Search results for: Neural Linguistic Programming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3591

Search results for: Neural Linguistic Programming

381 Infused Mesenchymal Stem Cells Ameliorate Organs Morphology in Cerebral Malaria Infection

Authors: Reva Sharan Thakur, Mrinalini Tiwari, Jyoti das

Abstract:

Cerebral malaria-associated over expression of pro-inflammatory cytokines and chemokines ultimately results in the up-regulation of adhesion molecules in the brain endothelium leading to sequestration of mature parasitized RBCs in the brain. The high-parasitic load subsequently results in increased mortality or development of neurological symptoms within a week of infection. Studies in the human and experimental cerebral malaria have implicated the breakdown of the integrity of blood-brain barrier during the lethal course of infection, cerebral dysfunction, and fatal organ pathologies that result in multi-organ failure. In the present study, using Plasmodium berghei Anka as a mouse model and in vitro conditions, we have investigated the effect of MSCs to attenuate cerebral malaria pathogenesis by diminishing the effect of inflammation altered organ morphology, reduced parasitemia, and increased survival of the mice. MSCs are also validated for their role in preventing BBB dysfunction and reducing malarial toxins. It was observed that administration of MSCs significantly reduced parasitemia and increased survival in Pb A infected mice. It was further demonstrated that MSCs play a significant role in reversing neurological complexities associated with cerebral malaria. Infusion of MSCs in infected mice decreased hemozoin deposition; oedema, and haemorrhagic lesions in vascular organs. MSCs administration also preserved the integrity of the blood-brain barrier and reduced neural inflammation. Taken together, our results demonstrate the potential of MSCs as an emerging anti-malarial candidate.

Keywords: cerebral malaria, mesenchymal stem cells, erythropoesis, cell death

Procedia PDF Downloads 102
380 Multivariate Data Analysis for Automatic Atrial Fibrillation Detection

Authors: Zouhair Haddi, Stephane Delliaux, Jean-Francois Pons, Ismail Kechaf, Jean-Claude De Haro, Mustapha Ouladsine

Abstract:

Atrial fibrillation (AF) has been considered as the most common cardiac arrhythmia, and a major public health burden associated with significant morbidity and mortality. Nowadays, telemedical approaches targeting cardiac outpatients situate AF among the most challenged medical issues. The automatic, early, and fast AF detection is still a major concern for the healthcare professional. Several algorithms based on univariate analysis have been developed to detect atrial fibrillation. However, the published results do not show satisfactory classification accuracy. This work was aimed at resolving this shortcoming by proposing multivariate data analysis methods for automatic AF detection. Four publicly-accessible sets of clinical data (AF Termination Challenge Database, MIT-BIH AF, Normal Sinus Rhythm RR Interval Database, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. All time series were segmented in 1 min RR intervals window and then four specific features were calculated. Two pattern recognition methods, i.e., Principal Component Analysis (PCA) and Learning Vector Quantization (LVQ) neural network were used to develop classification models. PCA, as a feature reduction method, was employed to find important features to discriminate between AF and Normal Sinus Rhythm. Despite its very simple structure, the results show that the LVQ model performs better on the analyzed databases than do existing algorithms, with high sensitivity and specificity (99.19% and 99.39%, respectively). The proposed AF detection holds several interesting properties, and can be implemented with just a few arithmetical operations which make it a suitable choice for telecare applications.

Keywords: atrial fibrillation, multivariate data analysis, automatic detection, telemedicine

Procedia PDF Downloads 266
379 KPI and Tool for the Evaluation of Competency in Warehouse Management for Furniture Business

Authors: Kritchakhris Na-Wattanaprasert

Abstract:

The objective of this research is to design and develop a prototype of a key performance indicator system this is suitable for warehouse management in a case study and use requirement. In this study, we design a prototype of key performance indicator system (KPI) for warehouse case study of furniture business by methodology in step of identify scope of the research and study related papers, gather necessary data and users requirement, develop key performance indicator base on balance scorecard, design pro and database for key performance indicator, coding the program and set relationship of database and finally testing and debugging each module. This study use Balance Scorecard (BSC) for selecting and grouping key performance indicator. The system developed by using Microsoft SQL Server 2010 is used to create the system database. In regard to visual-programming language, Microsoft Visual C# 2010 is chosen as the graphic user interface development tool. This system consists of six main menus: menu login, menu main data, menu financial perspective, menu customer perspective, menu internal, and menu learning and growth perspective. Each menu consists of key performance indicator form. Each form contains a data import section, a data input section, a data searches – edit section, and a report section. The system generates outputs in 5 main reports, the KPI detail reports, KPI summary report, KPI graph report, benchmarking summary report and benchmarking graph report. The user will select the condition of the report and period time. As the system has been developed and tested, discovers that it is one of the ways to judging the extent to warehouse objectives had been achieved. Moreover, it encourages the warehouse functional proceed with more efficiency. In order to be useful propose for other industries, can adjust this system appropriately. To increase the usefulness of the key performance indicator system, the recommendations for further development are as follows: -The warehouse should review the target value and set the better suitable target periodically under the situation fluctuated in the future. -The warehouse should review the key performance indicators and set the better suitable key performance indicators periodically under the situation fluctuated in the future for increasing competitiveness and take advantage of new opportunities.

Keywords: key performance indicator, warehouse management, warehouse operation, logistics management

Procedia PDF Downloads 430
378 Variability of the Speaker's Verbal and Non-Verbal Behaviour in the Process of Changing Social Roles in the English Marketing Discourse

Authors: Yuliia Skrynnik

Abstract:

This research focuses on the interaction of verbal, non-verbal, and super-verbal communicative components used by the speaker changing social roles in the marketing discourse. The changing/performing of social roles is implemented through communicative strategies and tactics, the structural, semantic, and linguo-pragmatic means of which are characterized by specific features and differ for the performance of either a role of a supplier or a customer. Communication within the marketing discourse is characterized by symmetrical roles’ relation between communicative opponents. The strategy of a supplier’s social role realization and the strategy of a customer’s role realization influence the discursive personality's linguistic repertoire in the marketing discourse. This study takes into account that one person can be both a supplier and a customer under different circumstances, thus, exploring the one individual who can be both a supplier and a customer. Cooperative and non-cooperative tactics are the instruments for the implementation of these strategies. In the marketing discourse, verbal and non-verbal behaviour of the speaker performing a customer’s social role is highly informative for speakers who perform the role of a supplier. The research methods include discourse, context-situational, pragmalinguistic, pragmasemantic analyses, the method of non-verbal components analysis. The methodology of the study includes 5 steps: 1) defining the configurations of speakers’ social roles on the selected material; 2) establishing the type of the discourse (marketing discourse); 3) describing the specific features of a discursive personality as a subject of the communication in the process of social roles realization; 4) selecting the strategies and tactics which direct the interaction in different roles configurations; 5) characterizing the structural, semantic and pragmatic features of the strategies and tactics realization, including the analysis of interaction between verbal and non-verbal components of communication. In the marketing discourse, non-verbal behaviour is usually spontaneous but not purposeful. Thus, the adequate decoding of a partner’s non-verbal behavior provides more opportunities both for the supplier and the customer. Super-verbal characteristics in the marketing discourse are crucial in defining the opponent's social status and social role at the initial stage of interaction. The research provides the scenario of stereotypical situations of the play of a supplier and a customer. The performed analysis has perspectives for further research connected with the study of discursive variativity of speakers' verbal and non-verbal behaviour considering the intercultural factor influencing the process of performing the social roles in the marketing discourse; and the formation of the methods for the scenario construction of non-stereotypical situations of social roles realization/change in the marketing discourse.

Keywords: discursive personality, marketing discourse, non-verbal component of communication, social role, strategy, super-verbal component of communication, tactic, verbal component of communication

Procedia PDF Downloads 119
377 Designing Presentational Writing Assessments for the Advanced Placement World Language and Culture Exams

Authors: Mette Pedersen

Abstract:

This paper outlines the criteria that assessment specialists use when they design the 'Persuasive Essay' task for the four Advanced Placement World Language and Culture Exams (AP French, German, Italian, and Spanish). The 'Persuasive Essay' is a free-response, source-based, standardized measure of presentational writing. Each 'Persuasive Essay' item consists of three sources (an article, a chart, and an audio) and a prompt, which is a statement of the topic phrased as an interrogative sentence. Due to its richness of source materials and due to the amount of time that test takers are given to prepare for and write their responses (a total of 55 minutes), the 'Persuasive Essay' is the free-response task on the AP World Language and Culture Exams that goes to the greatest lengths to unleash the test takers' proficiency potential. The author focuses on the work that goes into designing the 'Persuasive Essay' task, outlining best practices for the selection of topics and sources, the interplay that needs to be present among the sources and the thinking behind the articulation of prompts for the 'Persuasive Essay' task. Using released 'Persuasive Essay' items from the AP World Language and Culture Exams and accompanying data on test taker performance, the author shows how different passages, and features of passages, have succeeded (and sometimes not succeeded) in eliciting writing proficiency among test takers over time. Data from approximately 215.000 test takers per year from 2014 to 2017 and approximately 35.000 test takers per year from 2012 to 2013 form the basis of this analysis. The conclusion of the study is that test taker performance improves significantly when the sources that test takers are presented with express directly opposing viewpoints. Test taker performance also improves when the interrogative prompt that the test takers respond to is phrased as a yes/no question. Finally, an analysis of linguistic difficulty and complexity levels of the printed sources reveals that test taker performance does not decrease when the complexity level of the article of the 'Persuasive Essay' increases. This last text complexity analysis is performed with the help of the 'ETS TextEvaluator' tool and the 'Complexity Scale for Information Texts (Scale)', two tools, which, in combination, provide a rubric and a fully-automated technology for evaluating nonfiction and informational texts in English translation.

Keywords: advanced placement world language and culture exams, designing presentational writing assessments, large-scale standardized assessments of written language proficiency, source-based language testing

Procedia PDF Downloads 143
376 Parsonage Turner Syndrome PTS, Case Report

Authors: A. M. Bumbea, A. Musetescu, P. Ciurea, A. Bighea

Abstract:

Objectives: The authors present a Parsonage Turner syndrome, a rare disease characterized by onset in apparently healthy person with shoulder and/or arm pain, sensory deficit, motor deficit. The causes are not established, could be determinate by vaccination, postoperative, immunologic disease, post traumatic etc. Methods: The authors present a woman case, 32 years old, (in 2006), no medical history, with arm pain and no other symptom. The onset was sudden with pain at very high level quantified as 10 to a 0 to 10 scale, with no response to classical analgesic and corticoids. The only drugs which can reduce the intensity of pain were oxycodone hydrochloride, 60 mg daily and pregabalinum150 mg daily. After two weeks the intensity of pain was reduced to 5. The patient started a rehabilitation program. After 6 weeks the patient associated sensory and motor deficit. We performed electromyography for upper limb that showed incomplete denervation with reduced neural transmission speed. The patient receives neurotrophic drugs and painkillers for a long period and physical and kinetic therapy. After 6 months the pain was reduced to level 2 and the patient maintained only 150 mg pregabalinum for another 6 months. Then, the evaluation showed no pain but general amiotrophy in upper limb. Results: At the evaluation in 2009, the patient developed a rheumatoid syndrome with tender and swelling joints, but no positive inflammation test, no antibodies or rheumatoid factor. After two years, in 2011 the patient develops an increase of antinuclear antibodies. This context certifies the diagnosis of lupus and the patient receives the specific therapy. Conclusions: This case is not a typical case of onset of lupus with PTS, but the onset of PTS could include the onset of an immune disease.

Keywords: lupus, arm pain, patient, swelling

Procedia PDF Downloads 329
375 Generalized Additive Model for Estimating Propensity Score

Authors: Tahmidul Islam

Abstract:

Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.

Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching

Procedia PDF Downloads 365
374 Fraud in the Higher Educational Institutions in Assam, India: Issues and Challenges

Authors: Kalidas Sarma

Abstract:

Fraud is a social problem changing with social change and it has a regional and global impact. Introduction of private domain in higher education along with public institutions has led to commercialization of higher education which encourages unprecedented mushrooming of private institutions resulting in fraudulent activities in higher educational institutions in Assam, India. Presently, fraud has been noticed in in-service promotion, fake entry qualification by teachers in different levels of work-place by using fake master degrees, master of philosophy and doctor of philosophy degree certificates. The aim and objective of the study are to identify grey areas in maintenance of quality in higher educational institutions in Assam and also to draw the contour for planning and implementation. This study is based on both primary and secondary data collected through questionnaire and seeking information through Right to Information Act 2005. In Assam, there are 301 undergraduate and graduate colleges distributed in 27 (Twenty seven) administrative districts with 11000 (Eleven thousand) college teachers. Total 421 (Four hundred twenty one) college teachers from the 14 respondent colleges have been taken for analysis. Data collected has been analyzed by using 'Hypertext Pre-processor' (PhP) application with My Sequel Structure Query Language (MySQL) and Google Map Application Programming Interface (APIs). Graph has been generated by using open source tool Chart.js. Spatial distribution maps have been generated with the help of geo-references of the colleges. The result shows: (i) the violation of University Grants Commission's (UGCs) Regulation for the awards of M. Phil/Ph.D. clearly exhibits. (ii) There is a gap between apex regulatory bodies of higher education at national and as well as state level to check fraud. (iii) Mala fide 'No Objection Certificate' (NOC) issued by the Government of Assam have played pivotal role in the occurrence of fraudulent practices in higher educational institutions of Assam. (iv) Violation of verdict of the Hon'ble Supreme Court of India regarding territorial jurisdiction of Universities for the awards of Ph.D. and M. Phil degrees in distance mode/study centre is also a responsible factor for the spread of these academic frauds in Assam and other states. The challenges and mitigation of these issues have been discussed.

Keywords: Assam, fraud, higher education, mitigation

Procedia PDF Downloads 166
373 A Multi-Criteria Decision Making Approach for Disassembly-To-Order Systems under Uncertainty

Authors: Ammar Y. Alqahtani

Abstract:

In order to minimize the negative impact on the environment, it is essential to manage the waste that generated from the premature disposal of end-of-life (EOL) products properly. Consequently, government and international organizations introduced new policies and regulations to minimize the amount of waste being sent to landfills. Moreover, the consumers’ awareness regards environment has forced original equipment manufacturers to consider being more environmentally conscious. Therefore, manufacturers have thought of different ways to deal with waste generated from EOL products viz., remanufacturing, reusing, recycling, or disposing of EOL products. The rate of depletion of virgin natural resources and their dependency on the natural resources can be reduced by manufacturers when EOL products are treated as remanufactured, reused, or recycled, as well as this will cut on the amount of harmful waste sent to landfills. However, disposal of EOL products contributes to the problem and therefore is used as a last option. Number of EOL need to be estimated in order to fulfill the components demand. Then, disassembly process needs to be performed to extract individual components and subassemblies. Smart products, built with sensors embedded and network connectivity to enable the collection and exchange of data, utilize sensors that are implanted into products during production. These sensors are used for remanufacturers to predict an optimal warranty policy and time period that should be offered to customers who purchase remanufactured components and products. Sensor-provided data can help to evaluate the overall condition of a product, as well as the remaining lives of product components, prior to perform a disassembly process. In this paper, a multi-period disassembly-to-order (DTO) model is developed that takes into consideration the different system uncertainties. The DTO model is solved using Nonlinear Programming (NLP) in multiple periods. A DTO system is considered where a variety of EOL products are purchased for disassembly. The model’s main objective is to determine the best combination of EOL products to be purchased from every supplier in each period which maximized the total profit of the system while satisfying the demand. This paper also addressed the impact of sensor embedded products on the cost of warranties. Lastly, this paper presented and analyzed a case study involving various simulation conditions to illustrate the applicability of the model.

Keywords: closed-loop supply chains, environmentally conscious manufacturing, product recovery, reverse logistics

Procedia PDF Downloads 136
372 Design and Optimization of a Small Hydraulic Propeller Turbine

Authors: Dario Barsi, Marina Ubaldi, Pietro Zunino, Robert Fink

Abstract:

A design and optimization procedure is proposed and developed to provide the geometry of a high efficiency compact hydraulic propeller turbine for low head. For the preliminary design of the machine, classic design criteria, based on the use of statistical correlations for the definition of the fundamental geometric parameters and the blade shapes are used. These relationships are based on the fundamental design parameters (i.e., specific speed, flow coefficient, work coefficient) in order to provide a simple yet reliable procedure. Particular attention is paid, since from the initial steps, on the correct conformation of the meridional channel and on the correct arrangement of the blade rows. The preliminary geometry thus obtained is used as a starting point for the hydrodynamic optimization procedure, carried out using a CFD calculation software coupled with a genetic algorithm that generates and updates a large database of turbine geometries. The optimization process is performed using a commercial approach that solves the turbulent Navier Stokes equations (RANS) by exploiting the axial-symmetric geometry of the machine. The geometries generated within the database are therefore calculated in order to determine the corresponding overall performance. In order to speed up the optimization calculation, an artificial neural network (ANN) based on the use of an objective function is employed. The procedure was applied for the specific case of a propeller turbine with an innovative design of a modular type, specific for applications characterized by very low heads. The procedure is tested in order to verify its validity and the ability to automatically obtain the targeted net head and the maximum for the total to total internal efficiency.

Keywords: renewable energy conversion, hydraulic turbines, low head hydraulic energy, optimization design

Procedia PDF Downloads 149
371 Functional Connectivity Signatures of Polygenic Depression Risk in Youth

Authors: Louise Moles, Steve Riley, Sarah D. Lichenstein, Marzieh Babaeianjelodar, Robert Kohler, Annie Cheng, Corey Horien Abigail Greene, Wenjing Luo, Jonathan Ahern, Bohan Xu, Yize Zhao, Chun Chieh Fan, R. Todd Constable, Sarah W. Yip

Abstract:

Background: Risks for depression are myriad and include both genetic and brain-based factors. However, relationships between these systems are poorly understood, limiting understanding of disease etiology, particularly at the developmental level. Methods: We use a data-driven machine learning approach connectome-based predictive modeling (CPM) to identify functional connectivity signatures associated with polygenic risk scores for depression (DEP-PRS) among youth from the Adolescent Brain and Cognitive Development (ABCD) study across diverse brain states, i.e., during resting state, during affective working memory, during response inhibition, during reward processing. Results: Using 10-fold cross-validation with 100 iterations and permutation testing, CPM identified connectivity signatures of DEP-PRS across all examined brain states (rho’s=0.20-0.27, p’s<.001). Across brain states, DEP-PRS was positively predicted by increased connectivity between frontoparietal and salience networks, increased motor-sensory network connectivity, decreased salience to subcortical connectivity, and decreased subcortical to motor-sensory connectivity. Subsampling analyses demonstrated that model accuracies were robust across random subsamples of N’s=1,000, N’s=500, and N’s=250 but became unstable at N’s=100. Conclusions: These data, for the first time, identify neural networks of polygenic depression risk in a large sample of youth before the onset of significant clinical impairment. Identified networks may be considered potential treatment targets or vulnerability markers for depression risk.

Keywords: genetics, functional connectivity, pre-adolescents, depression

Procedia PDF Downloads 57
370 Tracing the Developmental Repertoire of the Progressive: Evidence from L2 Construction Learning

Authors: Tianqi Wu, Min Wang

Abstract:

Research investigating language acquisition from a constructionist perspective has demonstrated that language is learned as constructions at various linguistic levels, which is related to factors of frequency, semantic prototypicality, and form-meaning contingency. However, previous research on construction learning tended to focus on clause-level constructions such as verb argument constructions but few attempts were made to study morpheme-level constructions such as the progressive construction, which is regarded as a source of acquisition problems for English learners from diverse L1 backgrounds, especially for those whose L1 do not have an equivalent construction such as German and Chinese. To trace the developmental trajectory of Chinese EFL learners’ use of the progressive with respect to verb frequency, verb-progressive contingency, and verbal prototypicality and generality, a learner corpus consisting of three sub-corpora representing three different English proficiency levels was extracted from the Chinese Learners of English Corpora (CLEC). As the reference point, a native speakers’ corpus extracted from the Louvain Corpus of Native English Essays was also established. All the texts were annotated with C7 tagset by part-of-speech tagging software. After annotation all valid progressive hits were retrieved with AntConc 3.4.3 followed by a manual check. Frequency-related data showed that from the lowest to the highest proficiency level, (1) the type token ratio increased steadily from 23.5% to 35.6%, getting closer to 36.4% in the native speakers’ corpus, indicating a wider use of verbs in the progressive; (2) the normalized entropy value rose from 0.776 to 0.876, working towards the target score of 0.886 in native speakers’ corpus, revealing that upper-intermediate learners exhibited a more even distribution and more productive use of verbs in the progressive; (3) activity verbs (i.e., verbs with prototypical progressive meanings like running and singing) dropped from 59% to 34% but non-prototypical verbs such as state verbs (e.g., being and living) and achievement verbs (e.g., dying and finishing) were increasingly used in the progressive. Apart from raw frequency analyses, collostructional analyses were conducted to quantify verb-progressive contingency and to determine what verbs were distinctively associated with the progressive construction. Results were in line with raw frequency findings, which showed that contingency between the progressive and non-prototypical verbs represented by light verbs (e.g., going, doing, making, and coming) increased as English proficiency proceeded. These findings altogether suggested that beginning Chinese EFL learners were less productive in using the progressive construction: they were constrained by a small set of verbs which had concrete and typical progressive meanings (e.g., the activity verbs). But with English proficiency increasing, their use of the progressive began to spread to marginal members such as the light verbs.

Keywords: Construction learning, Corpus-based, Progressives, Prototype

Procedia PDF Downloads 127
369 Language Maintenance and Literacy of Madurese in Probolinggo City

Authors: Maria Ulfa, Nur Awaliyah Putri

Abstract:

Madurese is known as Malayo-Sumbawan Austronesian language which is used by Madurese people in Madura Island, Indonesia. However, there was a massive migration of Madurese people due to Dutch colonization. The Madurese people were brought by force for cultivation system to the eastern salient north coast or called as Tapal Kuda that spread in region covers the regencies of Probolinggo, Lumajang, Jember, Situbondo, Bondowoso, and Banyuwangi, the eastern part of the Pasuruan Regency, as well as the city of Probolinggo. The city of Probolinggo has unique characteristic regarding the ethnic and language variation. Several ethnics can be found in this city, such as Madurese, Javanese, Tengger, Arabic, Mandhalungan, Osing, and Chinese. Hence, the hybrid culture happens in Probolinggo, they called the culture as Pendhalungan which is the combination of culture among Madurese and Javanese. Among those ethnics, Madurese is the strongest ethnic that still maintains their identity, such as their ethnic language. The massive growth of Madurese in Probolinggo city, East Java is interesting to be analyzed. The object of this study is to discover language ideology and literacy of Madurese to maintain their ethnic language in Probolinggo city, East Java. The researchers used the theory of language maintenance practice based on three types of practices social language, social literacy, and peripheral ritualized practices. The approach of this study was qualitative research with ethnography method. In order to collect the data, researchers used observation and interview techniques. The amount of informants were 20 families which consist of mother, father and children in 5 sub-districts in Probolinggo city and they were interviewed regarding language ideology and literacy of Madurese. In supporting the data, researchers employed the Madurese speakers outside family scope like in school, office, and market. The result of the study revealed that Madurese has been preserved heritably to young generations by ethnics of Madura in Probolinggo city. Primarily the language is being taught in the earlier age of their children as L1 and used as ethnic identity. The parents teach them with simple sentences that grammatically correct. This language literacy is applied to maintain ethnic language as their ethnicity marker since they inhabit in Javanese ethnic area. In fact, it is not the only ideology of Madurese ethnic but also the influence of economic situation like in trading communication. The usage of Madurese in the trading scope is very beneficial since people can bargain the goods cheaper and easier because most of the traders are from Madurese ethnic. In this situation, linguistic phenomena such as code mixing and code switching between Madurese and Javanese are emerged as the trading communication. From the result, it can be concluded that solidarity exists among Madurese people in many scopes.

Keywords: language literacy, language maintenance, Madurese, Probolinggo City

Procedia PDF Downloads 233
368 Modeling and Temperature Control of Water-cooled PEMFC System Using Intelligent Algorithm

Authors: Chen Jun-Hong, He Pu, Tao Wen-Quan

Abstract:

Proton exchange membrane fuel cell (PEMFC) is the most promising future energy source owing to its low operating temperature, high energy efficiency, high power density, and environmental friendliness. In this paper, a comprehensive PEMFC system control-oriented model is developed in the Matlab/Simulink environment, which includes the hydrogen supply subsystem, air supply subsystem, and thermal management subsystem. Besides, Improved Artificial Bee Colony (IABC) is used in the parameter identification of PEMFC semi-empirical equations, making the maximum relative error between simulation data and the experimental data less than 0.4%. Operation temperature is essential for PEMFC, both high and low temperatures are disadvantageous. In the thermal management subsystem, water pump and fan are both controlled with the PID controller to maintain the appreciate operation temperature of PEMFC for the requirements of safe and efficient operation. To improve the control effect further, fuzzy control is introduced to optimize the PID controller of the pump, and the Radial Basis Function (RBF) neural network is introduced to optimize the PID controller of the fan. The results demonstrate that Fuzzy-PID and RBF-PID can achieve a better control effect with 22.66% decrease in Integral Absolute Error Criterion (IAE) of T_st (Temperature of PEMFC) and 77.56% decrease in IAE of T_in (Temperature of inlet cooling water) compared with traditional PID. In the end, a novel thermal management structure is proposed, which uses the cooling air passing through the main radiator to continue cooling the secondary radiator. In this thermal management structure, the parasitic power dissipation can be reduced by 69.94%, and the control effect can be improved with a 52.88% decrease in IAE of T_in under the same controller.

Keywords: PEMFC system, parameter identification, temperature control, Fuzzy-PID, RBF-PID, parasitic power

Procedia PDF Downloads 83
367 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models

Authors: Danielle Shackley, Yetunde Folajimi

Abstract:

As more people turn to the internet seeking health-related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores to text, ranging from positive, neutral, and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing and tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial, and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced, and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process and substituting the Naive Bayes for a deep learning neural network model.

Keywords: sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model

Procedia PDF Downloads 96
366 A Radiomics Approach to Predict the Evolution of Prostate Imaging Reporting and Data System Score 3/5 Prostate Areas in Multiparametric Magnetic Resonance

Authors: Natascha C. D'Amico, Enzo Grossi, Giovanni Valbusa, Ala Malasevschi, Gianpiero Cardone, Sergio Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of areas classified PI-RADS (Prostate Imaging Reporting and Data System) 3/5, recognized in multiparametric prostate magnetic resonance with T2-weighted (T2w), diffusion and perfusion sequences with paramagnetic contrast. Methods and Materials: 24 cases undergoing multiparametric prostate MR and biopsy were admitted to this pilot study. Clinical outcome of the PI-RADS 3/5 was found through biopsy, finding 8 malignant tumours. The analysed images were acquired with a Philips achieva 1.5T machine with a CE- T2-weighted sequence in the axial plane. Semi-automatic tumour segmentation was carried out on MR images using 3DSlicer image analysis software. 45 shape-based, intensity-based and texture-based features were extracted and represented the input for preprocessing. An evolutionary algorithm (a TWIST system based on KNN algorithm) was used to subdivide the dataset into training and testing set and select features yielding the maximal amount of information. After this pre-processing 20 input variables were selected and different machine learning systems were used to develop a predictive model based on a training testing crossover procedure. Results: The best machine learning system (three-layers feed-forward neural network) obtained a global accuracy of 90% ( 80 % sensitivity and 100% specificity ) with a ROC of 0.82. Conclusion: Machine learning systems coupled with radiomics show a promising potential in distinguishing benign from malign tumours in PI-RADS 3/5 areas.

Keywords: machine learning, MR prostate, PI-Rads 3, radiomics

Procedia PDF Downloads 186
365 Review of the Model-Based Supply Chain Management Research in the Construction Industry

Authors: Aspasia Koutsokosta, Stefanos Katsavounis

Abstract:

This paper reviews the model-based qualitative and quantitative Operations Management research in the context of Construction Supply Chain Management (CSCM). Construction industry has been traditionally blamed for low productivity, cost and time overruns, waste, high fragmentation and adversarial relationships. The construction industry has been slower than other industries to employ the Supply Chain Management (SCM) concept and develop models that support the decision-making and planning. However the last decade there is a distinct shift from a project-based to a supply-based approach of construction management. CSCM comes up as a new promising management tool of construction operations and improves the performance of construction projects in terms of cost, time and quality. Modeling the Construction Supply Chain (CSC) offers the means to reap the benefits of SCM, make informed decisions and gain competitive advantage. Different modeling approaches and methodologies have been applied in the multi-disciplinary and heterogeneous research field of CSCM. The literature review reveals that a considerable percentage of CSC modeling accommodates conceptual or process models which discuss general management frameworks and do not relate to acknowledged soft OR methods. We particularly focus on the model-based quantitative research and categorize the CSCM models depending on their scope, mathematical formulation, structure, objectives, solution approach, software used and decision level. Although over the last few years there has been clearly an increase of research papers on quantitative CSC models, we identify that the relevant literature is very fragmented with limited applications of simulation, mathematical programming and simulation-based optimization. Most applications are project-specific or study only parts of the supply system. Thus, some complex interdependencies within construction are neglected and the implementation of the integrated supply chain management is hindered. We conclude this paper by giving future research directions and emphasizing the need to develop robust mathematical optimization models for the CSC. We stress that CSC modeling needs a multi-dimensional, system-wide and long-term perspective. Finally, prior applications of SCM to other industries have to be taken into account in order to model CSCs, but not without the consequential reform of generic concepts to match the unique characteristics of the construction industry.

Keywords: construction supply chain management, modeling, operations research, optimization, simulation

Procedia PDF Downloads 502
364 Topic Specific Differences and Lexical Variations in the Use of Violence Metaphors: A cognitive linguistic study of YouTube Breast Cancer Discourse in New Zealand and Pakistan

Authors: Sara Malik, Andreea. S. Calude, Joseph Ulatowski

Abstract:

This paper explores how speakers from New Zealand and Pakistan with breast cancer use violence metaphors to communicate the intensity of their experiences during various stages of illness. With the theoretical foundation in Conceptual Metaphor Theory and the use of Metaphor Identification Procedure for metaphor analysis, this study investigates how speakers with breast cancer use violence metaphors in different cultural contexts. it collected a corpus of forty-six personal narratives from New Zealand and thirty-six from Pakistan, posted between 2011 and 2023 on YouTube by breast cancer organisations, such as ‘NZ Breast Cancer Foundation’ and ‘Pink Ribbon Pakistan’. The data was transcribed using the Whisper AI tool and then curated to include only patients’ discourse, further organised into eight narrative topics: testing phase, treatment phase, remission phase, family support, campaigns and awareness efforts, government support and funding, general information and religious discourse. In this talk, it discuss two aspects of the use of violence metaphors, a) differences in the use of violence metaphors across various narrative topics, and b) lexical variations in the choice of such metaphors. The findings suggest that violence metaphors were used differently across various stages of illness experience. For instance, during the ‘testing phase,’ violence metaphors were employed to convey a sense of punishment as reflected in statements like, ‘Feeling like it was a death sentence, an immediate death sentence’ (NZ Example) and ‘Jese hi aap ko na breast cancer ka pata chalta hai logon ko yeh hona shuru ho jata hai ke oh bas ab to moat ka parwana mil gaya hai’ (Because as soon as you find out you have breast cancer people start to feel that you have received a death warrant) (PK Example). On the other hand, violence metaphor during the ‘treatment phase’ highlighted negative experiences related to chemotherapy as seen in statements like ‘The first lot of chemo I had was disastrous’ (NZ Example) and ‘...chemotherapy ke to, it's the worst of all, it's like a healing poison’ (chemotherapy, it's the worst of all, it's like a healing poison) (PK Example). Second, lexical variations revealed how ‘sunburn’ (a common phenomenon in the NZ) was used as a metaphor to describe the effects of radiotherapy, whereas in the discourse from Pakistan, a more general term, 'burn,' was used instead. In this talk, we will explore the possible reasons behind the different word choices made by speakers from both countries to describe the same process. This study contributes to understanding the use of violence metaphors across various narrative topics of the illness experience and explains how and why speakers from two different countries use lexical variations to describe the same process.

Keywords: metaphors, breast cancer discourse, cognitive linguistics, lexical variations, New zealand english, pakistani urdu

Procedia PDF Downloads 30
363 6-Degree-Of-Freedom Spacecraft Motion Planning via Model Predictive Control and Dual Quaternions

Authors: Omer Burak Iskender, Keck Voon Ling, Vincent Dubanchet, Luca Simonini

Abstract:

This paper presents Guidance and Control (G&C) strategy to approach and synchronize with potentially rotating targets. The proposed strategy generates and tracks a safe trajectory for space servicing missions, including tasks like approaching, inspecting, and capturing. The main objective of this paper is to validate the G&C laws using a Hardware-In-the-Loop (HIL) setup with realistic rendezvous and docking equipment. Throughout this work, the assumption of full relative state feedback is relaxed by onboard sensors that bring realistic errors and delays and, while the proposed closed loop approach demonstrates the robustness to the above mentioned challenge. Moreover, G&C blocks are unified via the Model Predictive Control (MPC) paradigm, and the coupling between translational motion and rotational motion is addressed via dual quaternion based kinematic description. In this work, G&C is formulated as a convex optimization problem where constraints such as thruster limits and the output constraints are explicitly handled. Furthermore, the Monte-Carlo method is used to evaluate the robustness of the proposed method to the initial condition errors, the uncertainty of the target's motion and attitude, and actuator errors. A capture scenario is tested with the robotic test bench that has onboard sensors which estimate the position and orientation of a drifting satellite through camera imagery. Finally, the approach is compared with currently used robust H-infinity controllers and guidance profile provided by the industrial partner. The HIL experiments demonstrate that the proposed strategy is a potential candidate for future space servicing missions because 1) the algorithm is real-time implementable as convex programming offers deterministic convergence properties and guarantee finite time solution, 2) critical physical and output constraints are respected, 3) robustness to sensor errors and uncertainties in the system is proven, 4) couples translational motion with rotational motion.

Keywords: dual quaternion, model predictive control, real-time experimental test, rendezvous and docking, spacecraft autonomy, space servicing

Procedia PDF Downloads 145
362 Mental Health Impacts of COVID-19 on Diverse Youth and Families in Canada

Authors: Lucksini Raveendran

Abstract:

Introduction: This mixed-methods study focuses on the experiences of ethnocultural youth and families in Canada, identifying key barriers and opportunities to inform service programming and policies that can better meet their mental health needs during the COVID-19 pandemic and beyond. Methods: Mental Health Commission of Canada's Headstrong initiative administered the youth survey (April – June 2020) and family survey (June – August 2020) with a total sample size of 137 and 481 respondents, respectively. Thematic analysis was conducted to identify key challenges faced, coping strategies used, and help-seeking behaviours. A similar approach was also applied to the family survey data, but instead, a representative sample was collated to analyze geographically variable and ethnically diverse subgroups. Results and analysis: Multiple challenges have impacted families, including increased feelings of loneliness and distress from border travel restrictions, especially among those navigating pregnancy alone or managing children with developmental needs, which is often understudied. Also, marginalized groups were disproportionately affected by inequitable access to communication technologies, further deepening the digital divide. Some reported living in congregated homes with regular conflicts, thus leading to increased anxiety and exposure to violence. For many families, urbanicity and ethnicity played a key role in how families reported coping with feelings of uncertainty while managing work commitments, navigating community resources, fulfilling care responsibilities, and homeschooling children of all ages. Despite these challenges, there was evidence of post-traumatic growth and building community resiliency. Conclusions and implications for policy, practice, or additional research: There is a need to foster opportunities to promote and sustain mental health, wellness, and resilience for families through social connections. Also, intersectionality must be embedded in the collection, analysis, and application of data to improve equitable access to evidence-based and recovery-oriented mental health supports among diverse families in Canada. Lastly, address future research on the long-term COVID-19 impacts of travel border restrictions on family wellness.

Keywords: mental health, youth mental health, family wellness, health equity

Procedia PDF Downloads 93
361 Q-Efficient Solutions of Vector Optimization via Algebraic Concepts

Authors: Elham Kiyani

Abstract:

In this paper, we first introduce the concept of Q-efficient solutions in a real linear space not necessarily endowed with a topology, where Q is some nonempty (not necessarily convex) set. We also used the scalarization technique including the Gerstewitz function generated by a nonconvex set to characterize these Q-efficient solutions. The algebraic concepts of interior and closure are useful to study optimization problems without topology. Studying nonconvex vector optimization is valuable since topological interior is equal to algebraic interior for a convex cone. So, we use the algebraic concepts of interior and closure to define Q-weak efficient solutions and Q-Henig proper efficient solutions of set-valued optimization problems, where Q is not a convex cone. Optimization problems with set-valued maps have a wide range of applications, so it is expected that there will be a useful analytical tool in optimization theory for set-valued maps. These kind of optimization problems are closely related to stochastic programming, control theory, and economic theory. The paper focus on nonconvex problems, the results are obtained by assuming generalized non-convexity assumptions on the data of the problem. In convex problems, main mathematical tools are convex separation theorems, alternative theorems, and algebraic counterparts of some usual topological concepts, while in nonconvex problems, we need a nonconvex separation function. Thus, we consider the Gerstewitz function generated by a general set in a real linear space and re-examine its properties in the more general setting. A useful approach for solving a vector problem is to reduce it to a scalar problem. In general, scalarization means the replacement of a vector optimization problem by a suitable scalar problem which tends to be an optimization problem with a real valued objective function. The Gerstewitz function is well known and widely used in optimization as the basis of the scalarization. The essential properties of the Gerstewitz function, which are well known in the topological framework, are studied by using algebraic counterparts rather than the topological concepts of interior and closure. Therefore, properties of the Gerstewitz function, when it takes values just in a real linear space are studied, and we use it to characterize Q-efficient solutions of vector problems whose image space is not endowed with any particular topology. Therefore, we deal with a constrained vector optimization problem in a real linear space without assuming any topology, and also Q-weak efficient and Q-proper efficient solutions in the senses of Henig are defined. Moreover, by means of the Gerstewitz function, we provide some necessary and sufficient optimality conditions for set-valued vector optimization problems.

Keywords: algebraic interior, Gerstewitz function, vector closure, vector optimization

Procedia PDF Downloads 215
360 Interpretation of the Russia-Ukraine 2022 War via N-Gram Analysis

Authors: Elcin Timur Cakmak, Ayse Oguzlar

Abstract:

This study presents the results of the tweets sent by Twitter users on social media about the Russia-Ukraine war by bigram and trigram methods. On February 24, 2022, Russian President Vladimir Putin declared a military operation against Ukraine, and all eyes were turned to this war. Many people living in Russia and Ukraine reacted to this war and protested and also expressed their deep concern about this war as they felt the safety of their families and their futures were at stake. Most people, especially those living in Russia and Ukraine, express their views on the war in different ways. The most popular way to do this is through social media. Many people prefer to convey their feelings using Twitter, one of the most frequently used social media tools. Since the beginning of the war, it is seen that there have been thousands of tweets about the war from many countries of the world on Twitter. These tweets accumulated in data sources are extracted using various codes for analysis through Twitter API and analysed by Python programming language. The aim of the study is to find the word sequences in these tweets by the n-gram method, which is known for its widespread use in computational linguistics and natural language processing. The tweet language used in the study is English. The data set consists of the data obtained from Twitter between February 24, 2022, and April 24, 2022. The tweets obtained from Twitter using the #ukraine, #russia, #war, #putin, #zelensky hashtags together were captured as raw data, and the remaining tweets were included in the analysis stage after they were cleaned through the preprocessing stage. In the data analysis part, the sentiments are found to present what people send as a message about the war on Twitter. Regarding this, negative messages make up the majority of all the tweets as a ratio of %63,6. Furthermore, the most frequently used bigram and trigram word groups are found. Regarding the results, the most frequently used word groups are “he, is”, “I, do”, “I, am” for bigrams. Also, the most frequently used word groups are “I, do, not”, “I, am, not”, “I, can, not” for trigrams. In the machine learning phase, the accuracy of classifications is measured by Classification and Regression Trees (CART) and Naïve Bayes (NB) algorithms. The algorithms are used separately for bigrams and trigrams. We gained the highest accuracy and F-measure values by the NB algorithm and the highest precision and recall values by the CART algorithm for bigrams. On the other hand, the highest values for accuracy, precision, and F-measure values are achieved by the CART algorithm, and the highest value for the recall is gained by NB for trigrams.

Keywords: classification algorithms, machine learning, sentiment analysis, Twitter

Procedia PDF Downloads 73
359 The Language of Science in Higher Education: Related Topics and Discussions

Authors: Gurjeet Singh, Harinder Singh

Abstract:

In this paper, we present "The Language of Science in Higher Education: Related Questions and Discussions". Linguists have written and researched in depth the role of language in science. On this basis, it is clear that language is not just a medium or vehicle for communicating knowledge and ideas. Nor are there mere signs of language knowledge and conversion of ideas into code. In the process of reading and writing, everyone thinks deeply and struggles to understand concepts and make sense. Linguistics play an important role in achieving concepts. In the context of such linguistic diversity, there is no straightforward and simple answer to the question of which language should be the language of advanced science and technology. Many important topics related to this issue are as follows: Involvement in practical or Deep theoretical issues. Languages for the study of science and other subjects. Language issues of science to be considered separate from the development of science, capitalism, colonial history, the worldview of the common man. The democratization of science and technology education in India is possible only by providing maximum reading/resource material in regional languages. The scientific research should be increase to chances of understanding the subject. Multilingual instead or monolingual. As far as deepening the understanding of the subject is concerned, we can shed light on it based on two or three experiences. An attempt was made to make the famous sociological journal Economic and Political Weekly Hindi almost three decades ago. There were many obstacles in this work. The original articles written in Hindi were not found, and the papers and articles of the English Journal were translated into Hindi, and a journal called Sancha was taken out. Equally important is the democratization of knowledge and the deepening of understanding of the subject. However, the question is that if higher education in science is in Hindi or other languages, then it would be a problem to get job. In fact, since independence, English has been dominant in almost every field except literature. There are historical reasons for this, which cannot be reversed. As mentioned above, due to colonial rule, even before independence, English was established as a language of communication, the language of power/status, the language of higher education, the language of administration, and the language of scholarly discourse. After independence, attempts to make Hindi or Hindustani the national language in India were unsuccessful. Given this history and current reality, higher education should be multilingual or at least bilingual. Translation limits should also be increased for those who choose the material for translation. Writing in regional languages on science, making knowledge of various international languages available in Indian languages, etc., is equally important for all to have opportunities to learn English.

Keywords: language, linguistics, literature, culture, ethnography, punjabi, gurmukhi, higher education

Procedia PDF Downloads 90
358 Using Mathematical Models to Predict the Academic Performance of Students from Initial Courses in Engineering School

Authors: Martín Pratto Burgos

Abstract:

The Engineering School of the University of the Republic in Uruguay offers an Introductory Mathematical Course from the second semester of 2019. This course has been designed to assist students in preparing themselves for math courses that are essential for Engineering Degrees, namely Math1, Math2, and Math3 in this research. The research proposes to build a model that can accurately predict the student's activity and academic progress based on their performance in the three essential Mathematical courses. Additionally, there is a need for a model that can forecast the incidence of the Introductory Mathematical Course in the three essential courses approval during the first academic year. The techniques used are Principal Component Analysis and predictive modelling using the Generalised Linear Model. The dataset includes information from 5135 engineering students and 12 different characteristics based on activity and course performance. Two models are created for a type of data that follows a binomial distribution using the R programming language. Model 1 is based on a variable's p-value being less than 0.05, and Model 2 uses the stepAIC function to remove variables and get the lowest AIC score. After using Principal Component Analysis, the main components represented in the y-axis are the approval of the Introductory Mathematical Course, and the x-axis is the approval of Math1 and Math2 courses as well as student activity three years after taking the Introductory Mathematical Course. Model 2, which considered student’s activity, performed the best with an AUC of 0.81 and an accuracy of 84%. According to Model 2, the student's engagement in school activities will continue for three years after the approval of the Introductory Mathematical Course. This is because they have successfully completed the Math1 and Math2 courses. Passing the Math3 course does not have any effect on the student’s activity. Concerning academic progress, the best fit is Model 1. It has an AUC of 0.56 and an accuracy rate of 91%. The model says that if the student passes the three first-year courses, they will progress according to the timeline set by the curriculum. Both models show that the Introductory Mathematical Course does not directly affect the student’s activity and academic progress. The best model to explain the impact of the Introductory Mathematical Course on the three first-year courses was Model 1. It has an AUC of 0.76 and 98% accuracy. The model shows that if students pass the Introductory Mathematical Course, it will help them to pass Math1 and Math2 courses without affecting their performance on the Math3 course. Matching the three predictive models, if students pass Math1 and Math2 courses, they will stay active for three years after taking the Introductory Mathematical Course, and also, they will continue following the recommended engineering curriculum. Additionally, the Introductory Mathematical Course helps students to pass Math1 and Math2 when they start Engineering School. Models obtained in the research don't consider the time students took to pass the three Math courses, but they can successfully assess courses in the university curriculum.

Keywords: machine-learning, engineering, university, education, computational models

Procedia PDF Downloads 93
357 Detect Critical Thinking Skill in Written Text Analysis. The Use of Artificial Intelligence in Text Analysis vs Chat/Gpt

Authors: Lucilla Crosta, Anthony Edwards

Abstract:

Companies and the market place nowadays struggle to find employees with adequate skills in relation to anticipated growth of their businesses. At least half of workers will need to undertake some form of up-skilling process in the next five years in order to remain aligned with the requests of the market . In order to meet these challenges, there is a clear need to explore the potential uses of AI (artificial Intelligence) based tools in assessing transversal skills (critical thinking, communication and soft skills of different types in general) of workers and adult students while empowering them to develop those same skills in a reliable trustworthy way. Companies seek workers with key transversal skills that can make a difference between workers now and in the future. However, critical thinking seems to be the one of the most imprtant skill, bringing unexplored ideas and company growth in business contexts. What employers have been reporting since years now, is that this skill is lacking in the majority of workers and adult students, and this is particularly visible trough their writing. This paper investigates how critical thinking and communication skills are currently developed in Higher Education environments through use of AI tools at postgraduate levels. It analyses the use of a branch of AI namely Machine Learning and Big Data and of Neural Network Analysis. It also examines the potential effect the acquisition of these skills through AI tools and what kind of effects this has on employability This paper will draw information from researchers and studies both at national (Italy & UK) and international level in Higher Education. The issues associated with the development and use of one specific AI tool Edulai, will be examined in details. Finally comparisons will be also made between these tools and the more recent phenomenon of Chat GPT and forthcomings and drawbacks will be analysed.

Keywords: critical thinking, artificial intelligence, higher education, soft skills, chat GPT

Procedia PDF Downloads 107
356 Developing Communicative Skills in Foreign Languages by Video Tasks

Authors: Ekaterina G. Lipatova

Abstract:

The developing potential of a video task in teaching foreign languages involves the opportunities to improve four aspects of speech production process: listening, reading, speaking and writing. A video represents the sequence of actions, realized in the pictures logically connected and verbalized speech flow that simplifies and stimulates the process of perception. In this connection listening skills of students are developed effectively as well as their intellectual properties such as synthesizing, analyzing and generalizing the information. In terms of teaching capacity, a video task, in our opinion, is more stimulating than a traditional listening, since it involves the student into the plot of the communicative situation, emotional background and potentially makes them react to the gist in the cognitive and communicative ways. To be an effective method of teaching the video task should be structured in the way of psycho-linguistic characteristics of speech production process, in other words, should include three phases: before-watching, while-watching and after-watching. The system of tasks provided to each phase might involve the situations on reflecting to the video content in the forms of filling-the-gap tasks, multiple choice, True-or-False tasks (reading skills), exercises on expressing the opinion, project fulfilling (writing and speaking skills). In the before-watching phase we offer the students to adjust their perception mechanism to the topic and the problem of the chosen video by such task as “what do you know about such a problem?”, “is it new for you?”, “have you ever faced the situation of…?”. Then we proceed with the lexical and grammatical analysis of language units that form the body of a speech sample to lessen the perception and develop the student’s lexicon. The goal of while-watching phase is to build the student’s awareness about the problem presented in the video and challenge their inner attitude towards what they have seen by identifying the mistakes in the statements about the video content or making the summary, justifying their understanding. Finally, we move on to development of their speech skills within the communicative situation they observed and learnt by stimulating them to search the similar ideas in their backgrounds and represent them orally or in the written form or express their own opinion on the problem. It is compulsory to highlight, that a video task should contain the urgent, valid and interesting event related to the future profession of the student, since it will help to activate cognitive, emotional, verbal and ethic capacity of students. Also, logically structured video tasks are easily integrated into the system of e-learning and can provide the opportunity for the students to work with the foreign language on their own.

Keywords: communicative situation, perception mechanism, speech production process, speech skills

Procedia PDF Downloads 244
355 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores

Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan

Abstract:

Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.

Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics

Procedia PDF Downloads 128
354 Interculturalizing Ethiopian Universities: Between Initiation and Institutionalization

Authors: Desta Kebede Ayana, Lies Sercu, Demelash Mengistu

Abstract:

The study is set in Ethiopia, a sub-Saharan multilingual, multiethnic African country, which has seen a significant increase in the number of universities in recent years. The aim of this growth is to provide access to education for all cultural and linguistic groups across the country. However, there are challenges in promoting intercultural competence among students in this diverse context. The aim of the study is to investigate the interculturalization of Ethiopian Higher Education Institutions as perceived by university lecturers and administrators. In particular, the study aims to determine the level of support for this educational innovation and gather suggestions for its implementation and institutionalization. The researchers employed semi-structured interviews with administrators and lecturers from two large Ethiopian universities to gather data. Thematic analysis was utilized for coding and analyzing the interview data, with the assistance of the NVIVO software. The findings obtained from the grounded analysis of the interview data reveal that while there are opportunities for interculturalization in the curriculum and campus life, support for educational innovation remains low. Administrators and lecturers also emphasize the government's responsibility to prioritize interculturalization over other educational innovation goals. The study contributes to the existing literature by examining an under-researched population in an under-researched context. Additionally, the study explores whether Western perspectives of intercultural competence align with the African context, adding to the theoretical understanding of intercultural education. The data for this study was collected through semi-structured interviews conducted with administrators and lecturers from two large Ethiopian universities. The interviews allowed for an in-depth exploration of the participants' views on interculturalization in higher education. Thematic analysis was applied to the interview data, allowing for the identification and organization of recurring themes and patterns. The analysis was conducted using the NVIVO software, which aided in coding and analyzing the data. The study addresses the extent to which administrators and lecturers support the interculturalization of Ethiopian Higher Education Institutions. It also explores their suggestions for implementing and institutionalizing intercultural education, as well as their perspectives on the current level of institutionalization. The study highlights the challenges in interculturalizing Ethiopian universities and emphasizes the need for greater support and prioritization of intercultural education. It also underscores the importance of considering the African context when conceptualizing intercultural competence. This research contributes to the understanding of intercultural education in diverse contexts and provides valuable insights for policymakers and educational institutions aiming to promote intercultural competence in higher education settings.

Keywords: administrators, educational change, Ethiopia, intercultural competence, lecturers

Procedia PDF Downloads 95
353 Corpus Linguistics as a Tool for Translation Studies Analysis: A Bilingual Parallel Corpus of Students’ Translations

Authors: Juan-Pedro Rica-Peromingo

Abstract:

Nowadays, corpus linguistics has become a key research methodology for Translation Studies, which broadens the scope of cross-linguistic studies. In the case of the study presented here, the approach used focuses on learners with little or no experience to study, at an early stage, general mistakes and errors, the correct or incorrect use of translation strategies, and to improve the translational competence of the students. Led by Sylviane Granger and Marie-Aude Lefer of the Centre for English Corpus Linguistics of the University of Louvain, the MUST corpus (MUltilingual Student Translation Corpus) is an international project which brings together partners from Europe and worldwide universities and connects Learner Corpus Research (LCR) and Translation Studies (TS). It aims to build a corpus of translations carried out by students including both direct (L2 > L1) an indirect (L1 > L2) translations, from a great variety of text types, genres, and registers in a wide variety of languages: audiovisual translations (including dubbing, subtitling for hearing population and for deaf population), scientific, humanistic, literary, economic and legal translation texts. This paper focuses on the work carried out by the Spanish team from the Complutense University (UCMA), which is part of the MUST project, and it describes the specific features of the corpus built by its members. All the texts used by UCMA are either direct or indirect translations between English and Spanish. Students’ profiles comprise translation trainees, foreign language students with a major in English, engineers studying EFL and MA students, all of them with different English levels (from B1 to C1); for some of the students, this would be their first experience with translation. The MUST corpus is searchable via Hypal4MUST, a web-based interface developed by Adam Obrusnik from Masaryk University (Czech Republic), which includes a translation-oriented annotation system (TAS). A distinctive feature of the interface is that it allows source texts and target texts to be aligned, so we can be able to observe and compare in detail both language structures and study translation strategies used by students. The initial data obtained point out the kind of difficulties encountered by the students and reveal the most frequent strategies implemented by the learners according to their level of English, their translation experience and the text genres. We have also found common errors in the graduate and postgraduate university students’ translations: transfer errors, lexical errors, grammatical errors, text-specific translation errors, and cultural-related errors have been identified. Analyzing all these parameters will provide more material to bring better solutions to improve the quality of teaching and the translations produced by the students.

Keywords: corpus studies, students’ corpus, the MUST corpus, translation studies

Procedia PDF Downloads 146
352 Participatory Planning of the III Young Sea Meeting: An Experience of the Young Albatroz Collective

Authors: Victor V. Ribeiro, Thais C. Lopes, Rafael A. A. Monteiro

Abstract:

The Albatroz, Baleia Jubarte, Coral Vivo, Golfinho Rotador and Tamar projects make up the Young Sea Network (YSN), part of the BIOMAR Network, which aims to integrate the environmental youths of the Brazilian coast. For this, three editions of the Young Sea Meeting (YSM) were performed. Seeking to stimulate belonging, self-knowledge, participation, autonomy and youth protagonism, the Albatroz Project hosted the III YSM, in Bertioga (SP), in April 2019 and aimed to collectively plan the meeting. Five pillars of Environmental Education were used: identity, community, dialogue, power to act and happiness, the OCA Method and the Young Educates Young; Young Chooses Young; and One Generation Learns from the Other principals. In December 2018, still in the II YSM, the participatory planning of the III YSM began. Two "representatives" of each group were voluntarily elected to facilitate joint decisions, propose, receive and communicate demands from their groups and coordinators. The Young Albatroz Collective (YAC) facilitated the organization process as a whole. The purpose of the meeting was collectively constructed, answering the following question: "What is the YSM for?". Only two of the five pairs of representatives responded. There was difficulty gathering the young people in each group, because it was the end of the year, with people traveling. Thus, due to the short planning time, the YAC built a pre-programming to be validated by the other groups, defining as the objective of the meeting the strengthening of youth protagonism within the YSN. In the planning process, the YAC held 20 meetings, with 60 hours of face-to-face work, in three months, and two technical visits to the headquarters of the III YSM. The participatory dynamics of consultation, when it occurred, required up to two weeks, evidencing the limits of participation. The project coordinations stated that they were not being included in the process by their young people. There is a need to work more to be able to aloud the participation, developing skills and understanding about its principles. This training must take place in an articulated way between the network, implying the important role of the five projects in jointly developing and implementing educator processes with this objective in a national dimension, but without forgetting the specificities of each young group. Finally, it is worth highlighting the great potential of the III YSM by stimulating the exercise of leading environmental youth in more than 50 young people from Brazilian coast, linked to the YSN, stimulating the learning and mobilization of young people in favor of coastal and marine conservation.

Keywords: Marine Conservation, Environmental Education, Youth, Participation, Planning

Procedia PDF Downloads 165