Search results for: Tisza River
743 Analysis of Trend and Variability of Rainfall in the Mid-Mahanadi River Basin of Eastern India
Authors: Rabindra K. Panda, Gurjeet Singh
Abstract:
The major objective of this study was to analyze the trend and variability of rainfall in the middle Mahandi river basin located in eastern India. The trend of variation of extreme rainfall events has predominant effect on agricultural water management and extreme hydrological events such as floods and droughts. Mahanadi river basin is one of the major river basins of India having an area of 1,41,589 km2 and divided into three regions: Upper, middle and delta region. The middle region of Mahanadi river basin has an area of 48,700 km2 and it is mostly dominated by agricultural land, where agriculture is mostly rainfed. The study region has five Agro-climatic zones namely: East and South Eastern Coastal Plain, North Eastern Ghat, Western Undulating Zone, Western Central Table Land and Mid Central Table Land, which were numbered as zones 1 to 5 respectively for convenience in reporting. In the present study, analysis of variability and trends of annual, seasonal, and monthly rainfall was carried out, using the daily rainfall data collected from the Indian Meteorological Department (IMD) for 35 years (1979-2013) for the 5 agro-climatic zones. The long term variability of rainfall was investigated by evaluating the mean, standard deviation and coefficient of variation. The long term trend of rainfall was analyzed using the Mann-Kendall test on monthly, seasonal and annual time scales. It was found that there is a decreasing trend in the rainfall during the winter and pre monsoon seasons for zones 2, 3 and 4; whereas in the monsoon (rainy) season there is an increasing trend for zones 1, 4 and 5 with a level of significance ranging between 90-95%. On the other hand, the mean annual rainfall has an increasing trend at 99% significance level. The estimated seasonality index showed that the rainfall distribution is asymmetric and distributed over 3-4 months period. The study will help to understand the spatio-temporal variation of rainfall and to determine the correlation between the current rainfall trend and climate change scenario of the study region for multifarious use.Keywords: Eastern India, long-term variability and trends, Mann-Kendall test, seasonality index, spatio-temporal variation
Procedia PDF Downloads 306742 Bridging the Gap: Living Machine in Educational Nature Preserve Center
Authors: Zakeia Benmoussa
Abstract:
Pressure on freshwater systems comes from removing too much water to grow crops; contamination from economic activities, land use practices, and human waste. The paper will be focusing on how water management can influence the design, implementation, and impacts of the ecological principles of biomimicry as sustainable methods in recycling wastewater. At Texas State, United States of America, in particular the lower area of the Trinity River refuge, there is a true example of the diversity to be found in that area, whether when exploring the lands or the waterways. However, as the Trinity River supplies water to the state’s residents, the lower part of the river at Liberty County presents several problem of wastewater discharge in the river. Therefore, conservation efforts are particularly important in the Trinity River basin. Clearly, alternative ways must be considered in order to conserve water to meet future demands. As a result, there should be another system provided rather than the conventional water treatment. Mimicking ecosystem's technologies out of context is not enough, but if we incorporate plants into building architecture, in addition to their beauty, they can filter waste, absorb excess water, and purify air. By providing an architectural proposal center, a living system can be explored through several methods that influence natural resources on the micro-scale in order to impact sustainability on the macro-scale. The center consists of an ecological program of Plant and Water Biomimicry study which becomes a living organism that purifies the river water in a natural way through architecture. Consequently, a rich beautiful nature could be used as an educational destination, observation and adventure, as well as providing unpolluted fresh water to the major cities of Texas. As a result, these facts raise a couple of questions: Why is conservation so rarely practiced by those who must extract a living from the land? Are we sufficiently enlightened to realize that we must now challenge that dogma? Do architects respond to the environment and reflect on it in the correct way through their public projects? The method adopted in this paper consists of general research into careful study of the system of the living machine, in how to integrate it at architectural level, and finally, the consolidation of the all the conclusions formed into design proposal. To summarise, this paper attempts to provide a sustainable alternative perspective in bridging physical and mental interaction with biodiversity to enhance nature by using architecture.Keywords: Biodiversity, Design with Nature, Sustainable architecture, Waste water treatment.
Procedia PDF Downloads 297741 Report of Soundings in Tappeh Shahrestan in Order to Determine Its Field and Propose Privacy, Documenting and Systematic Review of Geophysical Studies
Authors: Reza Mehrafarin, Nafiseh Mirshekari, Mahyar Mehrafarin
Abstract:
In 25 km southeast of Zabul (center of Sistan, in the east of Iran), a large hill can be seen. This hill, which is located next to the bend of the Sistan river, is known as the Tappeh Shahrestan. The length of the Tappeh Shahrestan is 1350 meters, its width is 360 meters, and its height is 20 meters, which in total reaches to 48 hectares. The capital of Sistan province was Ram Shahrestan in the Sassanid period, according to Iranian historical texts and Sassanid Pahlavi traditions. The city was abandoned because the nearby river dried up. Then another capital was built in Sistan called Zarang. But due to the long passage of time since the destruction of the city, its real location was forgotten and and some archaeologists have suggested different areas as the main location of the Ram Shahrestan. In 2018, the first archaeological field activities took place on and around the hillin order to answer this question: was Tappe Shahristan the same as Ram Shahristan, the capital of Sistan, during the Sassanid period? In order to answer this question, archaeological field activities were carried out on and around the hill. The field activities of the first season included the followings: 1- Preparation of hill topography and plan metric 3-Archaeogeophysics studies 3-Methodical study of archeology 4-Determining the range of the hill by soundings5-Documentation of the hill 6-Classification, typology, and comparison of pottery typology. The results of archaeological field activities in the first phase of Tappeh Shahrestan showed that this ancient site was the same city of Ram Shahrestan, the capital of Sistan, during the Sassanid period. The beginning of settlement in this city was the third century BC and the time of leaving was the end of the third century AD. The most important factors in the creation of the city was the abundant water of the Sistan River and its convenient location, and the most important reason for the abandonment of the city was the Sistan River, whose water completely dried up.Keywords: archaeological surveys, archaeological soundings, ram shahrestan, sistan, tappeh shahrestan
Procedia PDF Downloads 110740 Erosion Susceptibility Zoning and Prioritization of Micro-Watersheds: A Remote Sensing-Gis Based Study of Asan River Basin, Western Doon Valley, India
Authors: Pijush Roy, Vinay Kumar Rai
Abstract:
The present study highlights the estimation of soil loss and identification of critical area for implementation of best management practice is central to the success of soil conservation programme. The quantification of morphometric and Universal Soil Loss Equation (USLE) factors using remote sensing and GIS for prioritization of micro-watersheds in Asan River catchment, western Doon valley at foothills of Siwalik ranges in the Dehradun districts of Uttarakhand, India. The watershed has classified as a dendritic pattern with sixth order stream. The area is classified into very high, high, moderately high, medium and low susceptibility zones. High to very high erosion zone exists in the urban area and agricultural land. Average annual soil loss of 64 tons/ha/year has been estimated for the watershed. The optimum management practices proposed for micro-watersheds of Asan River basin are; afforestation, contour bunding suitable sites for water harvesting structure as check dam and soil conservation, agronomical measure and bench terrace.Keywords: erosion susceptibility zones, morphometric characteristics, prioritization, remote sensing and GIS, universal soil loss equation
Procedia PDF Downloads 302739 Impact of Wastewater from Outfalls of River Ganga on Germination Percentage and Growth Parameters of Bitter Gourd (Momordica charantia L.) with Antioxidant Activity Study
Authors: Sayanti Kar, Amitava Ghosh, Pritam Aitch, Gupinath Bhandari
Abstract:
An extensive seasonal analysis of wastewater had been done from outfalls of river Ganga in Howrah, Hooghly, 24 PGS (N) District, West Bengal, India during 2017. The morphological parameters of Bitter gourd (Momordica charantia L.) were estimated under wastewater treatment. An approach to study the activity within the range of low molecular weight peptide 3-0.5 kDa were taken through its extraction and purification by ion exchange resin column, cation, and anion exchanger. HPLC analysis had been done for both in wastewater treated and untreated plants. The antioxidant activity by using DPPH and germination percentage in control and treated plants were also determined in relation to wastewater effect. The inhibition of growth and its parameters were maximum in pre-monsoon in comparing to post-monsoon and monsoon season. The study also helped to explore the effect of wastewater on the peptidome of Bitter gourd (Momordica charantia L.). Some of these low molecular weight peptide(s) (3-0.5 kDa) also inhibited during wastewater treatment. Expression of particular peptide(s) or absence of some peptide(s) in chromatogram indicated the adverse effects on plants which may be the indication of stressful condition. Pre monsoon waste water was found to create more impact than other two.Keywords: bitter gourd (Momordica charantia l.), low molecular weight peptide, river ganga, waste water
Procedia PDF Downloads 127738 Machine Learning and Internet of Thing for Smart-Hydrology of the Mantaro River Basin
Authors: Julio Jesus Salazar, Julio Jesus De Lama
Abstract:
the fundamental objective of hydrological studies applied to the engineering field is to determine the statistically consistent volumes or water flows that, in each case, allow us to size or design a series of elements or structures to effectively manage and develop a river basin. To determine these values, there are several ways of working within the framework of traditional hydrology: (1) Study each of the factors that influence the hydrological cycle, (2) Study the historical behavior of the hydrology of the area, (3) Study the historical behavior of hydrologically similar zones, and (4) Other studies (rain simulators or experimental basins). Of course, this range of studies in a certain basin is very varied and complex and presents the difficulty of collecting the data in real time. In this complex space, the study of variables can only be overcome by collecting and transmitting data to decision centers through the Internet of things and artificial intelligence. Thus, this research work implemented the learning project of the sub-basin of the Shullcas river in the Andean basin of the Mantaro river in Peru. The sensor firmware to collect and communicate hydrological parameter data was programmed and tested in similar basins of the European Union. The Machine Learning applications was programmed to choose the algorithms that direct the best solution to the determination of the rainfall-runoff relationship captured in the different polygons of the sub-basin. Tests were carried out in the mountains of Europe, and in the sub-basins of the Shullcas river (Huancayo) and the Yauli river (Jauja) with heights close to 5000 m.a.s.l., giving the following conclusions: to guarantee a correct communication, the distance between devices should not pass the 15 km. It is advisable to minimize the energy consumption of the devices and avoid collisions between packages, the distances oscillate between 5 and 10 km, in this way the transmission power can be reduced and a higher bitrate can be used. In case the communication elements of the devices of the network (internet of things) installed in the basin do not have good visibility between them, the distance should be reduced to the range of 1-3 km. The energy efficiency of the Atmel microcontrollers present in Arduino is not adequate to meet the requirements of system autonomy. To increase the autonomy of the system, it is recommended to use low consumption systems, such as the Ashton Raggatt McDougall or ARM Cortex L (Ultra Low Power) microcontrollers or even the Cortex M; and high-performance direct current (DC) to direct current (DC) converters. The Machine Learning System has initiated the learning of the Shullcas system to generate the best hydrology of the sub-basin. This will improve as machine learning and the data entered in the big data coincide every second. This will provide services to each of the applications of the complex system to return the best data of determined flows.Keywords: hydrology, internet of things, machine learning, river basin
Procedia PDF Downloads 160737 Internal Cycles from Hydrometric Data and Variability Detected Through Hydrological Modelling Results, on the Niger River, over 1901-2020
Authors: Salif Koné
Abstract:
We analyze hydrometric data at the Koulikoro station on the Niger River; this basin drains 120600 km2 and covers three countries in West Africa, Guinea, Mali, and Ivory Coast. Two subsequent decadal cycles are highlighted (1925-1936 and 1929-1939) instead of the presumed single decadal one from literature. Moreover, the observed hydrometric data shows a multidecadal 40-year period that is confirmed when graphing a spatial coefficient of variation of runoff over decades (starting at 1901-1910). Spatial runoff data are produced on 48 grids (0.5 degree by 0.5 degree) and through semi-distributed versions of both SimulHyd model and GR2M model - variants of a French Hydrologic model – standing for Genie Rural of 2 parameters at monthly time step. Both extremal decades in terms of runoff coefficient of variation are confronted: 1951-1960 has minimal coefficient of variation, and 1981-1990 shows the maximal value of it during the three months of high-water level (August, September, and October). The mapping of the relative variation of these two decadal situations allows hypothesizing as following: the scale of variation between both extremal situations could serve to fix boundary conditions for further simulations using data from climate scenario.Keywords: internal cycles, hydrometric data, niger river, gr2m and simulhyd framework, runoff coefficient of variation
Procedia PDF Downloads 95736 Hydrological Characterization of a Watershed for Streamflow Prediction
Authors: Oseni Taiwo Amoo, Bloodless Dzwairo
Abstract:
In this paper, we extend the versatility and usefulness of GIS as a methodology for any river basin hydrologic characteristics analysis (HCA). The Gurara River basin located in North-Central Nigeria is presented in this study. It is an on-going research using spatial Digital Elevation Model (DEM) and Arc-Hydro tools to take inventory of the basin characteristics in order to predict water abstraction quantification on streamflow regime. One of the main concerns of hydrological modelling is the quantification of runoff from rainstorm events. In practice, the soil conservation service curve (SCS) method and the Conventional procedure called rational technique are still generally used these traditional hydrological lumped models convert statistical properties of rainfall in river basin to observed runoff and hydrograph. However, the models give little or no information about spatially dispersed information on rainfall and basin physical characteristics. Therefore, this paper synthesizes morphometric parameters in generating runoff. The expected results of the basin characteristics such as size, area, shape, slope of the watershed and stream distribution network analysis could be useful in estimating streamflow discharge. Water resources managers and irrigation farmers could utilize the tool for determining net return from available scarce water resources, where past data records are sparse for the aspect of land and climate.Keywords: hydrological characteristic, stream flow, runoff discharge, land and climate
Procedia PDF Downloads 341735 Community Involvement in Reducing Maternal and Perinatal Mortality in Cross River State, Nigeria: 'The Saving Mother Giving Life' Strategic Approach in Cross River State
Authors: Oluwayemisi Femi-Pius, Kazeem Arogundade, Eberechukwu Eke, Jimmy Eko
Abstract:
Introduction: Globally, community involvement in improving their own health has been widely adopted as a strategy in Sub-Saharan Africa principally to ensure equitable access to essential health care as well as improve the uptake of maternal and newborn health services especially in poor-resource settings. Method: The Saving Mother Giving Life (SMGL) Initiative implemented by Pathfinder International with funding support from USAID conducted a Health Facility Assessment (HFA) and found out that maternal mortality ratio in Cross River State was 812 per 100,000 live birth and perinatal mortality was 160 per 1000 live birth. To reduce maternal and perinatal mortality, Pathfinder International mobilized, selected and trained community members as community volunteers, traditional birth attendants, and emergency transport service volunteer drivers mainly to address the delay in decision making and reaching the health facility among pregnant women. Results: The results showed that maternal mortality ratio in Cross River State decrease by 25% from 812 per 100,000 live birth at baseline to 206 per 100,000 live birth at June 2018 and perinatal mortality reduced by 35% from 160 per 100,000 at baseline to 58 per 1000 live birth at June 2018. Data also show that ANC visit increased from 7,451 to 11,344; institutional delivery increased from 8,931 at baseline to 10,784 in June 2018. There was also a remarkable uptake of post-partum family planning from 0 at baseline to 233 in June 2018. Conclusion: There is clear evidence that community involvement yields positive maternal outcomes and is pivotal for sustaining most health interventions.Keywords: maternal mortality, Nigeria, pathfinder international, perinatal mortality, saving mother giving life
Procedia PDF Downloads 192734 Bacteria Removal from Wastewater by Electrocoagulation Process
Authors: Boudjema Nouara, Mameri Nabil
Abstract:
Bacteria have played an important role in water contamination as a consequence of organic pollution. In this study, an electrocoagulation process was adopted to remove fecal contamination and pathogenic bacteria from waste water. The effect of anode/cathodes materials as well as operating conditions for bacteria removal from water, such as current intensity and initial pH and temperature. The results indicated that the complete removal was achevied when using aluminium anode as anode at current intensity of 3A, initial pH of 7-8 and electrolysis time of 30 minutes. This process showed a bactericidal effect of 95 to 99% for the total and fecal coliforms and 99% to 100% for Eschercichia coli and fecal Streptococci. A decrease of 72% was recorded for sulphite-reducing Clostridia. Thus, this process has the potential to be one the options for treatment where high amount of bacteria in wastewater river.Keywords: bacteria, el Harrach river, electrocoagulation, wastewater, treatment
Procedia PDF Downloads 497733 Suitability of Quarry Dust as Replacement of Sand in Medium Grade Concrete
Authors: Popoola M. Oyenola
Abstract:
Concrete plays the important role and a huge percentage of concrete is being utilized in every construction practices. Natural river sand is one of the major ingredients of concrete, is becoming expensive due to excessive cost of accessibility from sources. Also large scale depletion of sources creates environmental problems. Therefore, there is a need of economic alternative materials. Quarry dust is a waste obtained during quarrying process. It has been rampantly used in different construction practices and could be used as an effective fine aggregate instead of river sand. Partial and total replacement of fine aggregate in conventional concrete with quarry dust has been empirically conducted with the view to examining primarily the compressive strength of the resulting composite and possible total utilization of quarry dust as fine aggregate in the production of medium grade concrete. The results of the study showed that its specific gravity, porosity and water absorption showed satisfactory performance. The percentage replacement of natural river sand with quarry dust for a designed strength of 25N/mm2 varied at intervals of 10% up to a maximum value of 100%. A total of 132 cubes of 150 x 150 x 150mm were cast and tested at 7, 14 and 28 days of hydration. Compressive strength increases with curing age in all the mixes. Compressive strength decreases with increase in percentage of quarry dust. Generally the compressive strength of concrete incorporating quarry dust attained strength of 22.47 N/mm2 after 28 days which makes it a suitable aggregate for the production medium grade concrete.Keywords: quarry dust, concrete, aggregates, compressive strength
Procedia PDF Downloads 243732 Applied Free Living Nematode as Bioindicator to Assess Environmental Impact of Dam Construction in Ba Lai Estuary, Vietnam
Authors: Ngo Xuan Quang, Tran Thanh Thai, Ann Vanreusel
Abstract:
The Ba Lai dam construction was created in 2000 in the Ba Lai estuarine river, Ben Tre province, Vietnam to prevent marine water infiltration, drainage and de-acidification, and to build a reservoir of freshwater for land reclamation in the Ba Lai tributary. However, this dam is considered as an environmental failure for the originally connected estuarine and river ecosystem, especially to bad effect to benthic fauna distribution. This research aims to study applying free living nematode communities’ distribution in disturbance of dam construction as bioindicator to detect environmental impact. Nematode samples were collected together measuring physical–chemical environmental parameters such as chlorophyll, CPE, coliform, nutrient, grain size, salinity, dissolved oxygen, turbidity, conductivity, temperature in three stations within three replicates. Results showed that free living nematode communities at the dam construction was significantly low densities, low diversity (Hurlbert’s index, Hill diversity indices) and very low maturity index in comparison with two remaining stations. Strong correlation of nematode feeding types and communities’ structure was found in relation with sediment grain size and nutrient enrichment such nitrite, nitrate, phosphate and pigment concentration. Moreover, greatly negative link between nematode maturity index with nutrient parameters can serve as warning organic pollution of the Ba Lai river due to dam construction.Keywords: Ba Lai, dam impact, nematode, environment
Procedia PDF Downloads 353731 Pressure Surge Analysis for Al Gardabiya Pump Station Phase III of the Man-Made River Project
Authors: Ahmed Bensreti, Mohamed Gouarsha
Abstract:
This paper presents a review of the pressure surge simulations carried out for Phase III of the Man Made River project in Libya with particular emphasis on the transient generated by simultaneous pump trips at Al Gardabiya Pump Station. The omission of the surge vessel check valve and bypass system on the grounds of cost, ease of design, and construction will result in, as expected, increased surge fluctuations as the damping effect in the form was removed. From the hydraulic and control requirements, it is recommended for Al Gardabiya Pump station that the check valve and check valve bypass be included in the final surge vessel design.Keywords: computational fluid dynamics, surge vessel design, transient surge analysis, water pipe hydraulics
Procedia PDF Downloads 74730 Organic Pollution of Waters and Sediments in the Middle and Lower Valley of the Medjerda, Tunisia
Authors: Samia Khadhar, Anis Chekirbene, Nouha Khiari, Amira Mabrouki
Abstract:
The persistent organic pollutants (POPs) in aquatic environments are one of the most worrying problems for environmental sustainability and human health because of their carcinogenic and toxic characteristics. Human anthropogenic actions (wastewater discharges, agricultural and industrial activities) without prior treatment are the main cause of this organic pollution. Oued Madjerda is considered the most important river in Tunisia, hence the importance of assessing the level of organic pollution of water and sediments, taking into account the anthropogenic stress exerted on this river. Water and sediment samples were taken from the middle and lower valley of the Medjerda to determine the state of contamination by 7PCBs, priority 15PAHs, and pesticides. The analysis was performed by gas chromatography (GC) and liquid phase coupled to HPLC MS-MS mass spectroscopy. The results showed that for the waters, the total PAH and PCB contents vary respectively from 0.0023 to 7.72 mg/l and from 0.0001 to 0.179 mg/l. In surface sediments 0 to 15 cm, 7PCB levels vary from 1,112 to 110,062 µg/kg-1. In this study, we tried to determine the concentration of 96 pesticides in surface sediments; analyzes showed the presence of Buprofezin, propamocarb-HCl, hexaconazole, flutriafol, quinalphos, and tebufenpyrad with concentrations varying from 1.06 to 2.388 µg/kg-1. The pace of the spatial variation confirms the impact of wastewater discharged on the quality of water and sediments despite the perennial aspect of the river.Keywords: Wadi Madjerda, organic pollution, water and sediments surface, anthropics stress
Procedia PDF Downloads 127729 Impact of Interface Soil Layer on Groundwater Aquifer Behaviour
Authors: Hayder H. Kareem, Shunqi Pan
Abstract:
The geological environment where the groundwater is collected represents the most important element that affects the behaviour of groundwater aquifer. As groundwater is a worldwide vital resource, it requires knowing the parameters that affect this source accurately so that the conceptualized mathematical models would be acceptable to the broadest ranges. Therefore, groundwater models have recently become an effective and efficient tool to investigate groundwater aquifer behaviours. Groundwater aquifer may contain aquitards, aquicludes, or interfaces within its geological formations. Aquitards and aquicludes have geological formations that forced the modellers to include those formations within the conceptualized groundwater models, while interfaces are commonly neglected from the conceptualization process because the modellers believe that the interface has no effect on aquifer behaviour. The current research highlights the impact of an interface existing in a real unconfined groundwater aquifer called Dibdibba, located in Al-Najaf City, Iraq where it has a river called the Euphrates River that passes through the eastern part of this city. Dibdibba groundwater aquifer consists of two types of soil layers separated by an interface soil layer. A groundwater model is built for Al-Najaf City to explore the impact of this interface. Calibration process is done using PEST 'Parameter ESTimation' approach and the best Dibdibba groundwater model is obtained. When the soil interface is conceptualized, results show that the groundwater tables are significantly affected by that interface through appearing dry areas of 56.24 km² and 6.16 km² in the upper and lower layers of the aquifer, respectively. The Euphrates River will also leak water into the groundwater aquifer of 7359 m³/day. While these results are changed when the soil interface is neglected where the dry area became 0.16 km², the Euphrates River leakage became 6334 m³/day. In addition, the conceptualized models (with and without interface) reveal different responses for the change in the recharge rates applied on the aquifer through the uncertainty analysis test. The aquifer of Dibdibba in Al-Najaf City shows a slight deficit in the amount of water supplied by the current pumping scheme and also notices that the Euphrates River suffers from stresses applied to the aquifer. Ultimately, this study shows a crucial need to represent the interface soil layer in model conceptualization to be the intended and future predicted behaviours more reliable for consideration purposes.Keywords: Al-Najaf City, groundwater aquifer behaviour, groundwater modelling, interface soil layer, Visual MODFLOW
Procedia PDF Downloads 183728 Technical, Environmental and Financial Assessment for Optimal Sizing of Run-of-River Small Hydropower Project: Case Study in Colombia
Authors: David Calderon Villegas, Thomas Kaltizky
Abstract:
Run-of-river (RoR) hydropower projects represent a viable, clean, and cost-effective alternative to dam-based plants and provide decentralized power production. However, RoR schemes cost-effectiveness depends on the proper selection of site and design flow, which is a challenging task because it requires multivariate analysis. In this respect, this study presents the development of an investment decision support tool for assessing the optimal size of an RoR scheme considering the technical, environmental, and cost constraints. The net present value (NPV) from a project perspective is used as an objective function for supporting the investment decision. The tool has been tested by applying it to an actual RoR project recently proposed in Colombia. The obtained results show that the optimum point in financial terms does not match the flow that maximizes energy generation from exploiting the river's available flow. For the case study, the flow that maximizes energy corresponds to a value of 5.1 m3/s. In comparison, an amount of 2.1 m3/s maximizes the investors NPV. Finally, a sensitivity analysis is performed to determine the NPV as a function of the debt rate changes and the electricity prices and the CapEx. Even for the worst-case scenario, the optimal size represents a positive business case with an NPV of 2.2 USD million and an IRR 1.5 times higher than the discount rate.Keywords: small hydropower, renewable energy, RoR schemes, optimal sizing, objective function
Procedia PDF Downloads 132727 Law of the River and Indigenous Water Rights: Reassessing the International Legal Frameworks for Indigenous Rights and Water Justice
Authors: Sultana Afrin Nipa
Abstract:
Life on Earth cannot thrive or survive without water. Water is intimately tied with community, culture, spirituality, identity, socio-economic progress, security, self-determination, and livelihood. Thus, access to water is a United Nations recognized human right due to its significance in these realms. However, there is often conflict between those who consider water as the spiritual and cultural value and those who consider it an economic value thus being threatened by economic development, corporate exploitation, government regulation, and increased privatization, highlighting the complex relationship between water and culture. The Colorado River basin is home to over 29 federally recognized tribal nations. To these tribes, it holds cultural, economic, and spiritual significance and often extends to deep human-to-non-human connections frequently precluded by the Westphalian regulations and settler laws. Despite the recognition of access to rivers as a fundamental human right by the United Nations, tribal communities and their water rights have been historically disregarded through inter alia, colonization, and dispossession of their resources. Law of the River such as ‘Winter’s Doctrine’, ‘Bureau of Reclamation (BOR)’ and ‘Colorado River Compact’ have shaped the water governance among the shareholders. However, tribal communities have been systematically excluded from these key agreements. While the Winter’s Doctrine acknowledged that tribes have the right to withdraw water from the rivers that pass through their reservations for self-sufficiency, the establishment of the BOR led to the construction of dams without tribal consultation, denying the ‘Winters’ regulation and violating these rights. The Colorado River Compact, which granted only 20% of the water to the tribes, diminishes the significance of international legal frameworks that prioritize indigenous self-determination and free pursuit of socio-economic and cultural development. Denial of this basic water right is the denial of the ‘recognition’ of their sovereignty and self-determination that questions the effectiveness of the international law. This review assesses the international legal frameworks concerning indigenous rights and water justice and aims to pinpoint gaps hindering the effective recognition and protection of Indigenous water rights in Colorado River Basin. This study draws on a combination of historical and qualitative data sets. The historical data encompasses the case settlements provided by the Bureau of Reclamation (BOR) respectively the notable cases of Native American water rights settlements on lower Colorado basin related to Arizona from 1979-2008. This material serves to substantiate the context of promises made to the Indigenous people and establishes connections between existing entities. The qualitative data consists of the observation of recorded meetings of the Central Arizona Project (CAP) to evaluate how the previously made promises are reflected now. The study finds a significant inconsistency in participation in the decision-making process and the lack of representation of Native American tribes in water resource management discussions. It highlights the ongoing challenges faced by the indigenous people to achieve their self-determination goal despite the legal arrangements.Keywords: colorado river, indigenous rights, law of the river, water governance, water justice
Procedia PDF Downloads 32726 Multi-Objective Optimization of Run-of-River Small-Hydropower Plants Considering Both Investment Cost and Annual Energy Generation
Authors: Amèdédjihundé H. J. Hounnou, Frédéric Dubas, François-Xavier Fifatin, Didier Chamagne, Antoine Vianou
Abstract:
This paper presents the techno-economic evaluation of run-of-river small-hydropower plants. In this regard, a multi-objective optimization procedure is proposed for the optimal sizing of the hydropower plants, and NSGAII is employed as the optimization algorithm. Annual generated energy and investment cost are considered as the objective functions, and number of generator units (n) and nominal turbine flow rate (QT) constitute the decision variables. Site of Yeripao in Benin is considered as the case study. We have categorized the river of this site using its environmental characteristics: gross head, and first quartile, median, third quartile and mean of flow. Effects of each decision variable on the objective functions are analysed. The results gave Pareto Front which represents the trade-offs between annual energy generation and the investment cost of hydropower plants, as well as the recommended optimal solutions. We noted that with the increase of the annual energy generation, the investment cost rises. Thus, maximizing energy generation is contradictory with minimizing the investment cost. Moreover, we have noted that the solutions of Pareto Front are grouped according to the number of generator units (n). The results also illustrate that the costs per kWh are grouped according to the n and rise with the increase of the nominal turbine flow rate. The lowest investment costs per kWh are obtained for n equal to one and are between 0.065 and 0.180 €/kWh. Following the values of n (equal to 1, 2, 3 or 4), the investment cost and investment cost per kWh increase almost linearly with increasing the nominal turbine flowrate while annual generated. Energy increases logarithmically with increasing of the nominal turbine flowrate. This study made for the Yeripao river can be applied to other rivers with their own characteristics.Keywords: hydropower plant, investment cost, multi-objective optimization, number of generator units
Procedia PDF Downloads 157725 Estimation of Leachate Generation from Municipal Solid Waste Landfills in Selangor
Authors: Tengku Nilam Baizura, Noor Zalina Mahmood
Abstract:
In Malaysia, landfilling is the most preferred method and most of it does not have the proper leachate treatment system which can cause environmental problems. Leachate is the major factor to river water pollution since most landfills are located near the river which is the main water resource for the country. The study aimed to estimate leachate production from landfills in Selangor. A simple mathematical modelling was used for the calculation of annual leachate volume. The estimate of identified landfill area (A) using Google Earth was multiplied by the annual rainfall (R). The product is expressed as volume (V). The data indicate that the leachate production is high even it is fully closed. It is important to design the efficient landfill and proper leachate treatment processes especially for the old/closed landfill. Extensive monitoring will be required to predict future impact.Keywords: landfill, leachate, municipal solid waste management, waste disposal
Procedia PDF Downloads 370724 Projections of Climate Change in the Rain Regime of the Ibicui River Basin
Authors: Claudineia Brazil, Elison Eduardo Bierhals, Francisco Pereira, José Leandro Néris, Matheus Rippel, Luciane Salvi
Abstract:
The global concern about climate change has been increasing, since the emission of gases from human activities contributes to the greenhouse effect in the atmosphere, indicating significant impacts to the planet in the coming years. The study of precipitation regime is fundamental for the development of research in several areas. Among them are hydrology, agriculture, and electric sector. Using the climatic projections of the models belonging to the CMIP5, the main objective of the paper was to present an analysis of the impacts of climate change without rainfall in the Uruguay River basin. After an analysis of the results, it can be observed that for the future climate, there is a tendency, in relation to the present climate, for larger numbers of dry events, mainly in the winter months, changing the pluviometric regime for wet summers and drier winters. Given this projected framework, it is important to note the importance of adequate management of the existing water sources in the river basin, since the value of rainfall is reduced for the next years, it may compromise the dynamics of the ecosystems in the region. Facing climate change is fundamental issue for regions and cities all around the world. Society must improve its resilience to phenomenon impacts, and spreading the knowledge among decision makers and citizens is also essential. So, these research results can be subsidies for the decision-making in planning and management of mitigation measures and/or adaptation in south Brazil.Keywords: climate change, hydrological potential, precipitation, mitigation
Procedia PDF Downloads 342723 Analyzing the Evolution of Polythiophene Nanoparticles Optically, Structurally, and Morphologically as a Sers (Surface-Enhanced Raman Spectroscopy) Sensor Pb²⁺ Detection in River Water
Authors: Temesgen Geremew
Abstract:
This study investigates the evolution of polythiophene nanoparticles (PThNPs) as surface-enhanced Raman spectroscopy (SERS) sensors for Pb²⁺ detection in river water. We analyze the PThNPs' optical, structural, and morphological properties at different stages of their development to understand their SERS performance. Techniques like UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) are employed for characterization. The SERS sensitivity towards Pb²⁺ is evaluated by monitoring the peak intensity of a specific Raman band upon increasing metal ion concentration. The study aims to elucidate the relationship between the PThNPs' characteristics and their SERS efficiency for Pb²⁺ detection, paving the way for optimizing their design and fabrication for improved sensing performance in real-world environmental monitoring applications.Keywords: polythiophene, Pb2+, SERS, nanoparticles
Procedia PDF Downloads 56722 Residue and Ecological Risk Assessment of Polybrominated Diphenyl Ethers (PBDEs) in Sediment from CauBay River, Vietnam
Authors: Toan Vu Duc, Son Ha Viet
Abstract:
This research presents the first comprehensive survey of congener profiles (7 indicator congeners) of polybrominated diphenyl ethers (PBDEs) in sediment samples covering ten sites in CauBay River, Vietnam. Chemical analyses were carried out in gas chromatography–mass spectrometry (GC–MS) for tri- to hepta- brominated congeners. Results pointed out a non-homogenous contamination of the sediment with ∑7 PBDE values ranging from 8.93 to 25.64ng g−1, reflecting moderate to low contamination closely in conformity to other Asian aquatic environments. The general order of decreasing congener contribution to the total load was: BDE 47 > 99 > 100 > 154, similar to the distribution pattern worldwide. PBDEs had rare risks in the sediment of studied area. However, due to the propensity of PBDEs to accumulate in various compartments of wildlife and human food webs, evaluation of biological tissues should be undertaken as a high priority.Keywords: residue, risk assessment, PBDEs, sediment
Procedia PDF Downloads 298721 Hydraulic Characteristics of the Tidal River Dongcheon in Busan City
Authors: Young Man Cho, Sang Hyun Kim
Abstract:
Even though various management practices such as sediment dredging were attempted to improve water quality of Dongcheon located in Busan, the environmental condition of this stream was deteriorated. Therefore, Busan metropolitan city had pumped and diverted sea water to upstream of Dongcheon for several years. This study explored hydraulic characteristics of Dongcheon to configure the best management practice for ecological restoration and water quality improvement of a man-made urban stream. Intensive field investigation indicates that average flow velocities at depths of 20% and 80% from the water surface ranged 5 to 10 cm/s and 2 to 5 cm/s, respectively. Concentrations of dissolved oxygen for all depths were less than 0.25 mg/l during low tidal period. Even though density difference can be found along stream depth, density current seems rarely generated in Dongcheon. Short period of high tidal portion and shallow depths are responsible for well-mixing nature of Doncheon.Keywords: hydraulic, tidal river, density current, sea water
Procedia PDF Downloads 225720 Assessing the Impacts of Riparian Land Use on Gully Development and Sediment Load: A Case Study of Nzhelele River Valley, Limpopo Province, South Africa
Authors: B. Mavhuru, N. S. Nethengwe
Abstract:
Human activities on land degradation have triggered several environmental problems especially in rural areas that are underdeveloped. The main aim of this study is to analyze the contribution of different land uses to gully development and sediment load on the Nzhelele River Valley in the Limpopo Province. Data was collected using different methods such as observation, field data techniques and experiments. Satellite digital images, topographic maps, aerial photographs and the sediment load static model also assisted in determining how land use affects gully development and sediment load. For data analysis, the researcher used the following methods: Analysis of Variance (ANOVA), descriptive statistics, Pearson correlation coefficient and statistical correlation methods. The results of the research illustrate that high land use activities create negative changes especially in areas that are highly fragile and vulnerable. Distinct impact on land use change was observed within settlement area (9.6 %) within a period of 5 years. High correlation between soil organic matter and soil moisture (R=0.96) was observed. Furthermore, a significant variation (p ≤ 0.6) between the soil organic matter and soil moisture was also observed. A very significant variation (p ≤ 0.003) was observed in bulk density and extreme significant variations (p ≤ 0.0001) were observed in organic matter and soil particle size. The sand mining and agricultural activities has contributed significantly to the amount of sediment load in the Nzhelele River. A high significant amount of total suspended sediment (55.3 %) and bed load (53.8 %) was observed within the agricultural area. The connection which associates the development of gullies to various land use activities determines the amount of sediment load. These results are consistent with other previous research and suggest that land use activities are likely to exacerbate the development of gullies and sediment load in the Nzhelele River Valley.Keywords: drainage basin, geomorphological processes, gully development, land degradation, riparian land use and sediment load
Procedia PDF Downloads 307719 Iraq Water Resources Planning: Perspectives and Prognoses
Authors: Nadhir Al-Ansari, Ammar A. Ali, Sven Knutsson
Abstract:
Iraq is located in the Middle East. It covers an area of 433,970 square kilometres populated by about 32 million inhabitants. Iraq greatly relies in its water resources on the Tigris and Euphrates Rivers. Recently, Iraq is suffering from water shortage problems. This is due to external and internal factors. The former includes global warming and water resources policies of neighbouring countries while the latter includes mismanagement of its water resources. The supply and demand are predicted to be 43 and 66.8 Billion Cubic Meters (BCM) respectively in 2015, while in 2025 it will be 17.61 and 77 BCM respectively. In addition, future prediction suggests that Tigris and Euphrates Rivers will be completely dry in 2040. To overcome this problem, prudent water management policies are to be adopted. This includes Strategic Water Management Vision, development of irrigation techniques, reduction of water losses, use of non-conventional water resources and research and development planning.Keywords: Iraq, Tigris River, Euphrates River, water scarcity, water resources management
Procedia PDF Downloads 449718 Rainfall and Flood Forecast Models for Better Flood Relief Plan of the Mae Sot Municipality
Authors: S. Chuenchooklin, S. Taweepong, U. Pangnakorn
Abstract:
This research was conducted in the Mae Sot Watershed whereas located in the Moei River Basin at the Upper Salween River Basin in Tak Province, Thailand. The Mae Sot Municipality is the largest urbanized in Tak Province and situated in the midstream of the Mae Sot Watershed. It usually faces flash flood problem after heavy rain due to poor flood management has been reported since economic rapidly bloom up in recently years. Its catchment can be classified as ungauged basin with lack of rainfall data and no any stream gaging station was reported. It was attached by most severely flood event in 2013 as the worst studied case for those all communities in this municipality. Moreover, other problems are also faced in this watershed such shortage water supply for domestic consumption and agriculture utilizations including deterioration of water quality and landslide as well. The research aimed to increase capability building and strengthening the participation of those local community leaders and related agencies to conduct better water management in urban area was started by mean of the data collection and illustration of appropriated application of some short period rainfall forecasting model as the aim for better flood relief plan and management through the hydrologic model system and river analysis system programs. The authors intended to apply the global rainfall data via the integrated data viewer (IDV) program from the Unidata with the aim for rainfall forecasting in short period of 7 - 10 days in advance during rainy season instead of real time record. The IDV product can be present in advance period of rainfall with time step of 3 - 6 hours was introduced to the communities. The result can be used to input to either the hydrologic modeling system model (HEC-HMS) or the soil water assessment tool model (SWAT) for synthesizing flood hydrographs and use for flood forecasting as well. The authors applied the river analysis system model (HEC-RAS) to present flood flow behaviors in the reach of the Mae Sot stream via the downtown of the Mae Sot City as flood extents as water surface level at every cross-sectional profiles of the stream. Both models of HMS and RAS were tested in 2013 with observed rainfall and inflow-outflow data from the Mae Sot Dam. The result of HMS showed fit to the observed data at dam and applied at upstream boundary discharge to RAS in order to simulate flood extents and tested in the field, and the result found satisfied. The result of IDV’s rainfall forecast data was compared to observed data and found fair. However, it is an appropriate tool to use in the ungauged catchment to use with flood hydrograph and river analysis models for future efficient flood relief plan and management.Keywords: global rainfall, flood forecast, hydrologic modeling system, river analysis system
Procedia PDF Downloads 349717 Estimation of Soil Erosion and Sediment Yield for ONG River Using GIS
Authors: Sanjay Kumar Behera, Kanhu Charan Patra
Abstract:
A GIS-based method has been applied for the determination of soil erosion and sediment yield in a small watershed in Ong River basin, Odisha, India. The method involves spatial disintegration of the catchment into homogenous grid cells to capture the catchment heterogeneity. The gross soil erosion in each cell was calculated using Universal Soil Loss Equation (USLE) by carefully determining its various parameters. The concept of sediment delivery ratio is used to route surface erosion from each of the discretized cells to the catchment outlet. The process of sediment delivery from grid cells to the catchment outlet is represented by the topographical characteristics of the cells. The effect of DEM resolution on sediment yield is analyzed using two different resolutions of DEM. The spatial discretization of the catchment and derivation of the physical parameters related to erosion in the cell are performed through GIS techniques.Keywords: DEM, GIS, sediment delivery ratio, sediment yield, soil erosion
Procedia PDF Downloads 449716 Flood Risk Assessment for Agricultural Production in a Tropical River Delta Considering Climate Change
Authors: Chandranath Chatterjee, Amina Khatun, Bhabagrahi Sahoo
Abstract:
With the changing climate, precipitation events are intensified in the tropical river basins. Since these river basins are significantly influenced by the monsoonal rainfall pattern, critical impacts are observed on the agricultural practices in the downstream river reaches. This study analyses the crop damage and associated flood risk in terms of net benefit in the paddy-dominated tropical Indian delta of the Mahanadi River. The Mahanadi River basin lies in eastern part of the Indian sub-continent and is greatly affected by the southwest monsoon rainfall extending from the month of June to September. This river delta is highly flood-prone and has suffered from recurring high floods, especially after the 2000s. In this study, the lumped conceptual model, Nedbør Afstrømnings Model (NAM) from the suite of MIKE models, is used for rainfall-runoff modeling. The NAM model is laterally integrated with the MIKE11-Hydrodynamic (HD) model to route the runoffs up to the head of the delta region. To obtain the precipitation-derived future projected discharges at the head of the delta, nine Global Climate Models (GCMs), namely, BCC-CSM1.1(m), GFDL-CM3, GFDL-ESM2G, HadGEM2-AO, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC5, MIROC-ESM-CHEM and NorESM1-M, available in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) archive are considered. These nine GCMs are previously found to best-capture the Indian Summer Monsoon rainfall. Based on the performance of the nine GCMs in reproducing the historical discharge pattern, three GCMs (HadGEM2-AO, IPSL-CM5A-MR and MIROC-ESM-CHEM) are selected. A higher Taylor Skill Score is considered as the GCM selection criteria. Thereafter, the 10-year return period design flood is estimated using L-moments based flood frequency analysis for the historical and three future projected periods (2010-2039, 2040-2069 and 2070-2099) under Representative Concentration Pathways (RCP) 4.5 and 8.5. A non-dimensional hydrograph analysis is performed to obtain the hydrographs for the historical/projected 10-year return period design floods. These hydrographs are forced into the calibrated and validated coupled 1D-2D hydrodynamic model, MIKE FLOOD, to simulate the flood inundation in the delta region. Historical and projected flood risk is defined based on the information about the flood inundation simulated by the MIKE FLOOD model and the inundation depth-damage-duration relationship of a normal rice variety cultivated in the river delta. In general, flood risk is expected to increase in all the future projected time periods as compared to the historical episode. Further, in comparison to the 2010s (2010-2039), an increased flood risk in the 2040s (2040-2069) is shown by all the three selected GCMs. However, the flood risk then declines in the 2070s as we move towards the end of the century (2070-2099). The methodology adopted herein for flood risk assessment is one of its kind and may be implemented in any world-river basin. The results obtained from this study can help in future flood preparedness by implementing suitable flood adaptation strategies.Keywords: flood frequency analysis, flood risk, global climate models (GCMs), paddy cultivation
Procedia PDF Downloads 75715 Detecting the Palaeochannels Based on Optical Data and High-Resolution Radar Data for Periyarriver Basin
Authors: S. Jayalakshmi, Gayathri S., Subiksa V., Nithyasri P., Agasthiya
Abstract:
Paleochannels are the buried part of an active river system which was separated from the active river channel by the process of cutoff or abandonment during the dynamic evolution of the active river. Over time, they are filled by young unconsolidated or semi-consolidated sediments. Additionally, it is impacted by geo morphological influences, lineament alterations, and other factors. The primary goal of this study is to identify the paleochannels in Periyar river basin for the year 2023. Those channels has a high probability in the presence of natural resources, including gold, platinum,tin,an duranium. Numerous techniques are used to map the paleochannel. Using the optical data, Satellite images were collected from various sources, which comprises multispectral satellite images from which indices such as Normalized Difference Vegetation Index (NDVI),Normalized Difference Water Index (NDWI), Soil Adjusted Vegetative Index (SAVI) and thematic layers such as Lithology, Stream Network, Lineament were prepared. Weights are assigned to each layer based on its importance, and overlay analysis has done, which concluded that the northwest region of the area has shown some paleochannel patterns. The results were cross-verified using the results obtained using microwave data. Using Sentinel data, Synthetic Aperture Radar (SAR) Image was extracted from European Space Agency (ESA) portal, pre-processed it using SNAP 6.0. In addition to that, Polarimetric decomposition technique has incorporated to detect the paleochannels based on its scattering property. Further, Principal component analysis has done for enhanced output imagery. Results obtained from optical and microwave radar data were compared and the location of paleochannels were detected. It resulted six paleochannels in the study area out of which three paleochannels were validated with the existing data published by Department of Geology and Environmental Science, Kerala. The other three paleochannels were newly detected with the help of SAR image.Keywords: paleochannels, optical data, SAR image, SNAP
Procedia PDF Downloads 92714 Sedimentological and Geochemical Characteristics of Aeolian Sediments and Their Implication for Sand Origin in the Yarlung Zangbo River Valley, Southern Qinghai-Tibetan Plateau
Authors: Na Zhou, Chun-Lai Zhang, Qing Li, Bingqi Zhu, Xun-Ming Wang
Abstract:
The understanding of the dynamics of aeolian sand in the Yarlung Zangbo River Valley (YLZBV), southern Qinghai-Tibetan Plateau, including its origins, transportation,and deposition, remains preliminary. In this study, we investigated the extensive origin of aeolian sediments in the YLZBV by analyzing the distribution and composition of sediment’s grain size and geochemical composition in dune sediments collected from the wide river terraces. The major purpose is to characterize the sedimentological and geochemical compositions of these aeolian sediments, trace back to their sources, and understand their influencing factors. As a result, the grain size and geochemistry variations, which showed a significant correlation between grain sizes distribution and element abundances, give a strong evidence that the important part of the aeolian sediments in the downstream areas was firstly derived from the upper reaches by intense fluvial processes. However, the sediments experienced significant mixing process with local inputs and reconstructed by regional wind transportation. The diverse compositions and tight associations in the major and trace element geochemistry between the up- and down-stream aeolian sediments and the local detrital rocks, which were collected from the surrounding mountains, suggest that the upstream aeolian sediments had originated from the various close-range rock types, and experienced intensive mixing processes via aeolian- fluvial dynamics. Sand mass transported by water and wind was roughly estimated to qualify the interplay between the aeolian and fluvial processes controlling the sediment transport, yield, and ultimately shaping the aeolian landforms in the mainstream of the YLZBV.Keywords: grain size distribution, geochemistry, wind and water load, sand source, Yarlung Zangbo River Valley
Procedia PDF Downloads 97