Search results for: comprehensive benefit
1445 Development of an Atmospheric Radioxenon Detection System for Nuclear Explosion Monitoring
Authors: V. Thomas, O. Delaune, W. Hennig, S. Hoover
Abstract:
Measurement of radioactive isotopes of atmospheric xenon is used to detect, locate and identify any confined nuclear tests as part of the Comprehensive Nuclear Test-Ban Treaty (CTBT). In this context, the Alternative Energies and French Atomic Energy Commission (CEA) has developed a fixed device to continuously measure the concentration of these fission products, the SPALAX process. During its atmospheric transport, the radioactive xenon will undergo a significant dilution between the source point and the measurement station. Regarding the distance between fixed stations located all over the globe, the typical volume activities measured are near 1 mBq m⁻³. To avoid the constraints induced by atmospheric dilution, the development of a mobile detection system is in progress; this system will allow on-site measurements in order to confirm or infringe a suspicious measurement detected by a fixed station. Furthermore, this system will use beta/gamma coincidence measurement technique in order to drastically reduce environmental background (which masks such activities). The detector prototype consists of a gas cell surrounded by two large silicon wafers, coupled with two square NaI(Tl) detectors. The gas cell has a sample volume of 30 cm³ and the silicon wafers are 500 µm thick with an active surface area of 3600 mm². In order to minimize leakage current, each wafer has been segmented into four independent silicon pixels. This cell is sandwiched between two low background NaI(Tl) detectors (70x70x40 mm³ crystal). The expected Minimal Detectable Concentration (MDC) for each radio-xenon is in the order of 1-10 mBq m⁻³. Three 4-channels digital acquisition modules (Pixie-NET) are used to process all the signals. Time synchronization is ensured by a dedicated PTP-network, using the IEEE 1588 Precision Time Protocol. We would like to present this system from its simulation to the laboratory tests.Keywords: beta/gamma coincidence technique, low level measurement, radioxenon, silicon pixels
Procedia PDF Downloads 1261444 Safety Climate Assessment and Its Impact on the Productivity of Construction Enterprises
Authors: Krzysztof J. Czarnocki, F. Silveira, E. Czarnocka, K. Szaniawska
Abstract:
Research background: Problems related to the occupational health and decreasing level of safety occur commonly in the construction industry. Important factor in the occupational safety in construction industry is scaffold use. All scaffolds used in construction, renovation, and demolition shall be erected, dismantled and maintained in accordance with safety procedure. Increasing demand for new construction projects unfortunately still is linked to high level of occupational accidents. Therefore, it is crucial to implement concrete actions while dealing with scaffolds and risk assessment in construction industry, the way on doing assessment and liability of assessment is critical for both construction workers and regulatory framework. Unfortunately, professionals, who tend to rely heavily on their own experience and knowledge when taking decisions regarding risk assessment, may show lack of reliability in checking the results of decisions taken. Purpose of the article: The aim was to indicate crucial parameters that could be modeling with Risk Assessment Model (RAM) use for improving both building enterprise productivity and/or developing potential and safety climate. The developed RAM could be a benefit for predicting high-risk construction activities and thus preventing accidents occurred based on a set of historical accident data. Methodology/Methods: A RAM has been developed for assessing risk levels as various construction process stages with various work trades impacting different spheres of enterprise activity. This project includes research carried out by teams of researchers on over 60 construction sites in Poland and Portugal, under which over 450 individual research cycles were carried out. The conducted research trials included variable conditions of employee exposure to harmful physical and chemical factors, variable levels of stress of employees and differences in behaviors and habits of staff. Genetic modeling tool has been used for developing the RAM. Findings and value added: Common types of trades, accidents, and accident causes have been explored, in addition to suitable risk assessment methods and criteria. We have found that the initial worker stress level is more direct predictor for developing the unsafe chain leading to the accident rather than the workload, or concentration of harmful factors at the workplace or even training frequency and management involvement.Keywords: safety climate, occupational health, civil engineering, productivity
Procedia PDF Downloads 3181443 Investigation of Online Child Sexual Abuse: An Account of Covert Police Operations Across the Globe
Authors: Shivalaxmi Arumugham
Abstract:
Child sexual abuse (CSA) has taken several forms, particularly with the advent of internet technologies that provide pedophiles access to their targets anonymously at an affordable rate. To combat CSA which has far-reaching consequences on the physical and psychological health of the victims, a special act, the Protection of Children from Sexual Offences (POCSO) Act, was formulated amongst the existing laws. With its latest amendment criminalizing various online activities about child pornography also known as child sexual abuse materials in 2019, tremendous pressure is speculated on law enforcement to identify offenders online. Effective investigations of CSA cases help in not only to detect perpetrators but also in preventing the re-victimization of children. Understanding the vulnerability of the child population and that the offenders continue to develop stealthier strategies to operate, it is high time that traditional investigation, where the focus is on apprehending and prosecuting the offender, must make a paradigm shift to proactively investigate to prevent victimization at the first place. One of the proactive policing techniques involves understanding the psychology of the offenders and children and operating undercover to catch the criminals before a real child is victimized. With the fundamental descriptive approach to research, the article attempts to identify the multitude of issues associated with the investigation of child sexual abuse cases currently in practice in India. Then, the article contextualizes the various covert operations carried out by numerous law enforcement agencies across the globe. To provide this comprehensive overview, the paper examines various reports, websites, guidelines, protocols, judicial pronouncements, and research articles. Finally, the paper presents the challenges and ethical issues that are to be considered before getting into undercover operations either in the guise of a pedophile or as a child. The research hopes to contribute to the making of standard operating protocols for investigation officers and other relevant policymakers in this regard.Keywords: child sexual abuse, cybercrime against children, covert police operations, investigation of CSA
Procedia PDF Downloads 971442 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models
Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti
Abstract:
In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics
Procedia PDF Downloads 531441 Optimizing Sustainable Graphene Production: Extraction of Graphite from Spent Primary and Secondary Batteries for Advanced Material Synthesis
Authors: Pratima Kumari, Sukha Ranjan Samadder
Abstract:
This research aims to contribute to the sustainable production of graphene materials by exploring the extraction of graphite from spent primary and secondary batteries. The increasing demand for graphene materials, a versatile and high-performance material, necessitates environmentally friendly methods for its synthesis. The process involves a well-planned methodology, beginning with the gathering and categorization of batteries, followed by the disassembly and careful removal of graphite from anode structures. The use of environmentally friendly solvents and mechanical techniques ensures an efficient and eco-friendly extraction of graphite. Advanced approaches such as the modified Hummers' method and chemical reduction process are utilized for the synthesis of graphene materials, with a focus on optimizing parameters. Various analytical techniques such as Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and Raman spectroscopy were employed to validate the quality and structure of the produced graphene materials. The major findings of this study reveal the successful implementation of the methodology, leading to the production of high-quality graphene materials suitable for advanced material applications. Thorough characterization using various advanced techniques validates the structural integrity and purity of the graphene. The economic viability of the process is demonstrated through a comprehensive economic analysis, highlighting the potential for large-scale production. This research contributes to the field of sustainable production of graphene materials by offering a systematic methodology that efficiently transforms spent batteries into valuable graphene resources. Furthermore, the findings not only showcase the potential for upcycling electronic waste but also address the pressing need for environmentally conscious processes in advanced material synthesis.Keywords: spent primary batteries, spent secondary batteries, graphite extraction, advanced material synthesis, circular economy approach
Procedia PDF Downloads 541440 The Lived Experiences of South African Female Offenders and the Possible Links to Recidivism Due to their Exclusion from Educational Rehabilitation Programmes
Authors: Jessica Leigh Thornton
Abstract:
The South African Constitution outlines provisions for every detainee and sentenced prisoner in relation to the human rights recognized in the country since 1994; but currently, across the country, prisons have yet to meet many of these criteria. Consequently, their day-to-day lives are marked by extreme lack of privacy, high rates of infection, poor nutrition, and deleterious living conditions, which steadily erode prisoners’ mental and physical capacities rather than rehabilitating inmates so that they can effectively reintegrate into society. Even more so, policy reform, advocacy, security, and rehabilitation programs continue to be based on research and theories that were developed to explain the experiences of men, while female offenders are seen as the “special category” of inmates. Yet, the experiences of women and their pathways to incarceration are remarkably different from those of male offenders. Consequently, little is known about the profile, nature and contributing factors and experiences of female offenders which has impeded a comprehensive and integrated understanding of the subject of female criminality. The number of women globally in correctional centers has more than doubled over the past fifteen years (these increases vary from prison to prison and country to country). Yet, female offenders have largely been ignored in research even though the minority status of female offenders is a phenomenon that is not peculiar to South Africa as the number of women incarcerated has increased by 68% within the decade. Within South Africa, there have been minimal studies conducted on the gendered experience of offenders. While some studies have explored the pathways to female offending, gender-sensitive correctional programming for women that respond to their needs has been overlooked. This often leads to a neglect of the needs of female offenders, not only in terms of programs and services delivery to this minority group but also from a research perspective. In response, the aim of the proposed research is twofold: Firstly, the lived experiences and views of rehabilitation and reintegration of female offenders will be explored. Secondly, the various pathways into and out of recidivism amongst female offenders will be investigated regarding their inclusion in educational rehabilitation.Keywords: female incarceration, educational rehabilitation, exclusion, experiences of female offenders
Procedia PDF Downloads 2721439 Antigen Stasis can Predispose Primary Ciliary Dyskinesia (PCD) Patients to Asthma
Authors: Nadzeya Marozkina, Joe Zein, Benjamin Gaston
Abstract:
Introduction: We have observed that many patients with Primary Ciliary Dyskinesia (PCD) benefit from asthma medications. In healthy airways, the ciliary function is normal. Antigens and irritants are rapidly cleared, and NO enters the gas phase normally to be exhaled. In the PCD airways, however, antigens, such as Dermatophagoides, are not as well cleared. This defect leads to oxidative stress, marked by increased DUOX1 expression and decreased superoxide dismutase [SOD] activity (manuscript under revision). H₂O₂, in high concentrations in the PCD airway, injures the airway. NO is oxidized rather than being exhaled, forming cytotoxic peroxynitrous acid. Thus, antigen stasis on PCD airway epithelium leads to airway injury and may predispose PCD patients to asthma. Indeed, recent population genetics suggest that PCD genes may be associated with asthma. We therefore hypothesized that PCD patients would be predisposed to having asthma. Methods. We analyzed our database of 18 million individual electronic medical records (EMRs) in the Indiana Network for Patient Care research database (INPCR). There is not an ICD10 code for PCD itself; code Q34.8 is most commonly used clinically. To validate analysis of this code, we queried patients who had an ICD10 code for both bronchiectasis and situs inversus totalis in INPCR. We also studied a validation cohort using the IBM Explorys® database (over 80 million individuals). Analyses were adjusted for age, sex and race using a 1 PCD: 3 controls matching method in INPCR and multivariable logistic regression in the IBM Explorys® database. Results. The prevalence of asthma ICD10 codes in subjects with a code Q34.8 was 67% vs 19% in controls (P < 0.0001) (Regenstrief Institute). Similarly, in IBM*Explorys, the OR [95% CI] for having asthma if a patient also had ICD10 code 34.8, relative to controls, was =4.04 [3.99; 4.09]. For situs inversus alone the OR [95% CI] was 4.42 [4.14; 4.71]; and bronchiectasis alone the OR [95% CI] =10.68 (10.56; 10.79). For both bronchiectasis and situs inversus together, the OR [95% CI] =28.80 (23.17; 35.81). Conclusions: PCD causes antigen stasis in the human airway (under review), likely predisposing to asthma in addition to oxidative and nitrosative stress and to airway injury. Here, we show that, by several different population-based metrics, and using two large databases, patients with PCD appear to have between a three- and 28-fold increased risk of having asthma. These data suggest that additional studies should be undertaken to understand the role of ciliary dysfunction in the pathogenesis and genetics of asthma. Decreased antigen clearance caused by ciliary dysfunction may be a risk factor for asthma development.Keywords: antigen, PCD, asthma, nitric oxide
Procedia PDF Downloads 1061438 Single and Combined Effects of Diclofenac and Ibuprofen on Daphnia Magna and Some Phytoplankton Species
Authors: Ramatu I. Sha’aba, Mathias A. Chia, Abdullahi B. Alhassan, Yisa A. Gana, Ibrahim M. Gadzama
Abstract:
Globally, Diclofenac (DLC) and Ibuprofen (IBU) are the most prescribed drugs due to their antipyretic and analgesic properties. They are, however, highly toxic at elevated doses, with the involvement of an already described oxidative stress pathway. As a result, there is rising concern about the ecological fate of analgesics on non-target organisms such as Daphnia magna and Phytoplankton species. Phytoplankton is a crucial component of the aquatic ecosystem that serves as the primary producer at the base of the food chain. However, the increasing presence and levels of micropollutants such as these analgesics can disrupt their community structure, dynamics, and ecosystem functions. This study presents a comprehensive series of the physiology, antioxidant response, immobilization, and risk assessment of Diclofenac and Ibuprofen’s effects on Daphnia magna and the Phytoplankton community using a laboratory approach. The effect of DLC and IBU at 27.16 µg/L and 20.89 µg/L, respectively, for a single exposure and 22.39 µg/L for combined exposure of DLC and IBU for the experimental setup. The antioxidant response increased with increasing levels of stress. The highest stressor to the organism was 1000 µg/L of DLC and 10,000 µg/L of IBU. Peroxidase and glutathione -S-transferase activity was higher for Diclofenac + Ibuprofen. The study showed 60% and 70% immobilization of the organism at 1000 g L-1 of DLC and IBU. The two drugs and their combinations adversely impacted Phytoplankton biomass with increased exposure time. However, combining the drugs resulted in more significant adverse effects on physiological and pigment content parameters. The risk assessment calculation for the risk quotient and toxic unit of the analgesic reveals from this study was RQ Diclofenac = 8.41, TU Diclofenac = 3.68, and RQ Ibuprofen = 718.05 and TU Ibuprofen = 487.70. Hence, these findings demonstrate that the current exposure concentrations of Diclofenac and Ibuprofen can immobilize D. magna. This study shows the dangers of multiple drugs in the aquatic environment because their combinations could have additive effects on the structure and functions of Phytoplankton and are capable of immobilizing D. magna.Keywords: algae, analgesic drug, daphnia magna, toxicity
Procedia PDF Downloads 791437 Corn Flakes Produced from Different Cultivars of Zea Mays as a Functional Product
Authors: Milenko Košutić, Jelena Filipović, Zvonko Nježić
Abstract:
Extrusion technology is thermal processing that is applied to improve the nutritional, hygienic, and physical-chemical characteristics of the raw material. Overall, the extrusion process is an efficient method for the production of a wide range of food products. It combines heat, pressure, and shear to transform raw materials into finished goods with desired textures, shapes, and nutritional profiles. The extruded products’ quality is remarkably dependent upon feed material composition, barrel temperature profile, feed moisture content, screw speed, and other extrusion system parameters. Given consumer expectations for snack foods, a high expansion index and low bulk density, in addition to crunchy texture and uniform microstructure, are desired. This paper investigates the effects of simultaneous different types of corn (white corn, yellow corn, red corn, and black corn) addition and different screw speed (350, 500, 650 rpm) on the physical, technological, and functional properties of flakes products. Black corn flour and screw speed at 350 rpm positively influenced physical, technological characteristics, mineral composition, and antioxidant properties of flake products with the best total score analysis of 0,59. Overall, the combination of Tukey's HSD test and PCA enables a comprehensive analysis of the observed corn products, allowing researchers to identify them. This research aims to analyze the influence of different types of corn flour (white corn, yellow corn, red corn, and black corn) on the nutritive and sensory properties of the product (quality, texture, and color), as well as the acceptance of the new product by consumers on the territory of Novi Sad. The presented data point that investigated corn flakes from black corn flour at 350 rpm is a product with good physical-technological and functional properties due to a higher level of antioxidant activity.Keywords: corn types, flakes product, nutritive quality, acceptability
Procedia PDF Downloads 571436 A Comparative Analysis of Conventional and Organic Dairy Supply Chain: Assessing Transport Costs and External Effects in Southern Sweden
Authors: Vivianne Aggestam
Abstract:
Purpose: Organic dairy products have steadily increased with consumer popularity in recent years in Sweden, permitting more transport activities. The main aim of this study was to compare the transport costs and the environmental emissions made by the organic and conventional dairy production in Sweden. The objective was to evaluate differences and environmental impacts of transport between the two different production systems, allowing a more transparent understanding of the real impact of transport within the supply chain. Methods: A partial attributional Life Cycle Assessment has been conducted based on a comprehensive survey of Swedish farmers, dairies and consumers regarding their transport needs and costs. Interviews addressed the farmers and dairies. Consumers were targeted through an online survey. Results: Higher transport inputs from conventional dairy transportation are mainly via feed and soil management on farm level. The regional organic milk brand illustrate less initial transport burdens on farm level, however, after leaving the farm, it had equal or higher transportation requirements. This was mainly due to the location of the dairy farm and shorter product expiry dates, which requires more frequent retail deliveries. Organic consumers tend to use public transport more than private vehicles. Consumers using private vehicles for shopping trips primarily bought conventional products for which price was the main deciding factor. Conclusions: Organic dairy products that emphasise its regional attributes do not ensure less transportation and may therefore not be a more “climate smart” option for the consumer. This suggests that the idea of localism needs to be analysed from a more systemic perspective. Fuel and regional feed efficiency can be further implemented, mainly via fuel type and the types of vehicles used for transport.Keywords: supply chains, distribution, transportation, organic food productions, conventional food production, agricultural fossil fuel use
Procedia PDF Downloads 4541435 Uncertainty and Multifunctionality as Bridging Concepts from Socio-Ecological Resilience to Infrastructure Finance in Water Resource Decision Making
Authors: Anita Lazurko, Laszlo Pinter, Jeremy Richardson
Abstract:
Uncertain climate projections, multiple possible development futures, and a financing gap create challenges for water infrastructure decision making. In contrast to conventional predict-plan-act methods, an emerging decision paradigm that enables social-ecological resilience supports decisions that are appropriate for uncertainty and leverage social, ecological, and economic multifunctionality. Concurrently, water infrastructure project finance plays a powerful role in sustainable infrastructure development but remains disconnected from discourse in socio-ecological resilience. At the time of research, a project to transfer water from Lesotho to Botswana through South Africa in the Orange-Senqu River Basin was at the pre-feasibility stage. This case was analysed through documents and interviews to investigate how uncertainty and multifunctionality are conceptualised and considered in decisions for the resilience of water infrastructure and to explore bridging concepts that might allow project finance to better enable socio-ecological resilience. Interviewees conceptualised uncertainty as risk, ambiguity and ignorance, and multifunctionality as politically-motivated shared benefits. Numerous efforts to adopt emerging decision methods that consider these terms were in use but required compromises to accommodate the persistent, conventional decision paradigm, though a range of future opportunities was identified. Bridging these findings to finance revealed opportunities to consider a more comprehensive scope of risk, to leverage risk mitigation measures, to diffuse risks and benefits over space, time and to diverse actor groups, and to clarify roles to achieve multiple objectives for resilience. In addition to insights into how multiple decision paradigms interact in real-world decision contexts, the research highlights untapped potential at the juncture between socio-ecological resilience and project finance.Keywords: socio-ecological resilience, finance, multifunctionality, uncertainty
Procedia PDF Downloads 1261434 A Comparative Study of the Proposed Models for the Components of the National Health Information System
Authors: M. Ahmadi, Sh. Damanabi, F. Sadoughi
Abstract:
National Health Information System plays an important role in ensuring timely and reliable access to Health information which is essential for strategic and operational decisions that improve health, quality and effectiveness of health care. In other words, by using the National Health information system you can improve the quality of health data, information and knowledge used to support decision making at all levels and areas of the health sector. Since full identification of the components of this system for better planning and management influential factors of performance seems necessary, therefore, in this study, different attitudes towards components of this system are explored comparatively. Methods: This is a descriptive and comparative kind of study. The society includes printed and electronic documents containing components of the national health information system in three parts: input, process, and output. In this context, search for information using library resources and internet search were conducted and data analysis was expressed using comparative tables and qualitative data. Results: The findings showed that there are three different perspectives presenting the components of national health information system, Lippeveld, Sauerborn, and Bodart Model in 2000, Health Metrics Network (HMN) model from World Health Organization in 2008 and Gattini’s 2009 model. All three models outlined above in the input (resources and structure) require components of management and leadership, planning and design programs, supply of staff, software and hardware facilities, and equipment. In addition, in the ‘process’ section from three models, we pointed up the actions ensuring the quality of health information system and in output section, except Lippeveld Model, two other models consider information products, usage and distribution of information as components of the national health information system. Conclusion: The results showed that all the three models have had a brief discussion about the components of health information in input section. However, Lippeveld model has overlooked the components of national health information in process and output sections. Therefore, it seems that the health measurement model of network has a comprehensive presentation for the components of health system in all three sections-input, process, and output.Keywords: National Health Information System, components of the NHIS, Lippeveld Model
Procedia PDF Downloads 4211433 Designing the Management Plan for Health Care (Medical) Wastes in the Cities of Semnan, Mahdishahr and Shahmirzad
Authors: Rasouli Divkalaee Zeinab, Kalteh Safa, Roudbari Aliakbar
Abstract:
Introduction: Medical waste can lead to the generation and transmission of many infectious and contagious diseases due to the presence of pathogenic agents, thereby necessitating the need for special management to collect, decontaminate, and finally dispose of such products. This study aimed to design a centralized health care (medical) waste management program for the cities of Semnan, Mahdishahr, and Shahmirzad. Methods: This descriptive-analytical study was conducted for six months in the cities of Semnan, Mahdishahr, and Shahmirzad. In this study, the quantitative and qualitative characteristics of the generated wastes were determined by taking samples from all medical waste production centers. Then, the equipment, devices, and machines required for separate collection of the waste from the production centers and for their subsequent decontamination were estimated. Next, the investment costs, current costs, and working capital required for collection, decontamination, and final disposal of the wastes were determined. Finally, the payment for proper waste management of each category of medical waste-producing centers was determined. Results: 1021 kilograms of medical waste are produced daily in the cities of Semnan, Mahdishahr, and Shahmirzad. It was estimated that a 1000-liter autoclave, a machine for collecting medical waste, four 60-liter bins, four 120-liter bins, and four 1200-liter bins were required for implementing the study plan. Also, the estimated total annual medical waste management costs for Semnan City were determined (23,283,903,720 Iranian Rials). Conclusion: The study results showed that establishing a proper management system for medical wastes generated in the three studied cities will cost between 334,280 and 1,253,715 Iranian Rials in fees for the medical centers. The findings of this study provided comprehensive data regarding medical wastes from the generation point to the landfill site, which is vital for the government and the private sector.Keywords: clinics, decontamination, management, medical waste
Procedia PDF Downloads 781432 Flood Mapping Using Height above the Nearest Drainage Model: A Case Study in Fredericton, NB, Canada
Authors: Morteza Esfandiari, Shabnam Jabari, Heather MacGrath, David Coleman
Abstract:
Flood is a severe issue in different places in the world as well as the city of Fredericton, New Brunswick, Canada. The downtown area of Fredericton is close to the Saint John River, which is susceptible to flood around May every year. Recently, the frequency of flooding seems to be increased, especially after the fact that the downtown area and surrounding urban/agricultural lands got flooded in two consecutive years in 2018 and 2019. In order to have an explicit vision of flood span and damage to affected areas, it is necessary to use either flood inundation modelling or satellite data. Due to contingent availability and weather dependency of optical satellites, and limited existing data for the high cost of hydrodynamic models, it is not always feasible to rely on these sources of data to generate quality flood maps after or during the catastrophe. Height Above the Nearest Drainage (HAND), a state-of-the-art topo-hydrological index, normalizes the height of a basin based on the relative elevation along with the stream network and specifies the gravitational or the relative drainage potential of an area. HAND is a relative height difference between the stream network and each cell on a Digital Terrain Model (DTM). The stream layer is provided through a multi-step, time-consuming process which does not always result in an optimal representation of the river centerline depending on the topographic complexity of that region. HAND is used in numerous case studies with quite acceptable and sometimes unexpected results because of natural and human-made features on the surface of the earth. Some of these features might cause a disturbance in the generated model, and consequently, the model might not be able to predict the flow simulation accurately. We propose to include a previously existing stream layer generated by the province of New Brunswick and benefit from culvert maps to improve the water flow simulation and accordingly the accuracy of HAND model. By considering these parameters in our processing, we were able to increase the accuracy of the model from nearly 74% to almost 92%. The improved model can be used for generating highly accurate flood maps, which is necessary for future urban planning and flood damage estimation without any need for satellite imagery or hydrodynamic computations.Keywords: HAND, DTM, rapid floodplain, simplified conceptual models
Procedia PDF Downloads 1511431 Character Development Outcomes: A Predictive Model for Behaviour Analysis in Tertiary Institutions
Authors: Rhoda N. Kayongo
Abstract:
As behavior analysts in education continue to debate on how higher institutions can continue to benefit from their social and academic related programs, higher education is facing challenges in the area of character development. This is manifested in the percentages of college completion rates, teen pregnancies, drug abuse, sexual abuse, suicide, plagiarism, lack of academic integrity, and violence among their students. Attending college is a perceived opportunity to positively influence the actions and behaviors of the next generation of society; thus colleges and universities have to provide opportunities to develop students’ values and behaviors. Prior studies were mainly conducted in private institutions and more so in developed countries. However, with the complexity of the nature of student body currently due to the changing world, a multidimensional approach combining multiple factors that enhance character development outcomes is needed to suit the changing trends. The main purpose of this study was to identify opportunities in colleges and develop a model for predicting character development outcomes. A survey questionnaire composed of 7 scales including in-classroom interaction, out-of-classroom interaction, school climate, personal lifestyle, home environment, and peer influence as independent variables and character development outcomes as the dependent variable was administered to a total of five hundred and one students of 3rd and 4th year level in selected public colleges and universities in the Philippines and Rwanda. Using structural equation modelling, a predictive model explained 57% of the variance in character development outcomes. Findings from the results of the analysis showed that in-classroom interactions have a substantial direct influence on character development outcomes of the students (r = .75, p < .05). In addition, out-of-classroom interaction, school climate, and home environment contributed to students’ character development outcomes but in an indirect way. The study concluded that in the classroom are many opportunities for teachers to teach, model and integrate character development among their students. Thus, suggestions are made to public colleges and universities to deliberately boost and implement experiences that cultivate character within the classroom. These may contribute tremendously to the students' character development outcomes and hence render effective models of behaviour analysis in higher education.Keywords: character development, tertiary institutions, predictive model, behavior analysis
Procedia PDF Downloads 1361430 Reduplication In Urdu-Hindi Nonsensical Words: An OT Analysis
Authors: Riaz Ahmed Mangrio
Abstract:
Reduplication in Urdu-Hindi affects all major word categories, particles, and even nonsensical words. It conveys a variety of meanings, including distribution, emphasis, iteration, adjectival and adverbial. This study will primarily discuss reduplicative structures of nonsensical words in Urdu-Hindi and then briefly look at some examples from other Indo-Aryan languages to introduce the debate regarding the same structures in them. The goal of this study is to present counter-evidence against Keane (2005: 241), who claims “the base in the cases of lexical and phrasal echo reduplication is always independently meaningful”. However, Urdu-Hindi reduplication derives meaningful compounds from nonsensical words e.g. gũ mgũ (A) ‘silent and confused’ and d̪əb d̪əb-a (N) ‘one’s fear over others’. This needs a comprehensive examination to see whether and how the various structures form patterns of a base-reduplicant relationship or, rather, they are merely sub lexical items joining together to form a word pattern of any grammatical category in content words. Another interesting theoretical question arises within the Optimality framework: in an OT analysis, is it necessary to identify one of the two constituents as the base and the other as reduplicant? Or is it best to consider this a pattern, but then how does this fit in with an OT analysis? This may be an even more interesting theoretical question. Looking for the solution to such questions can serve to make an important contribution. In the case at hand, each of the two constituents is an independent nonsensical word, but their echo reduplication is nonetheless meaningful. This casts significant doubt upon Keane’s (2005: 241) observation of some examples from Hindi and Tamil reduplication that “the base in cases of lexical and phrasal echo reduplication is always independently meaningful”. The debate on the point becomes further interesting when the triplication of nonsensical words in Urdu-Hindi e.g. aẽ baẽ ʃaẽ (N) ‘useless talk’ is also seen, which is equally important to discuss. The example is challenging to Harrison’s (1973) claim that only the monosyllabic verbs in their progressive forms reduplicate twice to result in triplication, which is not the case with the example presented. The study will consist of a thorough descriptive analysis of the data for the purpose of documentation, and then there will be OT analysis.Keywords: reduplication, urdu-hindi, nonsensical, optimality theory
Procedia PDF Downloads 751429 An AHP Study on The Migrant and Refugee Employees Occupational Health and Safety Issues in Turkey
Authors: Cengiz Akyildiz, Ismail Ekmekci
Abstract:
In the past 15 years, many people have sought refuge and emigrated to developed countries due to the civil war in Syria, terrorism and turmoil in Iraq, Iran and Afghanistan, hunger problems in Africa and the purpose of work. Many of these people came to Turkey. By the end of the 2019, in Turkey, regular and irregular migrants, asylum seekers and foreigners under international protection are about 6 million people. The majority of these people are Syrians. Approximately 2 800 000 immigrants and refugees are in the workforce. Migrant workers in our country constitute the largest proportion among all countries in the world according to the local labor force. 2.5 million of these employees, with a high rate of about 90%, work informally and do not have legal records and valid employment contracts as a workforce; They cannot benefit from Occupational Health and Safety (OHS) services. Migrant workers generally receive less wages than local workers, working longer hours and worse conditions; they are often subjected to human rights violations, harassment, human trafficking and violence. Migrant workers face problems such as OHS practices, environmental and occupational exposures, language / cultural barriers, access to health services, and lack of documentation. Therefore, the OHS problems of these employees are becoming an increasingly problematic area. However, there is not enough research, analysis and academic studies in this field. The order of importance should be known for the radical solution of the problems, because of the problems with high severity are also at high risk. In this study, for the first time, a Search Conference was held with the participation of 45 stakeholders to reveal the OHS problems of regular and irregular migrant workers in our country. The problems arising from this workshop were compared with the problems in the literature and the problems in this field were determined and weighted for our country. Later, to determine the significance levels of these problems, AHP study, which is a Multi Criteria Decision Making Method in which 15 experts participated, was conducted and the significance levels of these problems were determined. When the data obtained are evaluated, it has been seen that the OSH risks of migrant workers arise from 58% laws and government policies, 29% from employers, 13% from personal faults of employees. An academic study has been carried out for the first time in this field regarding the OHS problems of migrant workers, and an academic study has been created to guide which of the problems should be prioritized.Keywords: environmental conditions, migrant workers, OHS issues, workplace conditions
Procedia PDF Downloads 1511428 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing
Authors: Huan Ting Liao
Abstract:
In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning
Procedia PDF Downloads 241427 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 1271426 Exploring the Design of Prospective Human Immunodeficiency Virus Type 1 Reverse Transcriptase Inhibitors through a Comprehensive Approach of Quantitative Structure Activity Relationship Study, Molecular Docking, and Molecular Dynamics Simulations
Authors: Mouna Baassi, Mohamed Moussaoui, Sanchaita Rajkhowa, Hatim Soufi, Said Belaaouad
Abstract:
The objective of this paper is to address the challenging task of targeting Human Immunodeficiency Virus type 1 Reverse Transcriptase (HIV-1 RT) in the treatment of AIDS. Reverse Transcriptase inhibitors (RTIs) have limitations due to the development of Reverse Transcriptase mutations that lead to treatment resistance. In this study, a combination of statistical analysis and bioinformatics tools was adopted to develop a mathematical model that relates the structure of compounds to their inhibitory activities against HIV-1 Reverse Transcriptase. Our approach was based on a series of compounds recognized for their HIV-1 RT enzymatic inhibitory activities. These compounds were designed via software, with their descriptors computed using multiple tools. The most statistically promising model was chosen, and its domain of application was ascertained. Furthermore, compounds exhibiting comparable biological activity to existing drugs were identified as potential inhibitors of HIV-1 RT. The compounds underwent evaluation based on their chemical absorption, distribution, metabolism, excretion, toxicity properties, and adherence to Lipinski's rule. Molecular docking techniques were employed to examine the interaction between the Reverse Transcriptase (Wild Type and Mutant Type) and the ligands, including a known drug available in the market. Molecular dynamics simulations were also conducted to assess the stability of the RT-ligand complexes. Our results reveal some of the new compounds as promising candidates for effectively inhibiting HIV-1 Reverse Transcriptase, matching the potency of the established drug. This necessitates further experimental validation. This study, beyond its immediate results, provides a methodological foundation for future endeavors aiming to discover and design new inhibitors targeting HIV-1 Reverse Transcriptase.Keywords: QSAR, ADMET properties, molecular docking, molecular dynamics simulation, reverse transcriptase inhibitors, HIV type 1
Procedia PDF Downloads 921425 Effects of Self-Management Programs on Blood Pressure Control, Self-Efficacy, Medication Adherence, and Body Mass Index among Older Adult Patients with Hypertension: Meta-Analysis of Randomized Controlled Trials
Authors: Van Truong Pham
Abstract:
Background: Self-management was described as a potential strategy for blood pressure control in patients with hypertension. However, the effects of self-management interventions on blood pressure, self-efficacy, medication adherence, and body mass index (BMI) in older adults with hypertension have not been systematically evaluated. We evaluated the effects of self-management interventions on systolic blood pressure (SBP) and diastolic blood pressure (DBP), self-efficacy, medication adherence, and BMI in hypertensive older adults. Methods: We followed the recommended guidelines of preferred reporting items for systematic reviews and meta-analyses. Searches in electronic databases including CINAHL, Cochrane Library, Embase, Ovid-Medline, PubMed, Scopus, Web of Science, and other sources were performed to include all relevant studies up to April 2019. Studies selection, data extraction, and quality assessment were performed by two reviewers independently. We summarized intervention effects as Hedges' g values and 95% confidence intervals (CI) using a random-effects model. Data were analyzed using Comprehensive Meta-Analysis software 2.0. Results: Twelve randomized controlled trials met our inclusion criteria. The results revealed that self-management interventions significantly improved blood pressure control, self-efficacy, medication adherence, whereas the effect of self-management on BMI was not significant in older adult patients with hypertension. The following Hedges' g (effect size) values were obtained: SBP, -0.34 (95% CI, -0.51 to -0.17, p < 0.001); DBP, -0.18 (95% CI, -0.30 to -0.05, p < 0.001); self-efficacy, 0.93 (95%CI, 0.50 to 1.36, p < 0.001); medication adherence, 1.72 (95%CI, 0.44 to 3.00, p=0.008); and BMI, -0.57 (95%CI, -1.62 to 0.48, p = 0.286). Conclusions: Self-management interventions significantly improved blood pressure control, self-efficacy, and medication adherence. However, the effects of self-management on obesity control were not supported by the evidence. Healthcare providers should implement self-management interventions to strengthen patients' role in managing their health care.Keywords: self-management, meta-analysis, blood pressure control, self-efficacy, medication adherence, body mass index
Procedia PDF Downloads 1281424 Verification and Validation of Simulated Process Models of KALBR-SIM Training Simulator
Authors: T. Jayanthi, K. Velusamy, H. Seetha, S. A. V. Satya Murty
Abstract:
Verification and Validation of Simulated Process Model is the most important phase of the simulator life cycle. Evaluation of simulated process models based on Verification and Validation techniques checks the closeness of each component model (in a simulated network) with the real system/process with respect to dynamic behaviour under steady state and transient conditions. The process of Verification and validation helps in qualifying the process simulator for the intended purpose whether it is for providing comprehensive training or design verification. In general, model verification is carried out by comparison of simulated component characteristics with the original requirement to ensure that each step in the model development process completely incorporates all the design requirements. Validation testing is performed by comparing the simulated process parameters to the actual plant process parameters either in standalone mode or integrated mode. A Full Scope Replica Operator Training Simulator for PFBR - Prototype Fast Breeder Reactor has been developed at IGCAR, Kalpakkam, INDIA named KALBR-SIM (Kalpakkam Breeder Reactor Simulator) wherein the main participants are engineers/experts belonging to Modeling Team, Process Design and Instrumentation and Control design team. This paper discusses the Verification and Validation process in general, the evaluation procedure adopted for PFBR operator training Simulator, the methodology followed for verifying the models, the reference documents and standards used etc. It details out the importance of internal validation by design experts, subsequent validation by external agency consisting of experts from various fields, model improvement by tuning based on expert’s comments, final qualification of the simulator for the intended purpose and the difficulties faced while co-coordinating various activities.Keywords: Verification and Validation (V&V), Prototype Fast Breeder Reactor (PFBR), Kalpakkam Breeder Reactor Simulator (KALBR-SIM), steady state, transient state
Procedia PDF Downloads 2661423 Prioritizing Roads Safety Based on the Quasi-Induced Exposure Method and Utilization of the Analytical Hierarchy Process
Authors: Hamed Nafar, Sajad Rezaei, Hamid Behbahani
Abstract:
Safety analysis of the roads through the accident rates which is one of the widely used tools has been resulted from the direct exposure method which is based on the ratio of the vehicle-kilometers traveled and vehicle-travel time. However, due to some fundamental flaws in its theories and difficulties in gaining access to the data required such as traffic volume, distance and duration of the trip, and various problems in determining the exposure in a specific time, place, and individual categories, there is a need for an algorithm for prioritizing the road safety so that with a new exposure method, the problems of the previous approaches would be resolved. In this way, an efficient application may lead to have more realistic comparisons and the new method would be applicable to a wider range of time, place, and individual categories. Therefore, an algorithm was introduced to prioritize the safety of roads using the quasi-induced exposure method and utilizing the analytical hierarchy process. For this research, 11 provinces of Iran were chosen as case study locations. A rural accidents database was created for these provinces, the validity of quasi-induced exposure method for Iran’s accidents database was explored, and the involvement ratio for different characteristics of the drivers and the vehicles was measured. Results showed that the quasi-induced exposure method was valid in determining the real exposure in the provinces under study. Results also showed a significant difference in the prioritization based on the new and traditional approaches. This difference mostly would stem from the perspective of the quasi-induced exposure method in determining the exposure, opinion of experts, and the quantity of accidents data. Overall, the results for this research showed that prioritization based on the new approach is more comprehensive and reliable compared to the prioritization in the traditional approach which is dependent on various parameters including the driver-vehicle characteristics.Keywords: road safety, prioritizing, Quasi-induced exposure, Analytical Hierarchy Process
Procedia PDF Downloads 3381422 Characterising Indigenous Chicken (Gallus gallus domesticus) Ecotypes of Tigray, Ethiopia: A Combined Approach Using Ecological Niche Modelling and Phenotypic Distribution Modelling
Authors: Gebreslassie Gebru, Gurja Belay, Minister Birhanie, Mulalem Zenebe, Tadelle Dessie, Adriana Vallejo-Trujillo, Olivier Hanotte
Abstract:
Livestock must adapt to changing environmental conditions, which can result in either phenotypic plasticity or irreversible phenotypic change. In this study, we combine Ecological Niche Modelling (ENM) and Phenotypic Distribution Modelling (PDM) to provide a comprehensive framework for understanding the ecological and phenotypic characteristics of indigenous chicken (Gallus gallus domesticus) ecotypes. This approach helped us to classify these ecotypes, differentiate their phenotypic traits, and identify associations between environmental variables and adaptive traits. We measured 297 adult indigenous chickens from various agro-ecologies, including 208 females and 89 males. A subset of the 22 measured traits was selected using stepwise selection, resulting in seven traits for each sex. Using ENM, we identified four agro-ecologies potentially harbouring distinct phenotypes of indigenous Tigray chickens. However, PDM classified these chickens into three phenotypical ecotypes. Chickens grouped in ecotype-1 and ecotype-3 exhibited superior adaptive traits compared to those in ecotype-2, with significant variance observed. This high variance suggests a broader range of trait expression within these ecotypes, indicating greater adaptation capacity and potentially more diverse genetic characteristics. Several environmental variables, such as soil clay content, forest cover, and mean temperature of the wettest quarter, were strongly associated with most phenotypic traits. This suggests that these environmental factors play a role in shaping the observed phenotypic variations. By integrating ENM and PDM, this study enhances our understanding of indigenous chickens' ecological and phenotypic diversity. It also provides valuable insights into their conservation and management in response to environmental changes.Keywords: adaptive traits, agro-ecology, appendage, climate, environment, imagej, morphology, phenotypic variation
Procedia PDF Downloads 321421 Quantifying Uncertainties in an Archetype-Based Building Stock Energy Model by Use of Individual Building Models
Authors: Morten Brøgger, Kim Wittchen
Abstract:
Focus on reducing energy consumption in existing buildings at large scale, e.g. in cities or countries, has been increasing in recent years. In order to reduce energy consumption in existing buildings, political incentive schemes are put in place and large scale investments are made by utility companies. Prioritising these investments requires a comprehensive overview of the energy consumption in the existing building stock, as well as potential energy-savings. However, a building stock comprises thousands of buildings with different characteristics making it difficult to model energy consumption accurately. Moreover, the complexity of the building stock makes it difficult to convey model results to policymakers and other stakeholders. In order to manage the complexity of the building stock, building archetypes are often employed in building stock energy models (BSEMs). Building archetypes are formed by segmenting the building stock according to specific characteristics. Segmenting the building stock according to building type and building age is common, among other things because this information is often easily available. This segmentation makes it easy to convey results to non-experts. However, using a single archetypical building to represent all buildings in a segment of the building stock is associated with loss of detail. Thermal characteristics are aggregated while other characteristics, which could affect the energy efficiency of a building, are disregarded. Thus, using a simplified representation of the building stock could come at the expense of the accuracy of the model. The present study evaluates the accuracy of a conventional archetype-based BSEM that segments the building stock according to building type- and age. The accuracy is evaluated in terms of the archetypes’ ability to accurately emulate the average energy demands of the corresponding buildings they were meant to represent. This is done for the buildings’ energy demands as a whole as well as for relevant sub-demands. Both are evaluated in relation to the type- and the age of the building. This should provide researchers, who use archetypes in BSEMs, with an indication of the expected accuracy of the conventional archetype model, as well as the accuracy lost in specific parts of the calculation, due to use of the archetype method.Keywords: building stock energy modelling, energy-savings, archetype
Procedia PDF Downloads 1541420 The Impact of Nutrition Education Intervention in Improving the Nutritional Status of Sickle Cell Patients
Authors: Lindy Adoma Dampare, Marina Aferiba Tandoh
Abstract:
Sickle cell disease (SCD) is an inherited blood disorder that mostly affects individuals in sub-Saharan Africa. Nutritional deficiencies have been well established in SCD patients. In Ghana, studies have revealed the prevalence of malnutrition, especially amongst children with SCD and hence the need to develop an evidence-based comprehensive nutritional therapy for SCD to improve their nutritional status. The aim of the study was to develop and assess the effect of a nutrition education material on the nutritional status of SCD patients in Ghana. This was a pre-post interventional study. Patients between the ages of 2 to 60 years were recruited from the Tema General Hospital. Following a baseline nutrition knowledge (NK), beliefs, sanitary practice and dietary consumption pattern assessment, a twice-monthly nutrition education was carried out for 3 months, followed by a post-intervention assessment. Nutritional status of SCD patients was assessed using a 3-days dietary recall and anthropometric measurements. Nutrition education (NE) was given to SCD adults and caregivers of SCD children. Majority of the caregivers (69%) and SCD adult (82%) at baseline had low NK. The level of NK improved significantly in SCD adults (4.18±1.83 vs. 10.00±1.00, p<0.001) and caregivers (5.58 ± 2.25 vs.10.44± 0.846, p<0.001) after NE. Increase in NK improved dietary intake and dietary consumption pattern of SCD patients. Significant increase in weight (23.2±11.6 vs. 25.9±12.1, p=0.036) and height (118.5±21.9 vs. 123.5±22.2, p=0.011) was observed in SCD children at post intervention. Stunting (10.5% vs. 8.6%, p=0.62) and wasting (22.1% vs. 14.4%, p=0.30) reduced in SCD children after NE although not statistically significant. Reduction (18.2% vs. 9.1%) in underweight and an increase (18.2% vs. 27.3%) in overweight SCD adults was recorded at post intervention. Fat mass remained the same while high muscle mass increased (18.2% vs. 27.3%) at post intervention in SCD adult. Anaemic status of SCD patients improved at post intervention and the improvement was statistically significant amongst SCD children. Nutrition education improved the NK of SCD caregivers and adults hence, improving the dietary consumption pattern and nutrient intake of SCD patients. Overall, NE improved the nutritional status of SCD patients. This study shows the potential of nutrition education in improving the nutritional knowledge, dietary consumption pattern, dietary intake and nutritional status of SCD patients, and should be further explored.Keywords: sickle cell disease, nutrition education, dietary intake, nutritional status
Procedia PDF Downloads 1031419 Job Satisfaction and Associated factors of Urban Health Extension Professionals in Addis Ababa City, Ethiopia
Authors: Metkel Gebremedhin, Biruk Kebede, Guash Abay
Abstract:
Job satisfaction largely determines the productivity and efficiency of human resources for health. There is scanty evidence on factors influencing the job satisfaction of health extension professionals (HEPs) in Addis Ababa. The objective of this study was to determine the level of and factors influencing job satisfaction among extension health workers in Addis Ababa city. This was a cross-sectional study conducted in Addis Ababa, Ethiopia. Among all public health centers found in the Addis Ababa city administration health bureau that would be included in the study, a multistage sampling technique was employed. Then we selected the study health centers randomly and urban health extension professionals from the selected health centers. In-depth interview data collection methods were carried out for a comprehensive understanding of factors affecting job satisfaction among Health extension professionals (HEPs) in Addis Ababa. HEPs working in Addis Ababa areas are the primary study population. Multivariate logistic regression with 95% CI at P ≤ 0.05 was used to assess associated factors to job satisfaction. The overall satisfaction rate was 10.7% only, while 89.3%% were dissatisfied with their jobs. The findings revealed that variables such as marital status, staff relations, community support, supervision, and rewards have a significant influence on the level of job satisfaction. For those who were not satisfied, the working environment, job description, low salary, poor leadership and training opportunities were the major causes. Other factors influencing the level of satisfaction were lack of medical equipment, lack of transport facilities, lack of training opportunities, and poor support from woreda experts. Our study documented a very low level of overall satisfaction among health extension professionals in Addis Ababa city public health centers. Considering the factors responsible for this state of affairs, urgent and concrete strategies must be developed to address the concerns of extension health professionals as they represent a sensitive domain of the health system of Addis Ababa city. Improving the overall work environment, review of job descriptions and better salaries might bring about a positive change.Keywords: job satisfaction, extension health professionals, Addis Ababa
Procedia PDF Downloads 771418 Assessing Future Offshore Wind Farms in the Gulf of Roses: Insights from Weather Research and Forecasting Model Version 4.2
Authors: Kurias George, Ildefonso Cuesta Romeo, Clara Salueña Pérez, Jordi Sole Olle
Abstract:
With the growing prevalence of wind energy there is a need, for modeling techniques to evaluate the impact of wind farms on meteorology and oceanography. This study presents an approach that utilizes the WRF (Weather Research and Forecasting )with that include a Wind Farm Parametrization model to simulate the dynamics around Parc Tramuntana project, a offshore wind farm to be located near the Gulf of Roses off the coast of Barcelona, Catalonia. The model incorporates parameterizations for wind turbines enabling a representation of the wind field and how it interacts with the infrastructure of the wind farm. Current results demonstrate that the model effectively captures variations in temeperature, pressure and in both wind speed and direction over time along with their resulting effects on power output from the wind farm. These findings are crucial for optimizing turbine placement and operation thus improving efficiency and sustainability of the wind farm. In addition to focusing on atmospheric interactions, this study delves into the wake effects within the turbines in the farm. A range of meteorological parameters were also considered to offer a comprehensive understanding of the farm's microclimate. The model was tested under different horizontal resolutions and farm layouts to scrutinize the wind farm's effects more closely. These experimental configurations allow for a nuanced understanding of how turbine wakes interact with each other and with the broader atmospheric and oceanic conditions. This modified approach serves as a potent tool for stakeholders in renewable energy, environmental protection, and marine spatial planning. environmental protection and marine spatial planning. It provides a range of information regarding the environmental and socio economic impacts of offshore wind energy projects.Keywords: weather research and forecasting, wind turbine wake effects, environmental impact, wind farm parametrization, sustainability analysis
Procedia PDF Downloads 721417 Advancing Inclusive Curriculum Development for Special Needs Education in Africa
Authors: Onosedeba Mary Ayayia
Abstract:
Inclusive education has emerged as a critical global imperative, aiming to provide equitable educational opportunities for all, regardless of their abilities or disabilities. In Africa, the pursuit of inclusive education faces significant challenges, particularly concerning the development and implementation of inclusive curricula tailored to the diverse needs of students with disabilities. This study delves into the heart of this issue, seeking to address the pressing problem of exclusion and marginalization of students with disabilities in mainstream educational systems across the continent. The problem is complex, entailing issues of limited access to tailored curricula, shortages of qualified teachers in special needs education, stigmatization, limited research and data, policy gaps, inadequate resources, and limited community awareness. These challenges perpetuate a system where students with disabilities are systematically excluded from quality education, limiting their future opportunities and societal contributions. This research proposes a comprehensive examination of the current state of inclusive curriculum development and implementation in Africa. Through an innovative and explicit exploration of the problem, the study aims to identify effective strategies, guidelines, and best practices that can inform the development of inclusive curricula. These curricula will be designed to address the diverse learning needs of students with disabilities, promote teacher capacity building, combat stigmatization, generate essential data, enhance policy coherence, allocate adequate resources, and raise community awareness. The goal of this research is to contribute to the advancement of inclusive education in Africa by fostering an educational environment where every student, regardless of ability or disability, has equitable access to quality education. Through this endeavor, the study aligns with the broader global pursuit of social inclusion and educational equity, emphasizing the importance of inclusive curricula as a foundational step towards a more inclusive and just society.Keywords: inclusive education, special education, curriculum development, Africa
Procedia PDF Downloads 641416 Suggestions to the Legislation about Medical Ethics and Ethics Review in the Age of Medical Artificial Intelligence
Authors: Xiaoyu Sun
Abstract:
In recent years, the rapid development of Artificial Intelligence (AI) has extensively promoted medicine, pharmaceutical, and other related fields. The medical research and development of artificial intelligence by scientific and commercial organizations are on the fast track. The ethics review is one of the critical procedures of registration to get the products approved and launched. However, the SOPs for ethics review is not enough to guide the healthy and rapid development of artificial intelligence in healthcare in China. Ethical Review Measures for Biomedical Research Involving Human Beings was enacted by the National Health Commission of the People's Republic of China (NHC) on December 1st, 2016. However, from a legislative design perspective, it was neither updated timely nor in line with the trends of AI international development. Therefore, it was great that NHC published a consultation paper on the updated version on March 16th, 2021. Based on the most updated laws and regulations in the States and EU, and in-depth-interviewed 11 subject matter experts in China, including lawmakers, regulators, and key members of ethics review committees, heads of Regulatory Affairs in SaMD industry, and data scientists, several suggestions were proposed on top of the updated version. Although the new version indicated that the Ethics Review Committees need to be created by National, Provincial and individual institute levels, the review authorities of different levels were not clarified. The suggestion is that the precise scope of review authorities for each level should be identified based on Risk Analysis and Management Model, such as the complicated leading technology, gene editing, should be reviewed by National Ethics Review Committees, it will be the job of individual institute Ethics Review Committees to review and approve the clinical study with less risk such as an innovative cream to treat acne. Furthermore, to standardize the research and development of artificial intelligence in healthcare in the age of AI, more clear guidance should be given to data security in the layers of data, algorithm, and application in the process of ethics review. In addition, transparency and responsibility, as two of six principles in the Rome Call for AI Ethics, could be further strengthened in the updated version. It is the shared goal among all countries to manage well and develop AI to benefit human beings. Learned from the other countries who have more learning and experience, China could be one of the most advanced countries in artificial intelligence in healthcare.Keywords: biomedical research involving human beings, data security, ethics committees, ethical review, medical artificial intelligence
Procedia PDF Downloads 168