Search results for: Data Analysis
41762 Statistical Correlation between Logging-While-Drilling Measurements and Wireline Caliper Logs
Authors: Rima T. Alfaraj, Murtadha J. Al Tammar, Khaqan Khan, Khalid M. Alruwaili
Abstract:
OBJECTIVE/SCOPE (25-75): Caliper logging data provides critical information about wellbore shape and deformations, such as stress-induced borehole breakouts or washouts. Multiarm mechanical caliper logs are often run using wireline, which can be time-consuming, costly, and/or challenging to run in certain formations. To minimize rig time and improve operational safety, it is valuable to develop analytical solutions that can estimate caliper logs using available Logging-While-Drilling (LWD) data without the need to run wireline caliper logs. As a first step, the objective of this paper is to perform statistical analysis using an extensive datasetto identify important physical parameters that should be considered in developing such analytical solutions. METHODS, PROCEDURES, PROCESS (75-100): Caliper logs and LWD data of eleven wells, with a total of more than 80,000 data points, were obtained and imported into a data analytics software for analysis. Several parameters were selected to test the relationship of the parameters with the measured maximum and minimum caliper logs. These parameters includegamma ray, porosity, shear, and compressional sonic velocities, bulk densities, and azimuthal density. The data of the eleven wells were first visualized and cleaned.Using the analytics software, several analyses were then preformed, including the computation of Pearson’s correlation coefficients to show the statistical relationship between the selected parameters and the caliper logs. RESULTS, OBSERVATIONS, CONCLUSIONS (100-200): The results of this statistical analysis showed that some parameters show good correlation to the caliper log data. For instance, the bulk density and azimuthal directional densities showedPearson’s correlation coefficients in the range of 0.39 and 0.57, which wererelatively high when comparedto the correlation coefficients of caliper data with other parameters. Other parameters such as porosity exhibited extremely low correlation coefficients to the caliper data. Various crossplots and visualizations of the data were also demonstrated to gain further insights from the field data. NOVEL/ADDITIVE INFORMATION (25-75): This study offers a unique and novel look into the relative importance and correlation between different LWD measurements and wireline caliper logs via an extensive dataset. The results pave the way for a more informed development of new analytical solutions for estimating the size and shape of the wellbore in real-time while drilling using LWD data.Keywords: LWD measurements, caliper log, correlations, analysis
Procedia PDF Downloads 12141761 The Right to Data Portability and Its Influence on the Development of Digital Services
Authors: Roman Bieda
Abstract:
The General Data Protection Regulation (GDPR) will come into force on 25 May 2018 which will create a new legal framework for the protection of personal data in the European Union. Article 20 of GDPR introduces a right to data portability. This right allows for data subjects to receive the personal data which they have provided to a data controller, in a structured, commonly used and machine-readable format, and to transmit this data to another data controller. The right to data portability, by facilitating transferring personal data between IT environments (e.g.: applications), will also facilitate changing the provider of services (e.g. changing a bank or a cloud computing service provider). Therefore, it will contribute to the development of competition and the digital market. The aim of this paper is to discuss the right to data portability and its influence on the development of new digital services.Keywords: data portability, digital market, GDPR, personal data
Procedia PDF Downloads 47341760 Performance Analysis of Multichannel OCDMA-FSO Network under Different Pervasive Conditions
Authors: Saru Arora, Anurag Sharma, Harsukhpreet Singh
Abstract:
To meet the growing need of high data rate and bandwidth, various efforts has been made nowadays for the efficient communication systems. Optical Code Division Multiple Access over Free space optics communication system seems an effective role for providing transmission at high data rate with low bit error rate and low amount of multiple access interference. This paper demonstrates the OCDMA over FSO communication system up to the range of 7000 m at a data rate of 5 Gbps. Initially, the 8 user OCDMA-FSO system is simulated and pseudo orthogonal codes are used for encoding. Also, the simulative analysis of various performance parameters like power and core effective area that are having an effect on the Bit error rate (BER) of the system is carried out. The simulative analysis reveals that the length of the transmission is limited by the multi-access interference (MAI) effect which arises when the number of users increases in the system.Keywords: FSO, PSO, bit error rate (BER), opti system simulation, multiple access interference (MAI), q-factor
Procedia PDF Downloads 36541759 Analysis of Delivery of Quad Play Services
Authors: Rahul Malhotra, Anurag Sharma
Abstract:
Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.Keywords: FTTH, quad play, play service, access networks, data rate
Procedia PDF Downloads 41441758 Dynamic Analysis and Vibration Response of Thermoplastic Rolling Elements in a Rotor Bearing System
Authors: Nesrine Gaaliche
Abstract:
This study provides a finite element dynamic model for analyzing rolling bearing system vibration response. The vibration responses of polypropylene bearings with and without defects are studied using FE analysis and compared to experimental data. The viscoelastic behavior of thermoplastic is investigated in this work to evaluate the influence of material flexibility and damping viscosity. The vibrations are detected using 3D dynamic analysis. Peak vibrations are more noticeable in an inner ring defect than in an outer ring defect, according to test data. The performance of thermoplastic bearings is compared to that of metal parts using vibration signals. Both the test and numerical results show that Polypropylene bearings exhibit less vibration than steel counterparts. Unlike bearings made from metal, polypropylene bearings absorb vibrations and handle shaft misalignments. Following validation of the overall vibration spectrum data, Von Mises stresses inside the rings are assessed under high loads. Stress is significantly high under the balls, according to the simulation findings. For the test cases, the computational findings correspond closely to the experimental results.Keywords: viscoelastic, FE analysis, polypropylene, bearings
Procedia PDF Downloads 10441757 Infrastructural Investment and Economic Growth in Indian States: A Panel Data Analysis
Authors: Jonardan Koner, Basabi Bhattacharya, Avinash Purandare
Abstract:
The study is focused to find out the impact of infrastructural investment on economic development in Indian states. The study uses panel data analysis to measure the impact of infrastructural investment on Real Gross Domestic Product in Indian States. Panel data analysis incorporates Unit Root Test, Cointegration Teat, Pooled Ordinary Least Squares, Fixed Effect Approach, Random Effect Approach, Hausman Test. The study analyzes panel data (annual in frequency) ranging from 1991 to 2012 and concludes that infrastructural investment has a desirable impact on economic development in Indian. Finally, the study reveals that the infrastructural investment significantly explains the variation of economic indicator.Keywords: infrastructural investment, real GDP, unit root test, cointegration teat, pooled ordinary least squares, fixed effect approach, random effect approach, Hausman test
Procedia PDF Downloads 40241756 Mobile Learning: Toward Better Understanding of Compression Techniques
Authors: Farouk Lawan Gambo
Abstract:
Data compression shrinks files into fewer bits then their original presentation. It has more advantage on internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature therefore making them difficult to digest by some students (Engineers in particular). To determine the best approach toward learning data compression technique, this paper first study the learning preference of engineering students who tend to have strong active, sensing, visual and sequential learning preferences, the paper also study the advantage that mobility of learning have experienced; Learning at the point of interest, efficiency, connection, and many more. A survey is carried out with some reasonable number of students, through random sampling to see whether considering the learning preference and advantages in mobility of learning will give a promising improvement over the traditional way of learning. Evidence from data analysis using Ms-Excel as a point of concern for error-free findings shows that there is significance different in the students after using learning content provided on smart phone, also the result of the findings presented in, bar charts and pie charts interpret that mobile learning has to be promising feature of learning.Keywords: data analysis, compression techniques, learning content, traditional learning approach
Procedia PDF Downloads 34741755 Autonomic Threat Avoidance and Self-Healing in Database Management System
Authors: Wajahat Munir, Muhammad Haseeb, Adeel Anjum, Basit Raza, Ahmad Kamran Malik
Abstract:
Databases are the key components of the software systems. Due to the exponential growth of data, it is the concern that the data should be accurate and available. The data in databases is vulnerable to internal and external threats, especially when it contains sensitive data like medical or military applications. Whenever the data is changed by malicious intent, data analysis result may lead to disastrous decisions. Autonomic self-healing is molded toward computer system after inspiring from the autonomic system of human body. In order to guarantee the accuracy and availability of data, we propose a technique which on a priority basis, tries to avoid any malicious transaction from execution and in case a malicious transaction affects the system, it heals the system in an isolated mode in such a way that the availability of system would not be compromised. Using this autonomic system, the management cost and time of DBAs can be minimized. In the end, we test our model and present the findings.Keywords: autonomic computing, self-healing, threat avoidance, security
Procedia PDF Downloads 50441754 Implementation and Performance Analysis of Data Encryption Standard and RSA Algorithm with Image Steganography and Audio Steganography
Authors: S. C. Sharma, Ankit Gambhir, Rajeev Arya
Abstract:
In today’s era data security is an important concern and most demanding issues because it is essential for people using online banking, e-shopping, reservations etc. The two major techniques that are used for secure communication are Cryptography and Steganography. Cryptographic algorithms scramble the data so that intruder will not able to retrieve it; however steganography covers that data in some cover file so that presence of communication is hidden. This paper presents the implementation of Ron Rivest, Adi Shamir, and Leonard Adleman (RSA) Algorithm with Image and Audio Steganography and Data Encryption Standard (DES) Algorithm with Image and Audio Steganography. The coding for both the algorithms have been done using MATLAB and its observed that these techniques performed better than individual techniques. The risk of unauthorized access is alleviated up to a certain extent by using these techniques. These techniques could be used in Banks, RAW agencies etc, where highly confidential data is transferred. Finally, the comparisons of such two techniques are also given in tabular forms.Keywords: audio steganography, data security, DES, image steganography, intruder, RSA, steganography
Procedia PDF Downloads 29041753 Anomaly Detection in Financial Markets Using Tucker Decomposition
Authors: Salma Krafessi
Abstract:
The financial markets have a multifaceted, intricate environment, and enormous volumes of data are produced every day. To find investment possibilities, possible fraudulent activity, and market oddities, accurate anomaly identification in this data is essential. Conventional methods for detecting anomalies frequently fail to capture the complex organization of financial data. In order to improve the identification of abnormalities in financial time series data, this study presents Tucker Decomposition as a reliable multi-way analysis approach. We start by gathering closing prices for the S&P 500 index across a number of decades. The information is converted to a three-dimensional tensor format, which contains internal characteristics and temporal sequences in a sliding window structure. The tensor is then broken down using Tucker Decomposition into a core tensor and matching factor matrices, allowing latent patterns and relationships in the data to be captured. A possible sign of abnormalities is the reconstruction error from Tucker's Decomposition. We are able to identify large deviations that indicate unusual behavior by setting a statistical threshold. A thorough examination that contrasts the Tucker-based method with traditional anomaly detection approaches validates our methodology. The outcomes demonstrate the superiority of Tucker's Decomposition in identifying intricate and subtle abnormalities that are otherwise missed. This work opens the door for more research into multi-way data analysis approaches across a range of disciplines and emphasizes the value of tensor-based methods in financial analysis.Keywords: tucker decomposition, financial markets, financial engineering, artificial intelligence, decomposition models
Procedia PDF Downloads 6941752 Exploring the Role of Data Mining in Crime Classification: A Systematic Literature Review
Authors: Faisal Muhibuddin, Ani Dijah Rahajoe
Abstract:
This in-depth exploration, through a systematic literature review, scrutinizes the nuanced role of data mining in the classification of criminal activities. The research focuses on investigating various methodological aspects and recent developments in leveraging data mining techniques to enhance the effectiveness and precision of crime categorization. Commencing with an exposition of the foundational concepts of crime classification and its evolutionary dynamics, this study details the paradigm shift from conventional methods towards approaches supported by data mining, addressing the challenges and complexities inherent in the modern crime landscape. Specifically, the research delves into various data mining techniques, including K-means clustering, Naïve Bayes, K-nearest neighbour, and clustering methods. A comprehensive review of the strengths and limitations of each technique provides insights into their respective contributions to improving crime classification models. The integration of diverse data sources takes centre stage in this research. A detailed analysis explores how the amalgamation of structured data (such as criminal records) and unstructured data (such as social media) can offer a holistic understanding of crime, enriching classification models with more profound insights. Furthermore, the study explores the temporal implications in crime classification, emphasizing the significance of considering temporal factors to comprehend long-term trends and seasonality. The availability of real-time data is also elucidated as a crucial element in enhancing responsiveness and accuracy in crime classification.Keywords: data mining, classification algorithm, naïve bayes, k-means clustering, k-nearest neigbhor, crime, data analysis, sistematic literature review
Procedia PDF Downloads 6541751 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features
Authors: Bushra Zafar, Usman Qamar
Abstract:
Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection
Procedia PDF Downloads 31641750 Analyzing Keyword Networks for the Identification of Correlated Research Topics
Authors: Thiago M. R. Dias, Patrícia M. Dias, Gray F. Moita
Abstract:
The production and publication of scientific works have increased significantly in the last years, being the Internet the main factor of access and distribution of these works. Faced with this, there is a growing interest in understanding how scientific research has evolved, in order to explore this knowledge to encourage research groups to become more productive. Therefore, the objective of this work is to explore repositories containing data from scientific publications and to characterize keyword networks of these publications, in order to identify the most relevant keywords, and to highlight those that have the greatest impact on the network. To do this, each article in the study repository has its keywords extracted and in this way the network is characterized, after which several metrics for social network analysis are applied for the identification of the highlighted keywords.Keywords: bibliometrics, data analysis, extraction and data integration, scientometrics
Procedia PDF Downloads 25741749 Using RASCAL Code to Analyze the Postulated UF6 Fire Accident
Authors: J. R. Wang, Y. Chiang, W. S. Hsu, S. H. Chen, J. H. Yang, S. W. Chen, C. Shih, Y. F. Chang, Y. H. Huang, B. R. Shen
Abstract:
In this research, the RASCAL code was used to simulate and analyze the postulated UF6 fire accident which may occur in the Institute of Nuclear Energy Research (INER). There are four main steps in this research. In the first step, the UF6 data of INER were collected. In the second step, the RASCAL analysis methodology and model was established by using these data. Third, this RASCAL model was used to perform the simulation and analysis of the postulated UF6 fire accident. Three cases were simulated and analyzed in this step. Finally, the analysis results of RASCAL were compared with the hazardous levels of the chemicals. According to the compared results of three cases, Case 3 has the maximum danger in human health.Keywords: RASCAL, UF₆, safety, hydrogen fluoride
Procedia PDF Downloads 22241748 A Safety Analysis Method for Multi-Agent Systems
Authors: Ching Louis Liu, Edmund Kazmierczak, Tim Miller
Abstract:
Safety analysis for multi-agent systems is complicated by the, potentially nonlinear, interactions between agents. This paper proposes a method for analyzing the safety of multi-agent systems by explicitly focusing on interactions and the accident data of systems that are similar in structure and function to the system being analyzed. The method creates a Bayesian network using the accident data from similar systems. A feature of our method is that the events in accident data are labeled with HAZOP guide words. Our method uses an Ontology to abstract away from the details of a multi-agent implementation. Using the ontology, our methods then constructs an “Interaction Map,” a graphical representation of the patterns of interactions between agents and other artifacts. Interaction maps combined with statistical data from accidents and the HAZOP classifications of events can be converted into a Bayesian Network. Bayesian networks allow designers to explore “what it” scenarios and make design trade-offs that maintain safety. We show how to use the Bayesian networks, and the interaction maps to improve multi-agent system designs.Keywords: multi-agent system, safety analysis, safety model, integration map
Procedia PDF Downloads 41741747 Hybrid Approach for Country’s Performance Evaluation
Authors: C. Slim
Abstract:
This paper presents an integrated model, which hybridized data envelopment analysis (DEA) and support vector machine (SVM) together, to class countries according to their efficiency and performance. This model takes into account aspects of multi-dimensional indicators, decision-making hierarchy and relativity of measurement. Starting from a set of indicators of performance as exhaustive as possible, a process of successive aggregations has been developed to attain an overall evaluation of a country’s competitiveness.Keywords: Artificial Neural Networks (ANN), Support vector machine (SVM), Data Envelopment Analysis (DEA), Aggregations, indicators of performance
Procedia PDF Downloads 33841746 Probability Sampling in Matched Case-Control Study in Drug Abuse
Authors: Surya R. Niraula, Devendra B Chhetry, Girish K. Singh, S. Nagesh, Frederick A. Connell
Abstract:
Background: Although random sampling is generally considered to be the gold standard for population-based research, the majority of drug abuse research is based on non-random sampling despite the well-known limitations of this kind of sampling. Method: We compared the statistical properties of two surveys of drug abuse in the same community: one using snowball sampling of drug users who then identified “friend controls” and the other using a random sample of non-drug users (controls) who then identified “friend cases.” Models to predict drug abuse based on risk factors were developed for each data set using conditional logistic regression. We compared the precision of each model using bootstrapping method and the predictive properties of each model using receiver operating characteristics (ROC) curves. Results: Analysis of 100 random bootstrap samples drawn from the snowball-sample data set showed a wide variation in the standard errors of the beta coefficients of the predictive model, none of which achieved statistical significance. One the other hand, bootstrap analysis of the random-sample data set showed less variation, and did not change the significance of the predictors at the 5% level when compared to the non-bootstrap analysis. Comparison of the area under the ROC curves using the model derived from the random-sample data set was similar when fitted to either data set (0.93, for random-sample data vs. 0.91 for snowball-sample data, p=0.35); however, when the model derived from the snowball-sample data set was fitted to each of the data sets, the areas under the curve were significantly different (0.98 vs. 0.83, p < .001). Conclusion: The proposed method of random sampling of controls appears to be superior from a statistical perspective to snowball sampling and may represent a viable alternative to snowball sampling.Keywords: drug abuse, matched case-control study, non-probability sampling, probability sampling
Procedia PDF Downloads 49341745 The Development of the Website Learning the Local Wisdom in Phra Nakhon Si Ayutthaya Province
Authors: Bunthida Chunngam, Thanyanan Worasesthaphong
Abstract:
This research had objective to develop of the website learning the local wisdom in Phra Nakhon Si Ayutthaya province and studied satisfaction of system user. This research sample was multistage sample for 100 questionnaires, analyzed data to calculated reliability value with Cronbach’s alpha coefficient method α=0.82. This system had 3 functions which were system using, system feather evaluation and system accuracy evaluation which the statistics used for data analysis was descriptive statistics to explain sample feature so these statistics were frequency, percentage, mean and standard deviation. This data analysis result found that the system using performance quality had good level satisfaction (4.44 mean), system feather function analysis had good level satisfaction (4.11 mean) and system accuracy had good level satisfaction (3.74 mean).Keywords: website, learning, local wisdom, Phra Nakhon Si Ayutthaya province
Procedia PDF Downloads 12041744 Positive Affect, Negative Affect, Organizational and Motivational Factor on the Acceptance of Big Data Technologies
Authors: Sook Ching Yee, Angela Siew Hoong Lee
Abstract:
Big data technologies have become a trend to exploit business opportunities and provide valuable business insights through the analysis of big data. However, there are still many organizations that have yet to adopt big data technologies especially small and medium organizations (SME). This study uses the technology acceptance model (TAM) to look into several constructs in the TAM and other additional constructs which are positive affect, negative affect, organizational factor and motivational factor. The conceptual model proposed in the study will be tested on the relationship and influence of positive affect, negative affect, organizational factor and motivational factor towards the intention to use big data technologies to produce an outcome. Empirical research is used in this study by conducting a survey to collect data.Keywords: big data technologies, motivational factor, negative affect, organizational factor, positive affect, technology acceptance model (TAM)
Procedia PDF Downloads 36241743 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors
Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin
Abstract:
IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)
Procedia PDF Downloads 13941742 Customers’ Acceptability of Islamic Banking: Employees’ Perspective in Peshawar
Authors: Tahira Imtiaz, Karim Ullah
Abstract:
This paper aims to incorporate the banks employees’ perspective on acceptability of Islamic banking by the customers of Peshawar. A qualitative approach is adopted for which six in-depth interviews with employees of Islamic banks are conducted. The employees were asked to share their experience regarding customers’ acceptance attitude towards acceptability of Islamic banking. Collected data was analyzed through thematic analysis technique and its synthesis with the current literature. Through data analysis a theoretical framework is developed, which highlights the factors which drive customers towards Islamic banking, as witnessed by the employees. The practical implication of analyzed data evident that a new model could be developed on the basis of four determinants of human preference namely: inner satisfaction, time, faith and market forces.Keywords: customers’ attraction, employees’ perspective, Islamic banking, Riba
Procedia PDF Downloads 33341741 Confirmatory Factor Analysis of Smartphone Addiction Inventory (SPAI) in the Yemeni Environment
Authors: Mohammed Al-Khadher
Abstract:
Currently, we are witnessing rapid advancements in the field of information and communications technology, forcing us, as psychologists, to combat the psychological and social effects of such developments. It also drives us to continually look for the development and preparation of measurement tools compatible with the changes brought about by the digital revolution. In this context, the current study aimed to identify the factor analysis of the Smartphone Addiction Inventory (SPAI) in the Republic of Yemen. The sample consisted of (1920) university students (1136 males and 784 females) who answered the inventory, and the data was analyzed using the statistical software (AMOS V25). The factor analysis results showed a goodness-of-fit of the data five-factor model with excellent indicators, as RMSEA-(.052), CFI-(.910), GFI-(.931), AGFI-(.915), TLI-(.897), NFI-(.895), RFI-(.880), and RMR-(.032). All within the ideal range to prove the model's fit of the scale’s factor analysis. The confirmatory factor analysis results showed factor loading in (4) items on (Time Spent), (4) items on (Compulsivity), (8) items on (Daily Life Interference), (5) items on (Craving), and (3) items on (Sleep interference); and all standard values of factor loading were statistically significant at the significance level (>.001).Keywords: smartphone addiction inventory (SPAI), confirmatory factor analysis (CFA), yemeni students, people at risk of smartphone addiction
Procedia PDF Downloads 9441740 Geographic Information Systems and Remotely Sensed Data for the Hydrological Modelling of Mazowe Dam
Authors: Ellen Nhedzi Gozo
Abstract:
Unavailability of adequate hydro-meteorological data has always limited the analysis and understanding of hydrological behaviour of several dam catchments including Mazowe Dam in Zimbabwe. The problem of insufficient data for Mazowe Dam catchment analysis was solved by extracting catchment characteristics and aerial hydro-meteorological data from ASTER, LANDSAT, Shuttle Radar Topographic Mission SRTM remote sensing (RS) images using ILWIS, ArcGIS and ERDAS Imagine geographic information systems (GIS) software. Available observed hydrological as well as meteorological data complemented the use of the remotely sensed information. Ground truth land cover was mapped using a Garmin Etrex global positioning system (GPS) system. This information was then used to validate land cover classification detail that was obtained from remote sensing images. A bathymetry survey was conducted using a SONAR system connected to GPS. Hydrological modelling using the HBV model was then performed to simulate the hydrological process of the catchment in an effort to verify the reliability of the derived parameters. The model output shows a high Nash-Sutcliffe Coefficient that is close to 1 indicating that the parameters derived from remote sensing and GIS can be applied with confidence in the analysis of Mazowe Dam catchment.Keywords: geographic information systems, hydrological modelling, remote sensing, water resources management
Procedia PDF Downloads 33641739 TAXAPRO, A Streamlined Pipeline to Analyze Shotgun Metagenomes
Authors: Sofia Sehli, Zainab El Ouafi, Casey Eddington, Soumaya Jbara, Kasambula Arthur Shem, Islam El Jaddaoui, Ayorinde Afolayan, Olaitan I. Awe, Allissa Dillman, Hassan Ghazal
Abstract:
The ability to promptly sequence whole genomes at a relatively low cost has revolutionized the way we study the microbiome. Microbiologists are no longer limited to studying what can be grown in a laboratory and instead are given the opportunity to rapidly identify the makeup of microbial communities in a wide variety of environments. Analyzing whole genome sequencing (WGS) data is a complex process that involves multiple moving parts and might be rather unintuitive for scientists that don’t typically work with this type of data. Thus, to help lower the barrier for less-computationally inclined individuals, TAXAPRO was developed at the first Omics Codeathon held virtually by the African Society for Bioinformatics and Computational Biology (ASBCB) in June 2021. TAXAPRO is an advanced metagenomics pipeline that accurately assembles organelle genomes from whole-genome sequencing data. TAXAPRO seamlessly combines WGS analysis tools to create a pipeline that automatically processes raw WGS data and presents organism abundance information in both a tabular and graphical format. TAXAPRO was evaluated using COVID-19 patient gut microbiome data. Analysis performed by TAXAPRO demonstrated a high abundance of Clostridia and Bacteroidia genera and a low abundance of Proteobacteria genera relative to others in the gut microbiome of patients hospitalized with COVID-19, consistent with the original findings derived using a different analysis methodology. This provides crucial evidence that the TAXAPRO workflow dispenses reliable organism abundance information overnight without the hassle of performing the analysis manually.Keywords: metagenomics, shotgun metagenomic sequence analysis, COVID-19, pipeline, bioinformatics
Procedia PDF Downloads 22141738 Optimizing Quantum Machine Learning with Amplitude and Phase Encoding Techniques
Authors: Om Viroje
Abstract:
Quantum machine learning represents a frontier in computational technology, promising significant advancements in data processing capabilities. This study explores the significance of data encoding techniques, specifically amplitude and phase encoding, in this emerging field. By employing a comparative analysis methodology, the research evaluates how these encoding techniques affect the accuracy, efficiency, and noise resilience of quantum algorithms. Our findings reveal that amplitude encoding enhances algorithmic accuracy and noise tolerance, whereas phase encoding significantly boosts computational efficiency. These insights are crucial for developing robust quantum frameworks that can be effectively applied in real-world scenarios. In conclusion, optimizing encoding strategies is essential for advancing quantum machine learning, potentially transforming various industries through improved data processing and analysis.Keywords: quantum machine learning, data encoding, amplitude encoding, phase encoding, noise resilience
Procedia PDF Downloads 1341737 Seismic Performance Evaluation of Existing Building Using Structural Information Modeling
Authors: Byungmin Cho, Dongchul Lee, Taejin Kim, Minhee Lee
Abstract:
The procedure for the seismic retrofit of existing buildings includes the seismic evaluation. In the evaluation step, it is assessed whether the buildings have satisfactory performance against seismic load. Based on the results of that, the buildings are upgraded. To evaluate seismic performance of the buildings, it usually goes through the model transformation from elastic analysis to inelastic analysis. However, when the data is not delivered through the interwork, engineers should manually input the data. In this process, since it leads to inaccuracy and loss of information, the results of the analysis become less accurate. Therefore, in this study, the process for the seismic evaluation of existing buildings using structural information modeling is suggested. This structural information modeling makes the work economic and accurate. To this end, it is determined which part of the process could be computerized through the investigation of the process for the seismic evaluation based on ASCE 41. The structural information modeling process is developed to apply to the seismic evaluation using Perform 3D program usually used for the nonlinear response history analysis. To validate this process, the seismic performance of an existing building is investigated.Keywords: existing building, nonlinear analysis, seismic performance, structural information modeling
Procedia PDF Downloads 38441736 Comparative Sustainability Performance Analysis of Australian Companies Using Composite Measures
Authors: Ramona Zharfpeykan, Paul Rouse
Abstract:
Organizational sustainability is important to both organizations themselves and their stakeholders. Despite its increasing popularity and increasing numbers of organizations reporting sustainability, research on evaluating and comparing the sustainability performance of companies is limited. The aim of this study was to develop models to measure sustainability performance for both cross-sectional and longitudinal comparisons across companies in the same or different industries. A secondary aim was to see if sustainability reports can be used to evaluate sustainability performance. The study used both a content analysis of Australian sustainability reports in mining and metals and financial services for 2011-2014 and a survey of Australian and New Zealand organizations. Two methods ranging from a composite index using uniform weights to data envelopment analysis (DEA) were employed to analyze the data and develop the models. The results show strong statistically significant relationships between the developed models, which suggests that each model provides a consistent, systematic and reasonably robust analysis. The results of the models show that for both industries, companies that had sustainability scores above or below the industry average stayed almost the same during the study period. These indices and models can be used by companies to evaluate their sustainability performance and compare it with previous years, or with other companies in the same or different industries. These methods can also be used by various stakeholders and sustainability ranking companies such as the Global Reporting Initiative (GRI).Keywords: data envelopment analysis, sustainability, sustainability performance measurement system, sustainability performance index, global reporting initiative
Procedia PDF Downloads 18141735 An Architectural Model for APT Detection
Authors: Nam-Uk Kim, Sung-Hwan Kim, Tai-Myoung Chung
Abstract:
Typical security management systems are not suitable for detecting APT attack, because they cannot draw the big picture from trivial events of security solutions. Although SIEM solutions have security analysis engine for that, their security analysis mechanisms need to be verified in academic field. Although this paper proposes merely an architectural model for APT detection, we will keep studying on correlation analysis mechanism in the future.Keywords: advanced persistent threat, anomaly detection, data mining
Procedia PDF Downloads 52841734 Sentiment Classification of Documents
Authors: Swarnadip Ghosh
Abstract:
Sentiment Analysis is the process of detecting the contextual polarity of text. In other words, it determines whether a piece of writing is positive, negative or neutral.Sentiment analysis of documents holds great importance in today's world, when numerous information is stored in databases and in the world wide web. An efficient algorithm to illicit such information, would be beneficial for social, economic as well as medical purposes. In this project, we have developed an algorithm to classify a document into positive or negative. Using our algorithm, we obtained a feature set from the data, and classified the documents based on this feature set. It is important to note that, in the classification, we have not used the independence assumption, which is considered by many procedures like the Naive Bayes. This makes the algorithm more general in scope. Moreover, because of the sparsity and high dimensionality of such data, we did not use empirical distribution for estimation, but developed a method by finding degree of close clustering of the data points. We have applied our algorithm on a movie review data set obtained from IMDb and obtained satisfactory results.Keywords: sentiment, Run's Test, cross validation, higher dimensional pmf estimation
Procedia PDF Downloads 40241733 Rodriguez Diego, Del Valle Martin, Hargreaves Matias, Riveros Jose Luis
Authors: Nathainail Bashir, Neil Anderson
Abstract:
The objective of this study site was to investigate the current state of the practice with regards to karst detection methods and recommend the best method and pattern of arrays to acquire the desire results. Proper site investigation in karst prone regions is extremely valuable in determining the location of possible voids. Two geophysical techniques were employed: multichannel analysis of surface waves (MASW) and electric resistivity tomography (ERT).The MASW data was acquired at each test location using different array lengths and different array orientations (to increase the probability of getting interpretable data in karst terrain). The ERT data were acquired using a dipole-dipole array consisting of 168 electrodes. The MASW data was interpreted (re: estimated depth to physical top of rock) and used to constrain and verify the interpretation of the ERT data. The ERT data indicates poorer quality MASW data were acquired in areas where there was significant local variation in the depth to top of rock.Keywords: dipole-dipole, ERT, Karst terrains, MASW
Procedia PDF Downloads 315