Search results for: driving potential
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11895

Search results for: driving potential

8685 Evaluation of Natural Gums: Gum Tragacanth, Xanthan Gum, Guar Gum and Gum Acacia as Potential Hemostatic Agents

Authors: Himanshu Kushwah, Nidhi Sandal, Meenakshi K. Chauhan, Gaurav Mittal

Abstract:

Excessive bleeding is the primary factor of avoidable death in both civilian trauma centers as well as the military battlefield. Hundreds of Indian troops die every year due to blood loss caused by combat-related injuries. These deaths are avoidable and can be prevented to a large extent by making available a suitable hemostatic dressing in an emergency medical kit. In this study, natural gums were evaluated as potential hemostatic agents in combination with calcium gluconate. The study compares the hemostatic activity of Gum Tragacanth (GT), Guar Gum (GG), Xanthan Gum (XG) and Gum Acacia (GA) by carrying out different in-vitro and in-vivo studies. In-vitro studies were performed using the Lee-White method and Eustrek method, which includes the visual and microscopic analysis of blood clotting. MTT assay was also performed using human lymphocytes to check the cytotoxicity of the gums. The in-vivo studies were performed in Sprague Dawley rats using tail bleeding assay to evaluate the hemostatic efficacy of the gums and compared with a commercially available hemostatic sponge, Surgispon. Erythrocyte agglutination test was also performed to check the interaction between blood cells and the natural gums. Other parameters like blood loss, adherence strength of the developed hemostatic dressing material incorporating these gums, re-bleeding, and survival of the animals were also studied. The data obtained from the MTT assay showed that Guar gum, Gum Tragacanth, and Gum Acacia were not significantly cytotoxic, but substantial cytotoxicity was observed in Xanthan gum samples at high concentrations. Also, Xanthan gum took the least time with its minimum concentration to achieve hemostasis, (approximately 50 seconds at 3mg concentration). Gum Tragacanth also showed efficient hemostasis at a concentration of 35mg at the same time, but the other two gums tested were not able to clot the blood in significantly less time. A sponge dressing made of Tragacanth gum was found to be more efficient in achieving hemostasis and showed better practical applicability among all the gums studied and also when compared to the commercially available product, Surgispon, thus making it a potentially better alternative.

Keywords: cytotoxicity, hemostasis, natural gums, sponge

Procedia PDF Downloads 131
8684 A Study on Accident Result Contribution of Individual Major Variables Using Multi-Body System of Accident Reconstruction Program

Authors: Donghun Jeong, Somyoung Shin, Yeoil Yun

Abstract:

A large-scale traffic accident refers to an accident in which more than three people die or more than thirty people are dead or injured. In order to prevent a large-scale traffic accident from causing a big loss of lives or establish effective improvement measures, it is important to analyze accident situations in-depth and understand the effects of major accident variables on an accident. This study aims to analyze the contribution of individual accident variables to accident results, based on the accurate reconstruction of traffic accidents using PC-Crash’s Multi-Body, which is an accident reconstruction program, and simulation of each scenario. Multi-Body system of PC-Crash accident reconstruction program is used for multi-body accident reconstruction that shows motions in diverse directions that were not approached previously. MB System is to design and reproduce a form of body, which shows realistic motions, using several bodies. Targeting the 'freight truck cargo drop accident around the Changwon Tunnel' that happened in November 2017, this study conducted a simulation of the freight truck cargo drop accident and analyzed the contribution of individual accident majors. Then on the basis of the driving speed, cargo load, and stacking method, six scenarios were devised. The simulation analysis result displayed that the freight car was driven at a speed of 118km/h(speed limit: 70km/h) right before the accident, carried 196 oil containers with a weight of 7,880kg (maximum load: 4,600kg) and was not fully equipped with anchoring equipment that could prevent a drop of cargo. The vehicle speed, cargo load, and cargo anchoring equipment were major accident variables, and the accident contribution analysis results of individual variables are as follows. When the freight car only obeyed the speed limit, the scattering distance of oil containers decreased by 15%, and the number of dropped oil containers decreased by 39%. When the freight car only obeyed the cargo load, the scattering distance of oil containers decreased by 5%, and the number of dropped oil containers decreased by 34%. When the freight car obeyed both the speed limit and cargo load, the scattering distance of oil containers fell by 38%, and the number of dropped oil containers fell by 64%. The analysis result of each scenario revealed that the overspeed and excessive cargo load of the freight car contributed to the dispersion of accident damage; in the case of a truck, which did not allow a fall of cargo, there was a different type of accident when driven too fast and carrying excessive cargo load, and when the freight car obeyed the speed limit and cargo load, there was the lowest possibility of causing an accident.

Keywords: accident reconstruction, large-scale traffic accident, PC-Crash, MB system

Procedia PDF Downloads 184
8683 China Global Policy through the Shanghai Cooperation Organization

Authors: Enayatollah Yazdani

Abstract:

In the post-Cold War era, the world is facing a new emerging global order with the rise of multiple actors in the international arena. China, as a rising global power, has great leverage in internal relations. In particular, during the last two decades, China has rapidly transformed its economy into a global leader in advanced technologies. As a rising power and as one of the two major founding members of the Shanghai Cooperation Organization (SCO), China has tried to use this regional organization, which has the potential to become an important political and security organization of the major states located in the vast Eurasian landmass, for its “go global” strategy. In fact, for Beijing, the SCO represents a new and unique cooperation model, reflecting its vision of a multipolar world order. China has used the SCO umbrella as a multilateral platform to address external threats posed by non-state actors on its vulnerable western border; to gain a strong economic and political foothold in Central Asia without putting the Sino-Russian strategic partnership at risk; and to enhance its energy security through large-scale infrastructure investment in, and trade with, the Central Asian member states. In other words, the SCO is one of the successful outcomes of Chines foreign policy in the post-Cold War era. The expansion of multilateral ties all over the world by dint of pursuing institutional strategies as SCO identifies China as a more constructive power. SCO became a new model of cooperation that was formed on the remains of collapsed Soviet system and predetermined China's geopolitical role in the region. As the fast developing effective regional mechanism, SCO now has more of an external impact on the international system and forms a new type of interaction for promoting China's grand strategy of 'peaceful rise.' This paper aims to answer this major question: How the Chinese government has manipulated the SCO for its foreign policy and global and regional influence? To answer this question, the main discussion is that with regard to the SCO capabilities and politico-economic potential, this organization has been used by China as a platform to expand influence beyond its borders.

Keywords: China, the Shanghai Cooperation Organization (SCO), Central Asia, global policy, foreign policy

Procedia PDF Downloads 55
8682 Export and Import Indicators of Georgian Agri-food Products during the Pandemic: Challenges and Opportunities

Authors: Eteri Kharaishvili

Abstract:

Introduction. The paper analyzes the main indicators of export and import of Georgian agri-food products; identifies positive and negative trends under the pandemic; based on the revealed problemssubstantiates the need formodernization ofin agri-food sector. It is argued that low production and productivity rates of food products negatively impact achieving the optimal export-to-import ratio; therefore, it leads toincreaseddependence on other countries andreduces the level of food security. Research objectives. The objective of the research is to identify the key challenges based on the analysis of export-import indicators of Georgian food products during the pandemic period and develop recommendations on the possibilities of post-pandemic perspectives. Research methods. Various theoretical and methodological research tools are used in the paper; in particular, a desk research is carried out on the research topic; endogenous and exogenous variables affecting export and import are determined through factor analysis; SWOT and PESTEL analysis are used to identify development opportunities; selection and groupingof data, identification of similarities and differences is carried outby using analysis, synthesis, sampling, induction and other methods; a qualitative study is conducted based on a survey of agri-food experts and exporters for clarifying the factors that impede export-import flows. Contributions. The factors that impede the export of Georgian agri-food products in the short run under COVID-19 pandemic are identified. These are: reduced income of farmers, delays in the supply of raw materials and supplies to the agri-food sectorfrom the neighboring industries, as well as in harvesting, processing, marketing, transportation, and other sectors; increased indirect costs, etc. The factors that impede the export in the long run areas follows loss of public confidence in the industry, risk of losing positions in traditional markets, etc. Conclusions are made on the problems in the field of export and import of Georgian agri-food products in terms of the pandemic; development opportunities are evaluated based on the analysis of the agri-food sector potential. Recommendations on the development opportunities for export and import of Georgian agri-food products in the post-pandemic period are proposed.

Keywords: agri-food products, export, and import, pandemic period, hindering factor, development potential

Procedia PDF Downloads 124
8681 Towards Development of a Framework for Saudi Education Software Ecosystem

Authors: Fazal-e-Amin, Abdullah S. Alghamdi, Iftikhar Ahmad

Abstract:

Software ecosystems’ concept is an inspiration from the natural ecosystem. Software ecosystems refer to large systems developed on top of a platform composed of different components developed by different entities of that ecosystem. Ecosystems improve information access, dissemination and coordination considerably. The ability to evolve and accommodate new subsystems gives a boost to the software ecosystems. In this paper, Saudi education software ecosystem is discussed and its need and potential benefits are highlighted. This work will provide a basis for further research in this area and foundation in development of Saudi education ecosystem.

Keywords: software ecosystem, education software, framework, software engineering

Procedia PDF Downloads 507
8680 Electrospray Plume Characterisation of a Single Source Cone-Jet for Micro-Electronic Cooling

Authors: M. J. Gibbons, A. J. Robinson

Abstract:

Increasing expectations on small form factor electronics to be more compact while increasing performance has driven conventional cooling technologies to a thermal management threshold. An emerging solution to this problem is electrospray (ES) cooling. ES cooling enables two phase cooling by utilising Coulomb forces for energy efficient fluid atomization. Generated charged droplets are accelerated to the grounded target surface by the applied electric field and surrounding gravitational force. While in transit the like charged droplets enable plume dispersion and inhibit droplet coalescence. If the electric field is increased in the cone-jet regime, a subsequent increase in the plume spray angle has been shown. Droplet segregation in the spray plume has been observed, with primary droplets in the plume core and satellite droplets positioned on the periphery of the plume. This segregation is facilitated by inertial and electrostatic effects. This result has been corroborated by numerous authors. These satellite droplets are usually more densely charged and move at a lower relative velocity to that of the spray core due to the radial decay of the electric field. Previous experimental research by Gomez and Tang has shown that the number of droplets deposited on the periphery can be up to twice that of the spray core. This result has been substantiated by a numerical models derived by Wilhelm et al., Oh et al. and Yang et al. Yang et al. showed from their numerical model, that by varying the extractor potential the dispersion radius of the plume also varies proportionally. This research aims to investigate this dispersion density and the role it plays in the local heat transfer coefficient profile (h) of ES cooling. This will be carried out for different extractor – target separation heights (H2), working fluid flow rates (Q), and extractor applied potential (V2). The plume dispersion will be recorded by spraying a 25 µm thick, joule heated steel foil and by recording the thermal footprint of the ES plume using a Flir A-40 thermal imaging camera. The recorded results will then be analysed by in-house developed MATLAB code.

Keywords: electronic cooling, electrospray, electrospray plume dispersion, spray cooling

Procedia PDF Downloads 379
8679 Permeable Reactive Pavement for Controlling the Transport of Benzene, Toluene, Ethyl-Benzene, and Xylene (BTEX) Contaminants

Authors: Shengyi Huang, Chenju Liang

Abstract:

Volatile organic compounds such as benzene, toluene, ethyl-benzene, and xylene (BTEX) are common contaminants in environment, which could come from asphalt concrete or exhaust emissions of vehicles. The BTEX may invade to the subsurface environment via wet and dry atmospheric depositions. If there aren’t available ways for controlling contaminants’ fate and transport, they would extensively harm natural environment. In the 1st phase of this study, various adsorbents were screened for a suitable one to be an additive in the porous asphalt mixture. In the 2nd phase, addition of the selected adsorbent was incorporated with the design of porous asphalt concrete (PAC) to produce the permeable reactive pavement (PRP), which was subsequently tested for the potential of adsorbing aqueous BTEX as compared to the PAC, in the 3rd phase. The PRP was prepared according to the following steps: firstly, the suitable adsorbent was chosen based on the analytical results of specific surface area analysis, thermal-gravimetric analysis, adsorption kinetics and isotherms, and thermal dynamics analysis; secondly, the materials of coarse aggregate, fine aggregate, filler, asphalt, and fiber were tested in order to meet regulated specifications (e.g., water adsorption, soundness, viscosity etc.) for preparing the PRP; thirdly, the amount of adsorbent additive was determined in the PRP; fourthly, the prepared PAC and PRP were examined for their physical properties (e.g., abrasion loss, drain-down loss, Marshall stability, Marshall flow, dynamic stability etc.). As a result of comparison between PRP and PAC, the PRP showed better physical performance than the traditional PAC. At last, the Marshall Specimen column tests were conducted to explore the adsorption capacities of PAC and PRPs. The BTEX adsorption capacities of PRPs are higher than those obtained from traditional PAC. In summary, PRPs showed superior physical performance and adsorption capacities, which exhibit the potential of PRP to be applied as a replacement of PAC for better controlling the transport of non-point source pollutants.

Keywords: porous asphalt concrete, volatile organic compounds, permeable reactive pavement, non-point source pollution

Procedia PDF Downloads 198
8678 A Review of Machine Learning for Big Data

Authors: Devatha Kalyan Kumar, Aravindraj D., Sadathulla A.

Abstract:

Big data are now rapidly expanding in all engineering and science and many other domains. The potential of large or massive data is undoubtedly significant, make sense to require new ways of thinking and learning techniques to address the various big data challenges. Machine learning is continuously unleashing its power in a wide range of applications. In this paper, the latest advances and advancements in the researches on machine learning for big data processing. First, the machine learning techniques methods in recent studies, such as deep learning, representation learning, transfer learning, active learning and distributed and parallel learning. Then focus on the challenges and possible solutions of machine learning for big data.

Keywords: active learning, big data, deep learning, machine learning

Procedia PDF Downloads 423
8677 Challenges beyond the Singapore Future-Ready School ‘LEADER’ Qualities

Authors: Zoe Boon Suan Loy

Abstract:

An exploratory research undertaken in 2000 at the beginning of the COVID-19 pandemic examined the changing roles of Singapore school leaders as they lead teachers in developing future-ready learners. While it is evident that ‘LEADER’ qualities epitomize the knowledge, competencies, and skills required, recent events in an increasing VUCA and BANI world characterized by massively disruptive Ukraine -Russian war, unabating tense US-Sino relations, issues related to sustainability, and rapid ageing will have an impact on school leadership. As an increasingly complex endeavour, this requires a relook as they lead teachers in nurturing holistically-developed future-ready students. Digitalisation, new technology, and the push for a green economy will be the key driving forces that will have an impact on job availability. Similarly, the rapid growth of artificial intelligence (AI) capabilities, including ChatGPT, will aggravate and add tremendous stress to the work of school leaders. This paper seeks to explore the key school leadership shifts required beyond the ‘LEADER’ qualities as school leaders respond to the changes, challenges, and opportunities in the 21st C new normal. The research findings for this paper are based on an exploratory qualitative study on the perceptions of 26 school leaders (vice-principals) who were attending a milestone educational leadership course at the National Institute of Education, Nanyang Technological University, Singapore. A structured questionnaire is designed to collect the data, which is then analysed using coding methodology. Broad themes on key competencies and skills of future-ready leaders in the Singapore education system are then identified. Key Findings: In undertaking their leadership roles as leaders of future-ready learners, school leaders need to demonstrate the ‘LEADER’ qualities. They need to have a long-term view, understand the educational imperatives, have a good awareness of self and the dispositions of a leader, be effective in optimizing external leverages and are clear about their role expectations. These ‘LEADER’ qualities are necessary and relevant in the post-Covid era. Beyond this, school leaders with ‘LEADER’ qualities are well supported by the Ministry of Education, which takes cognizance of emerging trends and continually review education policies to address related issues. Concluding Statement: Discussions within the education ecosystem and among other stakeholders on the implications of the use of artificial intelligence and ChatGPT on the school curriculum, including content knowledge, pedagogy, and assessment, are ongoing. This augurs well for school leaders as they undertake their responsibilities as leaders of future-ready learners.

Keywords: Singapore education system, ‘LEADER’ qualities, school leadership, future-ready leaders, future-ready learners

Procedia PDF Downloads 58
8676 Inhibition Theory: The Development of Subjective Happiness and Life Satisfaction After Experiencing Severe Traumatic Life Events (Paraplegia)

Authors: Tanja Ecken, Laura Fricke, Anika Wehling, Maren M. Michaelsen, Tobias Esch

Abstract:

Studies and applied experiences evidence severe and traumatic accidents not only require physical rehabilitation and recovery but also necessitate a psychological adaption and reorganization to the changed living conditions. Neurobiological models underpinning the experience of happiness and satisfaction postulate life shocks to potentially enhance the experience of happiness and life satisfaction, i.e., posttraumatic growth (PTG). This present study aims to provide an in-depth understanding of the underlying psychological processes of PTG and to outline its consequences on subjective happiness and life satisfaction. To explore the aforementioned, Esch’s ABC Model was used as guidance for the development of a questionnaire assessing changes in happiness and life satisfaction and for a schematic model postulating the development of PTG in the context of paraplegia. Two-stage qualitative interview procedures explored participants’ experiences of paraplegia. Specifically, narrative, semi-structured interviews (N=28) focused on the time before and after the accident, the availability of supportive resources, and potential changes in the perception of happiness and life satisfaction. Qualitative analysis (Grounded Theory) indicated an initial phase of reorganization was followed by a gradual psychological adaption to novel, albeit reduced, opportunities in life. Participants reportedly experienced a ‘compelled’ slowing down and elements of mindfulness, subsequently instilling a sense of gratitude and joy in relation to life’s presumed trivialities. Despite physical limitations and difficulties, participants reported an enhanced ability to relate to oneself and others and a reduction of perceived everyday nuisances. Concluding, PTG can be experienced in response to severe, traumatic life events and has the potential to enrich the lives of affected persons in numerous, unexpected and yet challenging ways. PTG appears to be a spectrum comprised of an interplay of internal and external resources underpinned by neurobiological processes. Participants experienced PTG irrelevant of age, gender, marital status, income or level of education.

Keywords: post traumatic growth, happiness, life satisfaction, traumatic life events, paraplegia, ABC model, trauma

Procedia PDF Downloads 53
8675 Methodologies for Management of Sustainable Tourism: A Case Study in Jalapão/to/Brazil

Authors: Mary L. G. S. Senna, Veruska C. Dutra, Afonso R. Aquino

Abstract:

The study is in application and analysis of two tourism management tools that can contribute to making public managers decision: the Barometer of Tourism Sustainability (BTS) and the Ecological Footprint (EF). The results have shown that BTS allows you to have an integrated view of the tourism system, awakening to the need for planning of appropriate actions so that it can achieve the positive scale proposed (potentially sustainable). Already the methodology of ecological tourism footprint is an important tool to measure potential impacts generated by tourism to tourist reality.

Keywords: barometer of tourism sustainability, ecological footprint of tourism, Jalapão/Brazil, sustainable tourism

Procedia PDF Downloads 484
8674 Geometric, Energetic and Topological Analysis of (Ethanol)₉-Water Heterodecamers

Authors: Jennifer Cuellar, Angie L. Parada, Kevin N. S. Chacon, Sol M. Mejia

Abstract:

The purification of bio-ethanol through distillation methods is an unresolved issue at the biofuel industry because of the ethanol-water azeotrope formation, which increases the steps of the purification process and subsequently increases the production costs. Therefore, understanding the mixture nature at the molecular level could provide new insights for improving the current methods and/or designing new and more efficient purification methods. For that reason, the present study focuses on the evaluation and analysis of (ethanol)₉-water heterodecamers, as the systems with the minimum molecular proportion that represents the azeotropic concentration (96 %m/m in ethanol). The computational modelling was carried out with B3LYP-D3/6-311++G(d,p) in Gaussian 09. Initial explorations of the potential energy surface were done through two methods: annealing simulated runs and molecular dynamics trajectories besides intuitive structures obtained from smaller (ethanol)n-water heteroclusters, n = 7, 8 and 9. The energetic order of the seven stable heterodecamers determines the most stable heterodecamer (Hdec-1) as a structure forming a bicyclic geometry with the O-H---O hydrogen bonds (HBs) where the water is a double proton donor molecule. Hdec-1 combines 1 water molecule and the same quantity of every ethanol conformer; this is, 3 trans, 3 gauche 1 and 3 gauche 2; its abundance is 89%, its decamerization energy is -80.4 kcal/mol, i.e. 13 kcal/mol most stable than the less stable heterodecamer. Besides, a way to understand why methanol does not form an azeotropic mixture with water, analogous systems ((ethanol)10, (methanol)10, and (methanol)9-water)) were optimized. Topologic analysis of the electron density reveals that Hec-1 forms 33 weak interactions in total: 11 O-H---O, 8 C-H---O, 2 C-H---C hydrogen bonds and 12 H---H interactions. The strength and abundance of the most unconventional interactions (H---H, C-H---O and C-H---O) seem to explain the preference of the ethanol for forming heteroclusters instead of clusters. Besides, O-H---O HBs present a significant covalent character according to topologic parameters as the Laplacian of electron density and the relationship between potential and kinetic energy densities evaluated at the bond critical points; obtaining negatives values and values between 1 and 2, for those two topological parameters, respectively.

Keywords: ADMP, DFT, ethanol-water azeotrope, Grimme dispersion correction, simulated annealing, weak interactions

Procedia PDF Downloads 93
8673 Electrospun Fibre Networks Loaded with Hydroxyapatite and Barium Titanate as Smart Scaffolds for Tissue Regeneration

Authors: C. Busuioc, I. Stancu, A. Nicoara, A. Zamfirescu, A. Evanghelidis

Abstract:

The field of tissue engineering has expanded its potential due to the use of composite biomaterials belonging to increasingly complex systems, leading to bone substitutes with properties that are continuously improving to meet the patient's specific needs. Furthermore, the development of biomaterials based on ceramic and polymeric phases is an unlimited resource for future scientific research, with the final aim of restoring the original tissue functionality. Thus, in the first stage, composite scaffolds based on polycaprolactone (PCL) or polylactic acid (PLA) and inorganic powders were prepared by employing the electrospinning technique. The targeted powders were: commercial and laboratory synthesized hydroxyapatite (HAp), as well as barium titanate (BT). By controlling the concentration of the powder within the precursor solution, together with the processing parameters, different types of three-dimensional architectures were achieved. In the second stage, both the mineral powders and hybrid composites were investigated in terms of composition, crystalline structure, and microstructure so that to demonstrate their suitability for tissue engineering applications. Regarding the scaffolds, these were proven to be homogeneous on large areas and loaded with mineral particles in different proportions. The biological assays demonstrated that the addition of inorganic powders leads to modified responses in the presence of simulated body fluid (SBF) or cell cultures. Through SBF immersion, the biodegradability coupled with bioactivity were highlighted, with fiber fragmentation and surface degradation, as well as apatite layer formation within the testing period. Moreover, the final composites represent supports accepted by the cells, favoring implant integration. Concluding, the purposed fibrous materials based on bioresorbable polymers and mineral powders, produced by the electrospinning technique, represent candidates with considerable potential in the field of tissue engineering. Future improvements can be attained by optimizing the synthesis process or by simultaneous incorporation of multiple inorganic phases with well-defined biological action in order to fabricate multifunctional composites.

Keywords: barium titanate, electrospinning, fibre networks, hydroxyapatite, smart scaffolds

Procedia PDF Downloads 96
8672 Specialised Financial Institutions and its Role in the Promotion of Small and Medium Enterprises in Kerala, India

Authors: K. V. Venugopalan

Abstract:

Micro, Small and Medium Enterprises (MSMEs) have been accepted as the engine of economic growth and for promoting equitable development. The major advantage of the sector is its employment potential at low capital cost. The labour intensity of the MSME sector is much higher than that of the large enterprises. The MSMEs constitute over 90% of total enterprises in most of the economies and are credited with generating the highest rates of employment growth and account for a major share of industrial production and exports. Kerala is a small state in India with the limited land area with high potential in educated human resources need micro, small and medium enterprises for development. Kerala has the highest Physical Quality of Life Index (PQLI) in India and the highest Human Development Index (HDI) at par with the developed countries SME play an important role in alleviating poverty and contribute significantly towards the growth of developing economies. Financial institutions can play a vital role for the promotion of micro, small and medium enterprises in Kerala. The study entitled “Financial Institutions and its role in the promotion of Small and Medium Enterprises in Kerala “examine the progress of MSME in Kerala and India and also the role of financial institutions and the problems faced by entrepreneurs for getting advances with reference to ‘Kerala Financial Corporation’-an agency set up by the government for promoting small and medium enterprises in the state. This study is based on both secondary and primary data. Primary data for the study was collected from those entrepreneurs who availed advances from financial institutions. The secondary data include the investment made, goods and services provided, the employment generated and the number of units registered in MSME sector for the last 10 years in Kerala. The study concluded that financial institutions providing finance with simple procedures and charging smaller interest rates will increase the number of MSME's and also contribute gross state domestic product and reduce the unemployment problem and poverty in the economy.

Keywords: gross state domestic product, human development index, micro, small and medium enterprises

Procedia PDF Downloads 392
8671 Comparative Study between the Absorbed Dose of 67ga-Ecc and 68ga-Ecc

Authors: H. Yousefnia, S. Zolghadri, S. Shanesazzadeh, A.Lahooti, A. R. Jalilian

Abstract:

In this study, 68Ga-ECC and 67Ga-ECC were both prepared with the radiochemical purity of higher than 97% in less than 30 min. The biodistribution data for 68Ga-ECC showed the extraction of the most of the activity from the urinary tract. The absorbed dose was estimated based on biodistribution data in mice by the medical internal radiation dose (MIRD) method. Comparison between human absorbed dose estimation for these two agents indicated the values of approximately ten-fold higher after injection of 67Ga-ECC than 68Ga-ECC in the most organs. The results showed that 68Ga-ECC can be considered as a more potential agent for renal imaging compared to 67Ga-ECC.

Keywords: effective absorbed dose, ethylenecysteamine cysteine, Ga-67, Ga-68

Procedia PDF Downloads 459
8670 Through Additive Manufacturing. A New Perspective for the Mass Production of Made in Italy Products

Authors: Elisabetta Cianfanelli, Paolo Pupparo, Maria Claudia Coppola

Abstract:

The recent evolutions in the innovation processes and in the intrinsic tendencies of the product development process, lead to new considerations on the design flow. The instability and complexity that contemporary life describes, defines new problems in the production of products, stimulating at the same time the adoption of new solutions across the entire design process. The advent of Additive Manufacturing, but also of IOT and AI technologies, continuously puts us in front of new paradigms regarding design as a social activity. The totality of these technologies from the point of view of application describes a whole series of problems and considerations immanent to design thinking. Addressing these problems may require some initial intuition and the use of some provisional set of rules or plausible strategies, i.e., heuristic reasoning. At the same time, however, the evolution of digital technology and the computational speed of new design tools describe a new and contrary design framework in which to operate. It is therefore interesting to understand the opportunities and boundaries of the new man-algorithm relationship. The contribution investigates the man-algorithm relationship starting from the state of the art of the Made in Italy model, the most known fields of application are described and then focus on specific cases in which the mutual relationship between man and AI becomes a new driving force of innovation for entire production chains. On the other hand, the use of algorithms could engulf many design phases, such as the definition of shape, dimensions, proportions, materials, static verifications, and simulations. Operating in this context, therefore, becomes a strategic action, capable of defining fundamental choices for the design of product systems in the near future. If there is a human-algorithm combination within a new integrated system, quantitative values can be controlled in relation to qualitative and material values. The trajectory that is described therefore becomes a new design horizon in which to operate, where it is interesting to highlight the good practices that already exist. In this context, the designer developing new forms can experiment with ways still unexpressed in the project and can define a new synthesis and simplification of algorithms, so that each artifact has a signature in order to define in all its parts, emotional and structural. This signature of the designer, a combination of values and design culture, will be internal to the algorithms and able to relate to digital technologies, creating a generative dialogue for design purposes. The result that is envisaged indicates a new vision of digital technologies, no longer understood only as of the custodians of vast quantities of information, but also as a valid integrated tool in close relationship with the design culture.

Keywords: decision making, design euristics, product design, product design process, design paradigms

Procedia PDF Downloads 103
8669 Preparation and Characterization of CO-Tolerant Electrocatalyst for PEM Fuel Cell

Authors: Ádám Vass, István Bakos, Irina Borbáth, Zoltán Pászti, István Sajó, András Tompos

Abstract:

Important requirements for the anode side electrocatalysts of polymer electrolyte membrane (PEM) fuel cells are CO-tolerance, stability and corrosion resistance. Carbon is still the most common material for electrocatalyst supports due to its low cost, high electrical conductivity and high surface area, which can ensure good dispersion of the Pt. However, carbon becomes degraded at higher potentials and it causes problem during application. Therefore it is important to explore alternative materials with improved stability. Molybdenum-oxide can improve the CO-tolerance of the Pt/C catalysts, but it is prone to leach in acidic electrolyte. The Mo was stabilized by isovalent substitution of molybdenum into the rutile phase titanium-dioxide lattice, achieved by a modified multistep sol-gel synthesis method optimized for preparation of Ti0.7Mo.3O2-C composite. High degree of Mo incorporation into the rutile lattice was developed. The conductivity and corrosion resistance across the anticipated potential/pH window was ensured by mixed oxide – activated carbon composite. Platinum loading was carried out using NaBH4 and ethylene glycol; platinum content was 40 wt%. The electrocatalyst was characterized by both material investigating methods (i.e. XRD, TEM, EDS, XPS techniques) and electrochemical methods (cyclic-voltammetry, COads stripping voltammetry, hydrogen oxidation reaction on rotating disc electrode). The electrochemical activity of the sample was compared to commercial 40 wt% Pt/C (Quintech) and PtRu/C (Quintech, Pt= 20 wt%, Ru= 10 wt%) references. Enhanced CO tolerance of the electrocatalyst prepared using the Ti0.7Mo.3O2-C composite material was evidenced by the appearance of a CO-oxidation related 'pre-peak' and by the pronounced shift of the maximum of the main CO oxidation peak towards less positive potential compared to Pt/C. Fuel cell polarization measurements were also carried out using Bio-Logic and Paxitech FCT-150S test device. All details on the design, preparation, characterization and testing by both electrochemical measurements and fuel cell test device of electrocatalyst supported on Ti0.7Mo.3O2-C composite material will be presented and discussed.

Keywords: anode electrocatalyst, composite material, CO-tolerance, TiMoOx

Procedia PDF Downloads 284
8668 Breast Cancer Sensing and Imaging Utilized Printed Ultra Wide Band Spherical Sensor Array

Authors: Elyas Palantei, Dewiani, Farid Armin, Ardiansyah

Abstract:

High precision of printed microwave sensor utilized for sensing and monitoring the potential breast cancer existed in women breast tissue was optimally computed. The single element of UWB printed sensor that successfully modeled through several numerical optimizations was multiple fabricated and incorporated with woman bra to form the spherical sensors array. One sample of UWB microwave sensor obtained through the numerical computation and optimization was chosen to be fabricated. In overall, the spherical sensors array consists of twelve stair patch structures, and each element was individually measured to characterize its electrical properties, especially the return loss parameter. The comparison of S11 profiles of all UWB sensor elements is discussed. The constructed UWB sensor is well verified using HFSS programming, CST programming, and experimental measurement. Numerically, both HFSS and CST confirmed the potential operation bandwidth of UWB sensor is more or less 4.5 GHz. However, the measured bandwidth provided is about 1.2 GHz due to the technical difficulties existed during the manufacturing step. The configuration of UWB microwave sensing and monitoring system implemented consists of 12 element UWB printed sensors, vector network analyzer (VNA) to perform as the transceiver and signal processing part, the PC Desktop/Laptop acting as the image processing and displaying unit. In practice, all the reflected power collected from whole surface of artificial breast model are grouped into several numbers of pixel color classes positioned on the corresponding row and column (pixel number). The total number of power pixels applied in 2D-imaging process was specified to 100 pixels (or the power distribution pixels dimension 10x10). This was determined by considering the total area of breast phantom of average Asian women breast size and synchronizing with the single UWB sensor physical dimension. The interesting microwave imaging results were plotted and together with some technical problems arisen on developing the breast sensing and monitoring system are examined in the paper.

Keywords: UWB sensor, UWB microwave imaging, spherical array, breast cancer monitoring, 2D-medical imaging

Procedia PDF Downloads 179
8667 Neural Rendering Applied to Confocal Microscopy Images

Authors: Daniel Li

Abstract:

We present a novel application of neural rendering methods to confocal microscopy. Neural rendering and implicit neural representations have developed at a remarkable pace, and are prevalent in modern 3D computer vision literature. However, they have not yet been applied to optical microscopy, an important imaging field where 3D volume information may be heavily sought after. In this paper, we employ neural rendering on confocal microscopy focus stack data and share the results. We highlight the benefits and potential of adding neural rendering to the toolkit of microscopy image processing techniques.

Keywords: neural rendering, implicit neural representations, confocal microscopy, medical image processing

Procedia PDF Downloads 643
8666 Optical Coherence Tomography in Parkinson’s Disease: A Potential in-vivo Retinal α-Synuclein Biomarker in Parkinson’s Disease

Authors: Jessica Chorostecki, Aashka Shah, Fen Bao, Ginny Bao, Edwin George, Navid Seraji-Bozorgzad, Veronica Gorden, Christina Caon, Elliot Frohman

Abstract:

Background: Parkinson’s Disease (PD) is a neuro degenerative disorder associated with the loss of dopaminergic cells and the presence α-synuclein (AS) aggregation in of Lewy bodies. Both dopaminergic cells and AS are found in the retina. Optical coherence tomography (OCT) allows high-resolution in-vivo examination of retinal structure injury in neuro degenerative disorders including PD. Methods: We performed a cross-section OCT study in patients with definite PD and healthy controls (HC) using Spectral Domain SD-OCT platform to measure the peripapillary retinal nerve fiber layer (pRNFL) thickness and total macular volume (TMV). We performed intra-retinal segmentation with fully automated segmentation software to measure the volume of the RNFL, ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), and the outer nuclear layer (ONL). Segmentation was performed blinded to the clinical status of the study participants. Results: 101 eyes from 52 PD patients (mean age 65.8 years) and 46 eyes from 24 HC subjects (mean age 64.1 years) were included in the study. The mean pRNFL thickness was not significantly different (96.95 μm vs 94.42 μm, p=0.07) but the TMV was significantly lower in PD compared to HC (8.33 mm3 vs 8.58 mm3 p=0.0002). Intra-retinal segmentation showed no significant difference in the RNFL volume between the PD and HC groups (0.95 mm3 vs 0.92 mm3 p=0.454). However, GCL, IPL, INL, and ONL volumes were significantly reduced in PD compared to HC. In contrast, the volume of OPL was significantly increased in PD compared to HC. Conclusions: Our finding of the enlarged OPL corresponds with mRNA expression studies showing localization of AS in the OPL across vertebrate species and autopsy studies demonstrating AS aggregation in the deeper layers of retina in PD. We propose that the enlargement of the OPL may represent a potential biomarker of AS aggregation in PD. Longitudinal studies in larger cohorts are warranted to confirm our observations that may have significant implications in disease monitoring and therapeutic development.

Keywords: Optical Coherence Tomography, biomarker, Parkinson's disease, alpha-synuclein, retina

Procedia PDF Downloads 425
8665 Biodiesel Production from Edible Oil Wastewater Sludge with Bioethanol Using Nano-Magnetic Catalysis

Authors: Wighens Ngoie Ilunga, Pamela J. Welz, Olewaseun O. Oyekola, Daniel Ikhu-Omoregbe

Abstract:

Currently, most sludge from the wastewater treatment plants of edible oil factories is disposed to landfills, but landfill sites are finite and potential sources of environmental pollution. Production of biodiesel from wastewater sludge can contribute to energy production and waste minimization. However, conventional biodiesel production is energy and waste intensive. Generally, biodiesel is produced from the transesterification reaction of oils with alcohol (i.e., Methanol, ethanol) in the presence of a catalyst. Homogeneously catalysed transesterification is the conventional approach for large-scale production of biodiesel as reaction times are relatively short. Nevertheless, homogenous catalysis presents several challenges such as high probability of soap. The current study aimed to reuse wastewater sludge from the edible oil industry as a novel feedstock for both monounsaturated fats and bioethanol for the production of biodiesel. Preliminary results have shown that the fatty acid profile of the oilseed wastewater sludge is favourable for biodiesel production with 48% (w/w) monounsaturated fats and that the residue left after the extraction of fats from the sludge contains sufficient fermentable sugars after steam explosion followed by an enzymatic hydrolysis for the successful production of bioethanol [29% (w/w)] using a commercial strain of Saccharomyces cerevisiae. A novel nano-magnetic catalyst was synthesised from mineral processing alkaline tailings, mainly containing dolomite originating from cupriferous ores using a modified sol-gel. The catalyst elemental chemical compositions and structural properties were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR) and the BET for the surface area with 14.3 m²/g and 34.1 nm average pore diameter. The mass magnetization of the nano-magnetic catalyst was 170 emu/g. Both the catalytic properties and reusability of the catalyst were investigated. A maximum biodiesel yield of 78% was obtained, which dropped to 52% after the fourth transesterification reaction cycle. The proposed approach has the potential to reduce material costs, energy consumption and water usage associated with conventional biodiesel production technologies. It may also mitigate the impact of conventional biodiesel production on food and land security, while simultaneously reducing waste.

Keywords: biodiesel, bioethanol, edible oil wastewater sludge, nano-magnetism

Procedia PDF Downloads 129
8664 A Magnetic Hydrochar Nanocomposite as a Potential Adsorbent of Emerging Pollutants

Authors: Aura Alejandra Burbano Patino, Mariela Agotegaray, Veronica Lassalle, Fernanda Horst

Abstract:

Water pollution is of worldwide concern due to its importance as an essential resource for life. Industrial and urbanistic growth are anthropogenic activities that have caused an increase of undesirable compounds in water. In the last decade, emerging pollutants have become of great interest since, at very low concentrations (µg/L and ng/L), they exhibit a hazardous effect on wildlife, aquatic ecosystems, and human organisms. One group of emerging pollutants that are a matter of study are pharmaceuticals. Their high consumption rate and their inappropriate disposal have led to their detection in wastewater treatment plant influent, effluent, surface water, and drinking water. In consequence, numerous technologies have been developed to efficiently treat these pollutants. Adsorption appears like an easy and cost-effective technology. One of the most used adsorbents of emerging pollutants removal is carbon-based materials such as hydrochars. This study aims to use a magnetic hydrochar nanocomposite to be employed as an adsorbent for diclofenac removal. Kinetics models and the adsorption efficiency in real water samples were analyzed. For this purpose, a magnetic hydrochar nanocomposite was synthesized through the hydrothermal carbonization (HTC) technique hybridized to co-precipitation to add the magnetic component into the hydrochar, based on iron oxide nanoparticles. The hydrochar was obtained from sunflower husk residue as the precursor. TEM, TGA, FTIR, Zeta potential as a function of pH, DLS, BET technique, and elemental analysis were employed to characterize the material in terms of composition and chemical structure. Adsorption kinetics were carried out in distilled water and real water at room temperature, pH of 5.5 for distilled water and natural pH for real water samples, 1:1 adsorbent: adsorbate dosage ratio, contact times from 10-120 minutes, and 50% dosage concentration of DCF. Results have demonstrated that magnetic hydrochar presents superparamagnetic properties with a saturation magnetization value of 55.28 emu/g. Besides, it is mesoporous with a surface area of 55.52 m²/g. It is composed of magnetite nanoparticles incorporated into the hydrochar matrix, as can be proven by TEM micrographs, FTIR spectra, and zeta potential. On the other hand, kinetic studies were carried out using DCF models, finding percent removal efficiencies up to 85.34% after 80 minutes of contact time. In addition, after 120 minutes of contact time, desorption of emerging pollutants from active sites took place, which indicated that the material got saturated after that t time. In real water samples, percent removal efficiencies decrease up to 57.39%, ascribable to a possible mechanism of competitive adsorption of organic or inorganic compounds, ions for active sites of the magnetic hydrochar. The main suggested adsorption mechanism between the magnetic hydrochar and diclofenac include hydrophobic and electrostatic interactions as well as hydrogen bonds. It can be concluded that the magnetic hydrochar nanocomposite could be valorized into a by-product which appears as an efficient adsorbent for DCF removal as a model emerging pollutant. These results are being complemented by modifying experimental variables such as pollutant’s initial concentration, adsorbent: adsorbate dosage ratio, and temperature. Currently, adsorption assays of other emerging pollutants are being been carried out.

Keywords: environmental remediation, emerging pollutants, hydrochar, magnetite nanoparticles

Procedia PDF Downloads 176
8663 Making a Resilient Livable City: Explorations of Smart Management Mechanism for Aging Society’s Disaster Prevention

Authors: Wei-Kuang Liu, Ya-Hsu Chiang

Abstract:

In the coming of an aging society, the issues of living quality, health care, and social security for the elderly have been gradually taken seriously. In order to maintain favorable living condition, urban societies are also facing the challenge of disasters caused by extreme climate change. However, in the practice of disaster prevention, elderly people are always weak due to their physiological conditions. That is to say, in the planning of resilient urbanism, the aging society is relatively in need of more care. Thus, this research aims to map areas where have high-density elderly population and fragile environmental condition in Taiwan, and to understand the actual situation of disaster prevention management in these areas, so as to provide suggestions for the development of intellectual resilient urban management. The research takes the cities of Taoyuan and Taichung as examples for explorations. According to GIS mapping of areas with high aging index, high-density population and high flooding potential, the communities of Sihai and Fuyuan in Taoyuan and the communities of Taichang and Nanshih in Taichung are highlighted. In these communities, it can be found that there are more elderly population and less labor population with high-density living condition. In addition, they are located in the areas where they have experienced severe flooding in the recent past. Based on a series of interviews with community organizations, there is only one community out of the four using flood information mobile app and Line messages for the management of disaster prevention, and the others still rely on the traditional approaches that manage the works of disaster prevention by their community security patrol teams and community volunteers. The interview outcome shows that most elderly people are not interested in learning the use of intellectual devices. Therefore, this research suggests to keep doing the GIS mapping of areas with high aging index, high-density population and high flooding potential for grasping the high-risk communities and to help develop smart monitor and forecast systems for disaster prevention practice in these areas. Based on case-study explorations, the research also advises that it is important to develop easy-to-use bottom-up and two-way immediate communication mechanism for the management of aging society’s disaster prevention.

Keywords: aging society, disaster prevention, GIS, resilient, Taiwan

Procedia PDF Downloads 107
8662 An Assessment of Digital Platforms, Student Online Learning, Teaching Pedagogies, Research and Training at Kenya College of Accounting University

Authors: Jasmine Renner, Alice Njuguna

Abstract:

The booming technological revolution is driving a change in the mode of delivery systems especially for e-learning and distance learning in higher education. The report and findings of the study; an assessment of digital platforms, student online learning, teaching pedagogies, research and training at Kenya College of Accounting University (hereinafter 'KCA') was undertaken as a joint collaboration project between the Carnegie African Diaspora Fellowship and input from the staff, students and faculty at KCA University. The participants in this assessment/research met for selected days during a six-week period during which, one-one consultations, surveys, questionnaires, foci groups, training, and seminars were conducted to ascertain 'online learning and teaching, curriculum development, research and training at KCA.' The project was organized into an eight-week project workflow with each week culminating in project activities designed to assess digital online teaching and learning at KCA. The project also included the training of distance learning instructors at KCA and the evaluation of KCA’s distance platforms and programs. Additionally, through a curriculum audit and redesign, the project sought to enhance the curriculum development activities related to of distance learning at KCA. The findings of this assessment/research represent the systematic deliberate process of gathering, analyzing and using data collected from DL students, DL staff and lecturers and a librarian personnel in charge of online learning resources and access at KCA. We engaged in one-on-one interviews and discussions with staff, students, and faculty and collated the findings to inform practices that are effective in the ongoing design and development of eLearning earning at KCA University. Overall findings of the project led to the following recommendations. First, there is a need to address infrastructural challenges that led to poor internet connectivity for online learning, training needs and content development for faculty and staff. Second, there is a need to manage cultural impediments within KCA; for example fears of vital change from one platform to another for effectiveness and Institutional goodwill as a vital promise of effective online learning. Third, at a practical and short-term level, the following recommendations based on systematic findings of the research conducted were as follows: there is a need for the following to be adopted at KCA University to promote the effective adoption of online learning: a) an eLearning compatible faculty lab, b) revision of policy to include an eLearn strategy or strategic management, c) faculty and staff recognitions engaged in the process of training for the adoption and implementation of eLearning and d) adequate website resources on eLearning. The report and findings represent a comprehensive approach to a systematic assessment of online teaching and learning, research and training at KCA.

Keywords: e-learning, digital platforms, student online learning, online teaching pedagogies

Procedia PDF Downloads 175
8661 Application of 3D Apparel CAD for Costume Reproduction

Authors: Zi Y. Kang, Tracy D. Cassidy, Tom Cassidy

Abstract:

3D apparel CAD is one of the remarkable products in advanced technology which enables intuitive design, visualisation and evaluation of garments through stereoscopic drape simulation. The progressive improvements of 3D apparel CAD have led to the creation of more realistic clothing simulation which is used not only in design development but also in presentation, promotion and communication for fashion as well as other industries such as film, game and social network services. As a result, 3D clothing technology is becoming more ubiquitous in human culture and lives today. This study considers that such phenomenon implies that the technology has reached maturity and it is time to inspect the status of current technology and to explore its potential uses in ways to create cultural values to further move forward. For this reason, this study aims to generate virtual costumes as culturally significant objects using 3D apparel CAD and to assess its capability, applicability and attitudes of the audience towards clothing simulation through comparison with physical counterparts. Since the access to costume collection is often limited due to the conservative issues, the technology may make valuable contribution by democratization of culture and knowledge for museums and its audience. This study is expected to provide foundation knowledge for development of clothing technology and for expanding its boundary of practical uses. To prevent any potential damage, two replicas of the costumes in the 1860s and 1920s at the Museum of London were chosen as samples. Their structural, visual and physical characteristics were measured and collected using patterns, scanned images of fabrics and objective fabric measurements with scale, KES-F (Kawabata Evaluation System of Fabrics) and Titan. Commercial software, DC Suite 5.0 was utilised to create virtual costumes applying collected data and the following outcomes were produced for the evaluation: Images of virtual costumes and video clips showing static and dynamic simulation. Focus groups were arranged with fashion design students and the public for evaluation which exposed the outcomes together with physical samples, fabrics swatches and photographs. The similarities, application and acceptance of virtual costumes were estimated through discussion and a questionnaire. The findings show that the technology has the capability to produce realistic or plausible simulation but expression of some factors such as details and capability of light material requires improvements. While the use of virtual costumes was viewed as more interesting and futuristic replacements to physical objects by the public group, the fashion student group noted more differences in detail and preferred physical garments highlighting the absence of tangibility. However, the advantages and potential of virtual costumes as effective and useful visual references for educational and exhibitory purposes were underlined by both groups. Although 3D apparel CAD has sufficient capacity to assist garment design process, it has limits in identical replication and more study on accurate reproduction of details and drape is needed for its technical improvements. Nevertheless, the virtual costumes in this study demonstrated the possibility of the technology to contribute to cultural and knowledgeable value creation through its applicability and as an interesting way to offer 3D visual information.

Keywords: digital clothing technology, garment simulation, 3D Apparel CAD, virtual costume

Procedia PDF Downloads 205
8660 Yield Level, Variability and Yield Gap of Maize (Zea Mays L.) Under Variable Climate Condition of the Semi-arid Central Rift Valley of Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Soil moisture and nutrient availability are the two key edaphic factors that affect crop yields and are directly or indirectly affected by climate variability and change. The study examined climate-induced yield level, yield variability and gap of maize during 1981-2010 main growing season in the Central Rift Valley (CRV) of Ethiopia. Pearson correlation test was employed to see the relationship between climate variables and yield. The coefficient of variation (CV) was used to analyze annual yield variability. Decision Support System for Agro-technology Transfer cropping system model (DSSAT-CSM) was used to simulate the growth and yield of maize for the study period. The result indicated that maize grain yield was strongly (P<0.01) and positively correlated with seasonal rainfall (r=0.67 at Melkassa and r = 0.69 at Ziway) in the CRV while day temperature affected grain yield negatively (r= -0.44) at Ziway (P<0.05) during the simulation period. Variations in total seasonal rainfall at Melkassa and Ziway explained 44.9 and 48.5% of the variation in yield, respectively, under optimum nutrition. Following variation in rainfall, high yield variability (CV=23.5%, Melkassa and CV=25.3%, Ziway) was observed for optimum nutrient simulation than the corresponding nutrient limited simulation (CV=16%, Melkassa and 24.1%, Ziway) in the study period. The observed farmers’ yield was 72, 52 and 43% of the researcher-managed, water-limited and potential yield of the crop, respectively, indicating a wide maize yield gap in the region. The study revealed rainfed crop production in the CRV is prone to yield variabilities due to its high dependence on seasonal rainfall and nutrient level. Moreover, the high coefficient of variation in the yield gap for the 30-year period also foretells the need for dependable water supply at both locations. Given the wide yield gap especially during lower rainfall years across the simulation periods, it signifies the requirement for a more dependable application of irrigation water and a potential shift to irrigated agriculture; hence, adopting options that can improve water availability and nutrient use efficiency would be crucial for crop production in the area.

Keywords: climate variability, crop model, water availability, yield gap, yield variability

Procedia PDF Downloads 55
8659 Environment Problems of Energy Exploitation and Utilization in Nigeria

Authors: Aliyu Mohammed Lawal

Abstract:

The problems placed on the environment as a result of energy generation and usage in Nigeria is: potential damage to the environment health by CO, CO2, SOx, and NOx, effluent gas emissions and global warming. For instance in the year 2004 in Nigeria energy consumption was 58% oil and 34% natural gas but about 94 million metric tons of CO2 was emitted out of which 64% came from fossil fuels while about 35% came from fuel wood. The findings from this research on how to alleviate these problems are that long term sustainable development solutions should be enhanced globally; energy should be used more rationally renewable energy resources should be exploited and the existing emissions should be controlled to tolerate limits because the increase in energy demand in Nigeria places enormous strain on current energy facilities.

Keywords: effluent gas, emissions, NOx, SOx

Procedia PDF Downloads 364
8658 Controlled Digital Lending, Equitable Access to Knowledge and Future Library Services

Authors: Xuan Pang, Alvin L. Lee, Peggy Glatthaar

Abstract:

Libraries across the world have been an innovation engine of creativity and opportunityin many decades. The on-going global epidemiology outbreak and health crisis experience illuminates potential reforms, rethinking beyond traditional library operations and services. Controlled Digital Lending (CDL) is one of the emerging technologies libraries used to deliver information digitally in support of online learning and teachingand make educational materials more affordable and more accessible. CDL became a popular term in the United States of America (USA) as a result of a white paper authored by Kyle K. Courtney (Harvard University) and David Hansen (Duke University). The paper gave the legal groundwork to explore CDL: Fair Use, First Sale Doctrine, and Supreme Court rulings. Library professionals implemented this new technology to fulfill their users’ needs. Three libraries in the state of Florida (University of Florida, Florida Gulf Coast University, and Florida A&M University) started a conversation about how to develop strategies to make CDL work possible at each institution. This paper shares the stories of piloting and initiating a CDL program to ensure students have reliable, affordable access to course materials they need to be successful. Additionally, this paper offers an overview of the emerging trends of Controlled Digital Lending in the USA and demonstrates the development of the CDL platforms, policies, and implementation plans. The paper further discusses challenges and lessons learned and how each institution plans to sustain the program into future library services. The fundamental mission of the library is providing users unrestricted access to library resources regardless of their physical location, disability, health status, or other circumstances. The professional due diligence of librarians, as information professionals, is to makeeducational resources more affordable and accessible.CDL opens a new frontier of library services as a mechanism for library practice to enhance user’s experience of using libraries’ services. Libraries should consider exploring this tool to distribute library resources in an effective and equitable way. This new methodology has potential benefits to libraries and end users.

Keywords: controlled digital lending, emerging technologies, equitable access, collaborations

Procedia PDF Downloads 123
8657 In-situ Phytoremediation Of Polluted Soils By Micropollutants From Artisanal Gold Mining Processes In Burkina Faso

Authors: Yamma Rose, Kone Martine, Yonli Arsène, Wanko Ngnien Adrien

Abstract:

Artisanal gold mining has seen a resurgence in recent years in Burkina Faso with its corollary of soil and water pollution. Indeed, in addition to visible impacts, it generates discharges rich in trace metal elements and acids. This pollution has significant environmental consequences, making these lands unusable while the population depends on the natural environment for its survival. The goal of this study is to assess the decontamination potential of Chrysopogon zizanioides on two artisanal gold processing sites in Burkina Faso. The cyanidation sites of Nebia (1Ha) and Nimbrogo (2Ha) located respectively in the Central West and Central South regions were selected. The soils were characterized to determine the initial pollution levels before the implementation of phytoremediation. After development of the site, parallel trenches equidistant 6 m apart, 30 cm deep, 40 cm wide and opposite to the water flow direction were dug and filled with earth amended with manure. The Chrysopogon zizanioides plants were transplanted 5 cm equidistant into the trenches. The mere fact that Chrysopogon zizanioides grew in the polluted soil is an indication that this plant tolerates and resists the toxicity of trace elements present on the site. The characterization shows sites very polluted with free cyanide 900 times higher than the national standard, the level of Hg in the soil is 5 times more than the limit value, iron and Zn are respectively 1000 times and 200 more than the tolerated environmental value. At time T1 (6 months) and T2 (12 months) of culture, Chrysopogon zizanioides showed less development on the Nimbrogo site than that of the Nebia site. Plant shoots and associated soil samples were collected and analyzed for total As, Hg, Fe and Zn concentration. The trace element content of the soil, the bioaccumulation factor and the hyper accumulation thresholds were also determined to assess the remediation potential. The concentration of As and Hg in the soil was below international risk thresholds, while that of Fe and Zn was well above these thresholds. The CN removal efficiency at the Nebia site is respectively 29.90% and 68.62% compared to 6.6% and 60.8% at Nimbrogo at time T1 and T2.

Keywords: chrysopogon zizanioides, in-situ phytoremediation, polluted soils, micropollutants

Procedia PDF Downloads 59
8656 Actinomycetes from Protected Forest Ecosystems of Assam, India: Diversity and Antagonistic Activity

Authors: Priyanka Sharma, Ranjita Das, Mohan C. Kalita, Debajit Thakur

Abstract:

Background: Actinomycetes are the richest source of novel bioactive secondary metabolites such as antibiotics, enzymes and other therapeutically useful metabolites with diverse biological activities. The present study aims at the antimicrobial potential and genetic diversity of culturable Actinomycetes isolated from protected forest ecosystems of Assam which includes Kaziranga National Park (26°30˝-26°45˝N and 93°08˝-93°36˝E), Pobitora Wildlife Sanctuary (26º12˝-26º16˝N and 91º58˝-92º05˝E) and Gibbon Wildlife Sanctuary (26˚40˝-26˚45˝N and 94˚20˝-94˚25˝E) which are located in the North-eastern part of India. Northeast India is a part of the Indo-Burma mega biodiversity hotspot and most of the protected forests of this region are still unexplored for the isolation of effective antibiotic-producing Actinomycetes. Thus, there is tremendous possibility that these virgin forests could be a potential storehouse of novel microorganisms, particularly Actinomycetes, exhibiting diverse biological properties. Methodology: Soil samples were collected from different ecological niches of the protected forest ecosystems of Assam and Actinomycetes were isolated by serial dilution spread plate technique using five selective isolation media. Preliminary screening of Actinomycetes for an antimicrobial activity was done by spot inoculation method and the secondary screening by disc diffusion method against several test pathogens, including multidrug resistant Staphylococcus aureus (MRSA). The strains were further screened for the presence of antibiotic synthetic genes such as type I polyketide synthases (PKS-I), type II polyketide synthases (PKS-II) and non-ribosomal peptide synthetases (NRPS) genes. Genetic diversity of the Actinomycetes producing antimicrobial metabolites was analyzed through 16S rDNA-RFLP using Hinf1 restriction endonuclease. Results: Based on the phenotypic characterization, a total of 172 morphologically distinct Actinomycetes were isolated and screened for antimicrobial activity by spot inoculation method on agar medium. Among the strains tested, 102 (59.3%) strains showed activity against Gram-positive bacteria, 98 (56.97%) against Gram-negative bacteria, 92 (53.48%) against Candida albicans MTCC 227 and 130 (75.58%) strains showed activity against at least one of the test pathogens. Twelve Actinomycetes exhibited broad spectrum antimicrobial activity in the secondary screening. The taxonomic identification of these twelve strains by 16S rDNA sequencing revealed that Streptomyces was found to be the predominant genus. The PKS-I, PKS-II and NRPS genes detection indicated diverse bioactive products of these twelve Actinomycetes. Genetic diversity by 16S rDNA-RFLP indicated that Streptomyces was the dominant genus amongst the antimicrobial metabolite producing Actinomycetes. Conclusion: These findings imply that Actinomycetes from the protected forest ecosystems of Assam, India, are a potential source of bioactive secondary metabolites. These areas are as yet poorly studied and represent diverse and largely unscreened ecosystem for the isolation of potent Actinomycetes producing antimicrobial secondary metabolites. Detailed characterization of the bioactive Actinomycetes as well as purification and structure elucidation of the bioactive compounds from the potent Actinomycetes is the subject of ongoing investigation. Thus, to exploit Actinomycetes from such unexplored forest ecosystems is a way to develop bioactive products.

Keywords: Actinomycetes, antimicrobial activity, forest ecosystems, RFLP

Procedia PDF Downloads 377