: J. T. Koininga, J. E. Teigen, A. Wilkinson, D. Kanneh, F. Kanneh, M. Foday, D. S. Grant, M. Leach, L. M. Moses

Abstract:

Lassa fever (LF) is a severe febrile illness endemic to West Africa. While human-to-human transmission occurs, evidence suggests most LF cases originate from exposure to rodents, particularly the Natal multimammate mouse, Mastomys natalensis. Within West Africa, LF occurs primarily in rural communities where agriculture is the main economic activity. Seasonality of LF has also been linked to agricultural cycles, with peak incidence occurring in the dry season when fields are burned and plowed. To investigate this pattern of seasonality, four agricultural communities were selected for this two-year longitudinal study. Each community was to be sampled four times each year, but this was interrupted by the Ebola virus disease outbreak. Agricultural land use, forested, and fallow areas were identified through participatory mapping. Transects were plotted in each area and Sherman traps were set for four nights. Captured small mammals were identified, ear tagged, and released. Mastomys natalensis abundance was found to be highest in areas of converted fallow land and rice swamps in the dry season and upland mixed crop areas toward the onset of the rainy season. All peak times were associated with heavy perturbation of soil. All ages and genders were present during these time points. These results suggest that peak abundance of the Mastomys natalensis in agricultural areas coincides with peak incidence of LF reported in this region. Although contact with rodents may be higher in villages, our study suggests human behaviors in agricultural areas may increase risk of transmission of Lassa virus.

Keywords: agriculture, land use, Lassa Fever, rodent abundance

Procedia PDF Downloads 96
462 Analysis of Injection-Lock in Oscillators versus Phase Variation of Injected Signal

Authors: M. Yousefi, N. Nasirzadeh

Abstract:

In this paper, behavior of an oscillator under injection of another signal has been investigated. Also, variation of output signal amplitude versus injected signal phase variation, the effect of varying the amplitude of injected signal and quality factor of the oscillator has been investigated. The results show that the locking time depends on phase and the best locking time happens at 180-degrees phase. Also, the effect of injected lock has been discussed. Simulations show that the locking time decreases with signal injection to bulk. Locking time has been investigated versus various phase differences. The effect of phase and amplitude changes on locking time of a typical LC oscillator in 180 nm technology has been investigated.

Keywords: analysis, oscillator, injection-lock oscillator, phase modulation

Procedia PDF Downloads 327
461 Physical Properties of Uranium Dinitride UN2 by Using Density Functional Theory (DFT and DFT+U)

Authors: T. Zergoug, S. E. H. Abaidia, A. Nedjar, M. Y. Mokeddem

Abstract:

Physical properties of uranium di-nitride (UN2) were investigated in detail using first principles calculations based on density functional theory. To treat the strong correlation effects caused by 5f Uranium valence electrons, on-site Coulomb interaction correction via the Hubbard-like term, U (DFT+U) was employed. The UN2 structural, mechanical and thermodynamic properties were calculated within DFT and Various U of DFT+U approach. The Perdew–Burke–Ernzerhof (PBE.5.2) version of the generalized gradient approximation (GGA) is used to describe the exchange-correlation with the projector-augmented wave (PAW) pseudo potentials. A comparative study shows that results are improved by using the Hubbard formalism for a certain U value correction like the structural parameter. For some physical properties the variation versus Hubbard U is strong like Young modulus but for others it is weakly noticeable such as the density of state (DOS) or bulk modulus. We noticed also that up from U=7.5 eV, elastic results become not conform to the cubic cell elastic criteria since the C44 values turn out to be negative.

Keywords: uranium diNitride, UN2, DFT+U, elastic properties

Procedia PDF Downloads 413
460 Climatic and Environmental Variables Do Not Affect the Diversity of Possible Phytoplasmic Vector Insects Associated with Quercus humboltii Oak Trees in Bogota, Colombia

Authors: J. Lamilla-Monje, C. Solano-Puerto, L. Franco-Lara

Abstract:

Trees play an essential role in cities due to their ability to provide multiple ecosystem goods and services. Bogota trees are threatened by factors such as pests, pathogens, contamination, among others. Among the pathogens, phytoplasmas are a potential risk for urban trees, generating symptoms that affect the ecosystem services that these trees provide in Bogota, an example of this is the affectation of Q. humboldtii by phytoplasmas, these bacteria are transmitted for insects of the order Hemiptera, this is why the objective of this work was to know if the climatic variables (humidity, precipitation, and temperature) and environmental variables (PM10 and PM2.5) could be related to the distribution of the Oak Quercus entomofauna and specifically with the phytoplasma vector insects in Bogota. For this study, the sampling points were distributed in areas of the city with contrasting variables in two types of locations: parks and streets. A total of 68 trees were sampled in which the associated insects were collected using two methodologies: jameo and agitation traps. The results show that insects of the order Hemiptera were the most abundant, including a total of 1682 individuals represented by 29 morphotypes, within this order individuals from eight families were collected (Aphidae, Aradidae, Berytidae, Cicadellidae, Issidae, Membracidae, Miridae, and Psyllidae), finding as possible vectors the families Cicadellidae, Membracidae, and Psyllidae with 959, 8 and 14 individuals respectively. Within the Cicadellidae family, 21 morphotypes were found, being reported as vectors in the literature: Amplicephalus, Exitianus atratus, Haldorus sp., Xestocephalus desertorum, Idiocerinae sp., Scaphytopius sp., the Membracidae family was represented by two morphotypes and the Psyllidae by one. Results that suggest that there is no correlation between climatic and environmental variables with the diversity of insects associated with oak. Knowing the vector insects of phytoplasmas in oak trees will complete the pathosystem and generate effective vector control.

Keywords: vector insects, diversity, phytoplasmas, Cicadellidae

Procedia PDF Downloads 129
459 Novel Technique for calculating Surface Potential Gradient of Overhead Line Conductors

Authors: Sudip Sudhir Godbole

Abstract:

In transmission line surface potential gradient is a critical design parameter for planning overhead line, as it determines the level of corona loss (CL), radio interference (RI) and audible noise (AN).With increase of transmission line voltage level bulk power transfer is possible, using bundle conductor configuration used, it is more complex to find accurate surface stress in bundle configuration. The majority of existing models for surface gradient calculations are based on analytical methods which restrict their application in simulating complex surface geometry. This paper proposes a novel technique which utilizes both analytical and numerical procedure to predict the surface gradient. One of 400 kV transmission line configurations has been selected as an example to compare the results for different methods. The different strand shapes are a key variable in determining.

Keywords: surface gradient, Maxwell potential coefficient method, market and Mengele’s method, successive images method, charge simulation method, finite element method

Procedia PDF Downloads 514
458 The Photon-Drag Effect in Cylindrical Quantum Wire with a Parabolic Potential

Authors: Hoang Van Ngoc, Nguyen Thu Huong, Nguyen Quang Bau

Abstract:

Using the quantum kinetic equation for electrons interacting with acoustic phonon, the density of the constant current associated with the drag of charge carriers in cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field and a laser radiation field is calculated. The density of the constant current is studied as a function of the frequency of electromagnetic wave, as well as the frequency of laser field and the basic elements of quantum wire with a parabolic potential. The analytic expression of the constant current density is numerically evaluated and plotted for a specific quantum wires GaAs/AlGaAs to show the dependence of the constant current density on above parameters. All these results of quantum wire compared with bulk semiconductors and superlattices to show the difference.

Keywords: The photon-drag effect, the constant current density, quantum wire, parabolic potential

Procedia PDF Downloads 387
457 Modeling Nanomechanical Behavior of ZnO Nanowires as a Function of Nano-Diameter

Authors: L. Achou, A. Doghmane

Abstract:

Elastic performances, as an essential property of nanowires (NWs), play a significant role in the design and fabrication of modern nanodevices. In this paper, our interest is focused on ZnO NWs to investigate wire diameter (Dwire ≤ 400 nm) effects on elastic properties. The plotted data reveal that a strong size dependence of the elastic constants exists when the wire diameter is smaller than ~ 100 nm. For larger diameters (Dwire > 100 nm), these ones approach their corresponding bulk values. To enrich this study, we make use of the scanning acoustic microscopy simulation technique. The calculation methodology consists of several steps: determination of longitudinal and transverse wave velocities, calculation of refection coefficients, calculation of acoustic signatures and Rayleigh velocity determination. Quantitatively, it was found that changes in ZnO diameters over the ranges 1 nm ≤ Dwire ≤ 100 nm lead to similar exponential variations, for all elastic parameters, of the from: A = a + b exp(-Dwire/c) where a, b, and c are characteristic constants of a given parameter. The developed relation can be used to predict elastic properties of such NW by just knowing its diameter and vice versa.

Keywords: elastic properties, nanowires, semiconductors, theoretical model, ZnO

Procedia PDF Downloads 143
456 Estimation of Effective Mechanical Properties of Linear Elastic Materials with Voids Due to Volume and Surface Defects

Authors: Sergey A. Lurie, Yury O. Solyaev, Dmitry B. Volkov-Bogorodsky, Alexander V. Volkov

Abstract:

The media with voids is considered and the method of the analytical estimation of the effective mechanical properties in the theory of elastic materials with voids is proposed. The variational model of the porous media is discussed, which is based on the model of the media with fields of conserved dislocations. It is shown that this model is fully consistent with the known model of the linear elastic materials with voids. In the present work, the generalized model of the porous media is proposed in which the specific surface properties are associated with the field of defects-pores in the volume of the deformed body. Unlike typical surface elasticity model, the strain energy density of the considered model includes the special part of the surface energy with the quadratic form of the free distortion tensor. In the result, the non-classical boundary conditions take modified form of the balance equations of volume and surface stresses. The analytical approach is proposed in the present work which allows to receive the simple enough engineering estimations for effective characteristics of the media with free dilatation. In particular, the effective flexural modulus and Poisson's ratio are determined for the problem of a beam pure bending. Here, the known voids elasticity solution was expanded on the generalized model with the surface effects. Received results allow us to compare the deformed state of the porous beam with the equivalent classic beam to introduce effective bending rigidity. Obtained analytical expressions for the effective properties depend on the thickness of the beam as a parameter. It is shown that the flexural modulus of the porous beam is decreased with an increasing of its thickness and the effective Poisson's ratio of the porous beams can take negative values for the certain values of the model parameters. On the other hand, the effective shear modulus is constant under variation of all values of the non-classical model parameters. Solutions received for a beam pure bending and the hydrostatic loading of the porous media are compared. It is shown that an analytical estimation for the bulk modulus of the porous material under hydrostatic compression gives an asymptotic value for the effective bulk modulus of the porous beam in the case of beam thickness increasing. Additionally, it is shown that the scale effects appear due to the surface properties of the porous media. Obtained results allow us to offer the procedure of an experimental identification of the non-classical parameters in the theory of the linear elastic materials with voids based on the bending tests for samples with different thickness. Finally, the problem of implementation of the Saint-Venant hypothesis for the transverse stresses in the porous beam are discussed. These stresses are different from zero in the solution of the voids elasticity theory, but satisfy the integral equilibrium equations. In this work, the exact value of the introduced surface parameter was found, which provides the vanishing of the transverse stresses on the free surfaces of a beam.

Keywords: effective properties, scale effects, surface defects, voids elasticity

Procedia PDF Downloads 380
455 Correlation to Predict the Effect of Particle Type on Axial Voidage Profile in Circulating Fluidized Beds

Authors: M. S. Khurram, S. A. Memon, S. Khan

Abstract:

Bed voidage behavior among different flow regimes for Geldart A, B, and D particles (fluid catalytic cracking catalyst (FCC), particle A and glass beads) of diameter range 57-872 μm, apparent density 1470-3092 kg/m3, and bulk density range 890-1773 kg/m3 were investigated in a gas-solid circulating fluidized bed of 0.1 m-i.d. and 2.56 m-height of plexi-glass. Effects of variables (gas velocity, particle properties, and static bed height) were analyzed on bed voidage. The axial voidage profile showed a typical trend along the riser: a dense bed at the lower part followed by a transition in the splash zone and a lean phase in the freeboard. Bed expansion and dense bed voidage increased with an increase of gas velocity as usual. From experimental results, a generalized model relationship based on inverse fluidization number for dense bed voidage from bubbling to fast fluidization regimes was presented.

Keywords: axial voidage, circulating fluidized bed, splash zone, static bed

Procedia PDF Downloads 259