Search results for: gripper optimization
87 Covariate-Adjusted Response-Adaptive Designs for Semi-Parametric Survival Responses
Authors: Ayon Mukherjee
Abstract:
Covariate-adjusted response-adaptive (CARA) designs use the available responses to skew the treatment allocation in a clinical trial in towards treatment found at an interim stage to be best for a given patient's covariate profile. Extensive research has been done on various aspects of CARA designs with the patient responses assumed to follow a parametric model. However, ranges of application for such designs are limited in real-life clinical trials where the responses infrequently fit a certain parametric form. On the other hand, robust estimates for the covariate-adjusted treatment effects are obtained from the parametric assumption. To balance these two requirements, designs are developed which are free from distributional assumptions about the survival responses, relying only on the assumption of proportional hazards for the two treatment arms. The proposed designs are developed by deriving two types of optimum allocation designs, and also by using a distribution function to link the past allocation, covariate and response histories to the present allocation. The optimal designs are based on biased coin procedures, with a bias towards the better treatment arm. These are the doubly-adaptive biased coin design (DBCD) and the efficient randomized adaptive design (ERADE). The treatment allocation proportions for these designs converge to the expected target values, which are functions of the Cox regression coefficients that are estimated sequentially. These expected target values are derived based on constrained optimization problems and are updated as information accrues with sequential arrival of patients. The design based on the link function is derived using the distribution function of a probit model whose parameters are adjusted based on the covariate profile of the incoming patient. To apply such designs, the treatment allocation probabilities are sequentially modified based on the treatment allocation history, response history, previous patients’ covariates and also the covariates of the incoming patient. Given these information, an expression is obtained for the conditional probability of a patient allocation to a treatment arm. Based on simulation studies, it is found that the ERADE is preferable to the DBCD when the main aim is to minimize the variance of the observed allocation proportion and to maximize the power of the Wald test for a treatment difference. However, the former procedure being discrete tends to be slower in converging towards the expected target allocation proportion. The link function based design achieves the highest skewness of patient allocation to the best treatment arm and thus ethically is the best design. Other comparative merits of the proposed designs have been highlighted and their preferred areas of application are discussed. It is concluded that the proposed CARA designs can be considered as suitable alternatives to the traditional balanced randomization designs in survival trials in terms of the power of the Wald test, provided that response data are available during the recruitment phase of the trial to enable adaptations to the designs. Moreover, the proposed designs enable more patients to get treated with the better treatment during the trial thus making the designs more ethically attractive to the patients. An existing clinical trial has been redesigned using these methods.Keywords: censored response, Cox regression, efficiency, ethics, optimal allocation, power, variability
Procedia PDF Downloads 16586 Multiparticulate SR Formulation of Dexketoprofen Trometamol by Wurster Coating Technique
Authors: Bhupendra G. Prajapati, Alpesh R. Patel
Abstract:
The aim of this research work is to develop sustained release multi-particulates dosage form of Dexketoprofen trometamol, which is the pharmacologically active isomer of ketoprofen. The objective is to utilization of active enantiomer with minimal dose and administration frequency, extended release multi-particulates dosage form development for better patience compliance was explored. Drug loaded and sustained release coated pellets were prepared by fluidized bed coating principle by wurster coater. Microcrystalline cellulose as core pellets, povidone as binder and talc as anti-tacking agents were selected during drug loading while Kollicoat SR 30D as sustained release polymer, triethyl citrate as plasticizer and micronized talc as an anti-adherent were used in sustained release coating. Binder optimization trial in drug loading showed that there was increase in process efficiency with increase in the binder concentration. 5 and 7.5%w/w concentration of Povidone K30 with respect to drug amount gave more than 90% process efficiency while higher amount of rejects (agglomerates) were observed for drug layering trial batch taken with 7.5% binder. So for drug loading, optimum Povidone concentration was selected as 5% of drug substance quantity since this trial had good process feasibility and good adhesion of the drug onto the MCC pellets. 2% w/w concentration of talc with respect to total drug layering solid mass shows better anti-tacking property to remove unnecessary static charge as well as agglomeration generation during spraying process. Optimized drug loaded pellets were coated for sustained release coating from 16 to 28% w/w coating to get desired drug release profile and results suggested that 22% w/w coating weight gain is necessary to get the required drug release profile. Three critical process parameters of Wurster coating for sustained release were further statistically optimized for desired quality target product profile attributes like agglomerates formation, process efficiency, and drug release profile using central composite design (CCD) by Minitab software. Results show that derived design space consisting 1.0 to 1.2 bar atomization air pressure, 7.8 to 10.0 gm/min spray rate and 29-34°C product bed temperature gave pre-defined drug product quality attributes. Scanning Image microscopy study results were also dictate that optimized batch pellets had very narrow particle size distribution and smooth surface which were ideal properties for reproducible drug release profile. The study also focused on optimized dexketoprofen trometamol pellets formulation retain its quality attributes while administering with common vehicle, a liquid (water) or semisolid food (apple sauce). Conclusion: Sustained release multi-particulates were successfully developed for dexketoprofen trometamol which may be useful to improve acceptability and palatability of a dosage form for better patient compliance.Keywords: dexketoprofen trometamol, pellets, fluid bed technology, central composite design
Procedia PDF Downloads 13685 Distribution Routs Redesign through the Vehicle Problem Routing in Havana Distribution Center
Authors: Sonia P. Marrero Duran, Lilian Noya Dominguez, Lisandra Quintana Alvarez, Evert Martinez Perez, Ana Julia Acevedo Urquiaga
Abstract:
Cuban business and economic policy are in the constant update as well as facing a client ever more knowledgeable and demanding. For that reason become fundamental for companies competitiveness through the optimization of its processes and services. One of the Cuban’s pillars, which has been sustained since the triumph of the Cuban Revolution back in 1959, is the free health service to all those who need it. This service is offered without any charge under the concept of preserving human life, but it implied costly management processes and logistics services to be able to supply the necessary medicines to all the units who provide health services. One of the key actors on the medicine supply chain is the Havana Distribution Center (HDC), which is responsible for the delivery of medicines in the province; as well as the acquisition of medicines from national and international producers and its subsequent transport to health care units and pharmacies in time, and with the required quality. This HDC also carries for all distribution centers in the country. Given the eminent need to create an actor in the supply chain that specializes in the medicines supply, the possibility of centralizing this operation in a logistics service provider is analyzed. Based on this decision, pharmacies operate as clients of the logistic service center whose main function is to centralize all logistics operations associated with the medicine supply chain. The HDC is precisely the logistic service provider in Havana and it is the center of this research. In 2017 the pharmacies had affectations in the availability of medicine due to deficiencies in the distribution routes. This is caused by the fact that they are not based on routing studies, besides the long distribution cycle. The distribution routs are fixed, attend only one type of customer and there respond to a territorial location by the municipality. Taking into consideration the above-mentioned problem, the objective of this research is to optimize the routes system in the Havana Distribution Center. To accomplish this objective, the techniques applied were document analysis, random sampling, statistical inference and tools such as Ishikawa diagram and the computerized software’s: ArcGis, Osmand y MapIfnfo. As a result, were analyzed four distribution alternatives; the actual rout, by customer type, by the municipality and the combination of the two last. It was demonstrated that the territorial location alternative does not take full advantage of the transportation capacities or the distance of the trips, which leads to elevated costs breaking whit the current ways of distribution and the currents characteristics of the clients. The principal finding of the investigation was the optimum option distribution rout is the 4th one that is formed by hospitals and the join of pharmacies, stomatology clinics, polyclinics and maternal and elderly homes. This solution breaks the territorial location by the municipality and permits different distribution cycles in dependence of medicine consumption and transport availability.Keywords: computerized geographic software, distribution, distribution routs, vehicle problem routing (VPR)
Procedia PDF Downloads 16084 Hybrid Renewable Energy Systems for Electricity and Hydrogen Production in an Urban Environment
Authors: Same Noel Ngando, Yakub Abdulfatai Olatunji
Abstract:
Renewable energy micro-grids, such as those powered by solar or wind energy, are often intermittent in nature. This means that the amount of energy generated by these systems can vary depending on weather conditions or other factors, which can make it difficult to ensure a steady supply of power. To address this issue, energy storage systems have been developed to increase the reliability of renewable energy micro-grids. Battery systems have been the dominant energy storage technology for renewable energy micro-grids. Batteries can store large amounts of energy in a relatively small and compact package, making them easy to install and maintain in a micro-grid setting. Additionally, batteries can be quickly charged and discharged, allowing them to respond quickly to changes in energy demand. However, the process involved in recycling batteries is quite costly and difficult. An alternative energy storage system that is gaining popularity is hydrogen storage. Hydrogen is a versatile energy carrier that can be produced from renewable energy sources such as solar or wind. It can be stored in large quantities at low cost, making it suitable for long-distance mass storage. Unlike batteries, hydrogen does not degrade over time, so it can be stored for extended periods without the need for frequent maintenance or replacement, allowing it to be used as a backup power source when the micro-grid is not generating enough energy to meet demand. When hydrogen is needed, it can be converted back into electricity through a fuel cell. Energy consumption data is got from a particular residential area in Daegu, South Korea, and the data is processed and analyzed. From the analysis, the total energy demand is calculated, and different hybrid energy system configurations are designed using HOMER Pro (Hybrid Optimization for Multiple Energy Resources) and MATLAB software. A techno-economic and environmental comparison and life cycle assessment (LCA) of the different configurations using battery and hydrogen as storage systems are carried out. The various scenarios included PV-hydrogen-grid system, PV-hydrogen-grid-wind, PV-hydrogen-grid-biomass, PV-hydrogen-wind, PV-hydrogen-biomass, biomass-hydrogen, wind-hydrogen, PV-battery-grid-wind, PV- battery -grid-biomass, PV- battery -wind, PV- battery -biomass, and biomass- battery. From the analysis, the least cost system for the location was the PV-hydrogen-grid system, with a net present cost of about USD 9,529,161. Even though all scenarios were environmentally friendly, taking into account the recycling cost and pollution involved in battery systems, all systems with hydrogen as a storage system produced better results. In conclusion, hydrogen is becoming a very prominent energy storage solution for renewable energy micro-grids. It is easier to store compared with electric power, so it is suitable for long-distance mass storage. Hydrogen storage systems have several advantages over battery systems, including flexibility, long-term stability, and low environmental impact. The cost of hydrogen storage is still relatively high, but it is expected to decrease as more hydrogen production, and storage infrastructure is built. With the growing focus on renewable energy and the need to reduce greenhouse gas emissions, hydrogen is expected to play an increasingly important role in the energy storage landscape.Keywords: renewable energy systems, microgrid, hydrogen production, energy storage systems
Procedia PDF Downloads 9483 Superparamagnetic Core Shell Catalysts for the Environmental Production of Fuels from Renewable Lignin
Authors: Cristina Opris, Bogdan Cojocaru, Madalina Tudorache, Simona M. Coman, Vasile I. Parvulescu, Camelia Bala, Bahir Duraki, Jeroen A. Van Bokhoven
Abstract:
The tremendous achievements in the development of the society concretized by more sophisticated materials and systems are merely based on non-renewable resources. Consequently, after more than two centuries of intensive development, among others, we are faced with the decrease of the fossil fuel reserves, an increased impact of the greenhouse gases on the environment, and economic effects caused by the fluctuations in oil and mineral resource prices. The use of biomass may solve part of these problems, and recent analyses demonstrated that from the perspective of the reduction of the emissions of carbon dioxide, its valorization may bring important advantages conditioned by the usage of genetic modified fast growing trees or wastes, as primary sources. In this context, the abundance and complex structure of lignin may offer various possibilities of exploitation. However, its transformation in fuels or chemicals supposes a complex chemistry involving the cleavage of C-O and C-C bonds and altering of the functional groups. Chemistry offered various solutions in this sense. However, despite the intense work, there are still many drawbacks limiting the industrial application. Thus, the proposed technologies considered mainly homogeneous catalysts meaning expensive noble metals based systems that are hard to be recovered at the end of the reaction. Also, the reactions were carried out in organic solvents that are not acceptable today from the environmental point of view. To avoid these problems, the concept of this work was to investigate the synthesis of superparamagnetic core shell catalysts for the fragmentation of lignin directly in the aqueous phase. The magnetic nanoparticles were covered with a nanoshell of an oxide (niobia) with a double role: to protect the magnetic nanoparticles and to generate a proper (acidic) catalytic function and, on this composite, cobalt nanoparticles were deposed in order to catalyze the C-C bond splitting. With this purpose, we developed a protocol to prepare multifunctional and magnetic separable nano-composite Co@Nb2O5@Fe3O4 catalysts. We have also established an analytic protocol for the identification and quantification of the fragments resulted from lignin depolymerization in both liquid and solid phase. The fragmentation of various lignins occurred on the prepared materials in high yields and with very good selectivity in the desired fragments. The optimization of the catalyst composition indicated a cobalt loading of 4wt% as optimal. Working at 180 oC and 10 atm H2 this catalyst allowed a conversion of lignin up to 60% leading to a mixture containing over 96% in C20-C28 and C29-C37 fragments that were then completely fragmented to C12-C16 in a second stage. The investigated catalysts were completely recyclable, and no leaching of the elements included in the composition was determined by inductively coupled plasma optical emission spectrometry (ICP-OES).Keywords: superparamagnetic core-shell catalysts, environmental production of fuels, renewable lignin, recyclable catalysts
Procedia PDF Downloads 32882 Development of Mesoporous Gel Based Nonwoven Structure for Thermal Barrier Application
Authors: R. P. Naik, A. K. Rakshit
Abstract:
In recent years, with the rapid development in science and technology, people have increasing requirements on uses of clothing for new functions, which contributes to opportunities for further development and incorporation of new technologies along with novel materials. In this context, textiles are of fast decalescence or fast heat radiation media as per as comfort accountability of textile articles are concern. The microstructure and texture of textiles play a vital role in determining the heat-moisture comfort level of the human body because clothing serves as a barrier to the outside environment and a transporter of heat and moisture from the body to the surrounding environment to keep thermal balance between body heat produced and body heat loss. The main bottleneck which is associated with textile materials to be successful as thermal insulation materials can be enumerated as; firstly, high loft or bulkiness of material so as to provide predetermined amount of insulation by ensuring sufficient trapping of air. Secondly, the insulation depends on forced convection; such convective heat loss cannot be prevented by textile material. Third is that the textile alone cannot reach the level of thermal conductivity lower than 0.025 W/ m.k of air. Perhaps, nano-fibers can do so, but still, mass production and cost-effectiveness is a problem. Finally, such high loft materials for thermal insulation becomes heavier and uneasy to manage especially when required to carry over a body. The proposed works aim at developing lightweight effective thermal insulation textiles in combination with nanoporous silica-gel which provides the fundamental basis for the optimization of material properties to achieve good performance of the clothing system. This flexible nonwoven silica-gel composites fabric in intact monolith was successfully developed by reinforcing SiO2-gel in thermal bonded nonwoven fabric via sol-gel processing. Ambient Pressure Drying method is opted for silica gel preparation for cost-effective manufacturing. The formed structure of the nonwoven / SiO₂ -gel composites were analyzed, and the transfer properties were measured. The effects of structure and fibre on the thermal properties of the SiO₂-gel composites were evaluated. Samples are then tested against untreated samples of same GSM in order to study the effect of SiO₂-gel application on various properties of nonwoven fabric. The nonwoven fabric composites reinforced with aerogel showed intact monolith structure were also analyzed for their surface structure, functional group present, microscopic images. Developed product reveals a significant reduction in pores' size and air permeability than the conventional nonwoven fabric. Composite made from polyester fibre with lower GSM shows lowest thermal conductivity. Results obtained were statistically analyzed by using STATISTICA-6 software for their level of significance. Univariate tests of significance for various parameters are practiced which gives the P value for analyzing significance level along with that regression summary for dependent variable are also studied to obtain correlation coefficient.Keywords: silica-gel, heat insulation, nonwoven fabric, thermal barrier clothing
Procedia PDF Downloads 11181 Development of Biosensor Chip for Detection of Specific Antibodies to HSV-1
Authors: Zatovska T. V., Nesterova N. V., Baranova G. V., Zagorodnya S. D.
Abstract:
In recent years, biosensor technologies based on the phenomenon of surface plasmon resonance (SPR) are becoming increasingly used in biology and medicine. Their application facilitates exploration in real time progress of binding of biomolecules and identification of agents that specifically interact with biologically active substances immobilized on the biosensor surface (biochips). Special attention is paid to the use of Biosensor analysis in determining the antibody-antigen interaction in the diagnostics of diseases caused by viruses and bacteria. According to WHO, the diseases that are caused by the herpes simplex virus (HSV), take second place (15.8%) after influenza as a cause of death from viral infections. Current diagnostics of HSV infection include PCR and ELISA assays. The latter allows determination the degree of immune response to viral infection and respective stages of its progress. In this regard, the searches for new and available diagnostic methods are very important. This work was aimed to develop Biosensor chip for detection of specific antibodies to HSV-1 in the human blood serum. The proteins of HSV1 (strain US) were used as antigens. The viral particles were accumulated in cell culture MDBK and purified by differential centrifugation in cesium chloride density gradient. Analysis of the HSV1 proteins was performed by polyacrylamide gel electrophoresis and ELISA. The protein concentration was measured using De Novix DS-11 spectrophotometer. The device for detection of antigen-antibody interactions was an optoelectronic two-channel spectrometer ‘Plasmon-6’, using the SPR phenomenon in the Krechman optical configuration. It was developed at the Lashkarev Institute of Semiconductor Physics of NASU. The used carrier was a glass plate covered with 45 nm gold film. Screening of human blood serums was performed using the test system ‘HSV-1 IgG ELISA’ (GenWay, USA). Development of Biosensor chip included optimization of conditions of viral antigen sorption and analysis steps. For immobilization of viral proteins 0.2% solution of Dextran 17, 200 (Sigma, USA) was used. Sorption of antigen took place at 4-8°C within 18-24 hours. After washing of chip, three times with citrate buffer (pH 5,0) 1% solution of BSA was applied to block the sites not occupied by viral antigen. It was found direct dependence between the amount of immobilized HSV1 antigen and SPR response. Using obtained biochips, panels of 25 positive and 10 negative for the content of antibodies to HSV-1 human sera were analyzed. The average value of SPR response was 185 a.s. for negative sera and from 312 to. 1264 a.s. for positive sera. It was shown that SPR data were agreed with ELISA results in 96% of samples proving the great potential of SPR in such researches. It was investigated the possibility of biochip regeneration and it was shown that application of 10 mM NaOH solution leads to rupture of intermolecular bonds. This allows reuse the chip several times. Thus, in this study biosensor chip for detection of specific antibodies to HSV1 was successfully developed expanding a range of diagnostic methods for this pathogen.Keywords: biochip, herpes virus, SPR
Procedia PDF Downloads 41780 Improved Operating Strategies for the Optimization of Proton Exchange Membrane Fuel Cell System Performance
Authors: Guillaume Soubeyran, Fabrice Micoud, Benoit Morin, Jean-Philippe Poirot-Crouvezier, Magali Reytier
Abstract:
Proton Exchange Membrane Fuel Cell (PEMFC) technology is considered as a solution for the reduction of CO2 emissions. However, this technology still meets several challenges for high-scale industrialization. In this context, the increase of durability remains a critical aspect for competitiveness of this technology. Fortunately, performance degradations in nominal operating conditions is partially reversible, meaning that if specific conditions are applied, a partial recovery of fuel cell performance can be achieved, while irreversible degradations can only be mitigated. Thus, it is worth studying the optimal conditions to rejuvenate these reversible degradations and assessing the long-term impact of such procedures on the performance of the cell. Reversible degradations consist mainly of anode Pt active sites poisoning by carbon monoxide at the anode, heterogeneities in water management during use, and oxidation/deactivation of Pt active sites at the cathode. The latter is identified as a major source of reversible performance loss caused by the presence oxygen, high temperature and high cathode potential that favor platinum oxidation, especially in high efficiency operating points. Hence, we studied here a recovery procedure aiming at reducing the platinum oxides by decreasing cathode potential during operation. Indeed, the application of short air starvation phase leads to a drop of cathode potential. Cell performances are temporarily increased afterwards. Nevertheless, local temperature and current heterogeneities within the cells are favored and shall be minimized. The consumption of fuel during the recovery phase shall also be considered to evaluate the global efficiency. Consequently, the purpose of this work is to find an optimal compromise between the recovery of reversible degradations by air starvation, the increase of global cell efficiency and the mitigation of irreversible degradations effects. Different operating parameters have first been studied such as cell voltage, temperature and humidity in single cell set-up. Considering the global PEMFC system efficiency, tests showed that reducing duration of recovery phase and reducing cell voltage was the key to ensure an efficient recovery. Recovery phase frequency was a major factor as well. A specific method was established to find the optimal frequency depending on the duration and voltage of the recovery phase. Then, long-term degradations have also been studied by applying FC-DLC cycles based on NEDC cycles on a 4-cell short stack by alternating test sequences with and without recovery phases. Depending on recovery phase timing, cell efficiency during the cycle was increased up to 2% thanks to a mean voltage increase of 10 mV during test sequences with recovery phases. However, cyclic voltammetry tests results suggest that the implementation of recovery phases causes an acceleration of the decrease of platinum active areas that could be due to the high potential variations applied to the cathode electrode during operation.Keywords: durability, PEMFC, recovery procedure, reversible degradation
Procedia PDF Downloads 13479 Numerical Optimization of Cooling System Parameters for Multilayer Lithium Ion Cell and Battery Packs
Authors: Mohammad Alipour, Ekin Esen, Riza Kizilel
Abstract:
Lithium-ion batteries are a commonly used type of rechargeable batteries because of their high specific energy and specific power. With the growing popularity of electric vehicles and hybrid electric vehicles, increasing attentions have been paid to rechargeable Lithium-ion batteries. However, safety problems, high cost and poor performance in low ambient temperatures and high current rates, are big obstacles for commercial utilization of these batteries. By proper thermal management, most of the mentioned limitations could be eliminated. Temperature profile of the Li-ion cells has a significant role in the performance, safety, and cycle life of the battery. That is why little temperature gradient can lead to great loss in the performances of the battery packs. In recent years, numerous researchers are working on new techniques to imply a better thermal management on Li-ion batteries. Keeping the battery cells within an optimum range is the main objective of battery thermal management. Commercial Li-ion cells are composed of several electrochemical layers each consisting negative-current collector, negative electrode, separator, positive electrode, and positive current collector. However, many researchers have adopted a single-layer cell to save in computing time. Their hypothesis is that thermal conductivity of the layer elements is so high and heat transfer rate is so fast. Therefore, instead of several thin layers, they model the cell as one thick layer unit. In previous work, we showed that single-layer model is insufficient to simulate the thermal behavior and temperature nonuniformity of the high-capacity Li-ion cells. We also studied the effects of the number of layers on thermal behavior of the Li-ion batteries. In this work, first thermal and electrochemical behavior of the LiFePO₄ battery is modeled with 3D multilayer cell. The model is validated with the experimental measurements at different current rates and ambient temperatures. Real time heat generation rate is also studied at different discharge rates. Results showed non-uniform temperature distribution along the cell which requires thermal management system. Therefore, aluminum plates with mini-channel system were designed to control the temperature uniformity. Design parameters such as channel number and widths, inlet flow rate, and cooling fluids are optimized. As cooling fluids, water and air are compared. Pressure drop and velocity profiles inside the channels are illustrated. Both surface and internal temperature profiles of single cell and battery packs are investigated with and without cooling systems. Our results show that using optimized Mini-channel cooling plates effectively controls the temperature rise and uniformity of the single cells and battery packs. With increasing the inlet flow rate, cooling efficiency could be reached up to 60%.Keywords: lithium ion battery, 3D multilayer model, mini-channel cooling plates, thermal management
Procedia PDF Downloads 16478 A Spatial Perspective on the Metallized Combustion Aspect of Rockets
Authors: Chitresh Prasad, Arvind Ramesh, Aditya Virkar, Karan Dholkaria, Vinayak Malhotra
Abstract:
Solid Propellant Rocket is a rocket that utilises a combination of a solid Oxidizer and a solid Fuel. Success in Solid Rocket Motor design and development depends significantly on knowledge of burning rate behaviour of the selected solid propellant under all motor operating conditions and design limit conditions. Most Solid Motor Rockets consist of the Main Engine, along with multiple Boosters that provide an additional thrust to the space-bound vehicle. Though widely used, they have been eclipsed by Liquid Propellant Rockets, because of their better performance characteristics. The addition of a catalyst such as Iron Oxide, on the other hand, can drastically enhance the performance of a Solid Rocket. This scientific investigation tries to emulate the working of a Solid Rocket using Sparklers and Energized Candles, with a central Energized Candle acting as the Main Engine and surrounding Sparklers acting as the Booster. The Energized Candle is made of Paraffin Wax, with Magnesium filings embedded in it’s wick. The Sparkler is made up of 45% Barium Nitrate, 35% Iron, 9% Aluminium, 10% Dextrin and the remaining composition consists of Boric Acid. The Magnesium in the Energized Candle, and the combination of Iron and Aluminium in the Sparkler, act as catalysts and enhance the burn rates of both materials. This combustion of Metallized Propellants has an influence over the regression rate of the subject candle. The experimental parameters explored here are Separation Distance, Systematically varying Configuration and Layout Symmetry. The major performance parameter under observation is the Regression Rate of the Energized Candle. The rate of regression is significantly affected by the orientation and configuration of the sparklers, which usually act as heat sources for the energized candle. The Overall Efficiency of any engine is factorised by the thermal and propulsive efficiencies. Numerous efforts have been made to improve one or the other. This investigation focuses on the Orientation of Rocket Motor Design to maximize their Overall Efficiency. The primary objective is to analyse the Flame Spread Rate variations of the energized candle, which resembles the solid rocket propellant used in the first stage of rocket operation thereby affecting the Specific Impulse values in a Rocket, which in turn have a deciding impact on their Time of Flight. Another objective of this research venture is to determine the effectiveness of the key controlling parameters explored. This investigation also emulates the exhaust gas interactions of the Solid Rocket through concurrent ignition of the Energized Candle and Sparklers, and their behaviour is analysed. Modern space programmes intend to explore the universe outside our solar system. To accomplish these goals, it is necessary to design a launch vehicle which is capable of providing incessant propulsion along with better efficiency for vast durations. The main motivation of this study is to enhance Rocket performance and their Overall Efficiency through better designing and optimization techniques, which will play a crucial role in this human conquest for knowledge.Keywords: design modifications, improving overall efficiency, metallized combustion, regression rate variations
Procedia PDF Downloads 17877 Strategies for the Optimization of Ground Resistance in Large Scale Foundations for Optimum Lightning Protection
Authors: Oibar Martinez, Clara Oliver, Jose Miguel Miranda
Abstract:
In this paper, we discuss the standard improvements which can be made to reduce the earth resistance in difficult terrains for optimum lightning protection, what are the practical limitations, and how the modeling can be refined for accurate diagnostics and ground resistance minimization. Ground resistance minimization can be made via three different approaches: burying vertical electrodes connected in parallel, burying horizontal conductive plates or meshes, or modifying the own terrain, either by changing the entire terrain material in a large volume or by adding earth-enhancing compounds. The use of vertical electrodes connected in parallel pose several practical limitations. In order to prevent loss of effectiveness, it is necessary to keep a minimum distance between each electrode, which is typically around five times larger than the electrode length. Otherwise, the overlapping of the local equipotential lines around each electrode reduces the efficiency of the configuration. The addition of parallel electrodes reduces the resistance and facilitates the measurement, but the basic parallel resistor formula of circuit theory will always underestimate the final resistance. Numerical simulation of equipotential lines around the electrodes overcomes this limitation. The resistance of a single electrode will always be proportional to the soil resistivity. The electrodes are usually installed with a backfilling material of high conductivity, which increases the effective diameter. However, the improvement is marginal, since the electrode diameter counts in the estimation of the ground resistance via a logarithmic function. Substances that are used for efficient chemical treatment must be environmentally friendly and must feature stability, high hygroscopicity, low corrosivity, and high electrical conductivity. A number of earth enhancement materials are commercially available. Many are comprised of carbon-based materials or clays like bentonite. These materials can also be used as backfilling materials to reduce the resistance of an electrode. Chemical treatment of soil has environmental issues. Some products contain copper sulfate or other copper-based compounds, which may not be environmentally friendly. Carbon-based compounds are relatively inexpensive and they do have very low resistivities, but they also feature corrosion issues. Typically, the carbon can corrode and destroy a copper electrode in around five years. These compounds also have potential environmental concerns. Some earthing enhancement materials contain cement, which, after installation acquire properties that are very close to concrete. This prevents the earthing enhancement material from leaching into the soil. After analyzing different configurations, we conclude that a buried conductive ring with vertical electrodes connected periodically should be the optimum baseline solution for the grounding of a large size structure installed on a large resistivity terrain. In order to show this, a practical example is explained here where we simulate the ground resistance of a conductive ring buried in a terrain with a resistivity in the range of 1 kOhm·m.Keywords: grounding improvements, large scale scientific instrument, lightning risk assessment, lightning standards
Procedia PDF Downloads 13976 Non-Invasive Characterization of the Mechanical Properties of Arterial Walls
Authors: Bruno RamaëL, GwenaëL Page, Catherine Knopf-Lenoir, Olivier Baledent, Anne-Virginie Salsac
Abstract:
No routine technique currently exists for clinicians to measure the mechanical properties of vascular walls non-invasively. Most of the data available in the literature come from traction or dilatation tests conducted ex vivo on native blood vessels. The objective of the study is to develop a non-invasive characterization technique based on Magnetic Resonance Imaging (MRI) measurements of the deformation of vascular walls under pulsating blood flow conditions. The goal is to determine the mechanical properties of the vessels by inverse analysis, coupling imaging measurements and numerical simulations of the fluid-structure interactions. The hyperelastic properties are identified using Solidworks and Ansys workbench (ANSYS Inc.) solving an optimization technique. The vessel of interest targeted in the study is the common carotid artery. In vivo MRI measurements of the vessel anatomy and inlet velocity profiles was acquired along the facial vascular network on a cohort of 30 healthy volunteers: - The time-evolution of the blood vessel contours and, thus, of the cross-section surface area was measured by 3D imaging angiography sequences of phase-contrast MRI. - The blood flow velocity was measured using a 2D CINE MRI phase contrast (PC-MRI) method. Reference arterial pressure waveforms were simultaneously measured in the brachial artery using a sphygmomanometer. The three-dimensional (3D) geometry of the arterial network was reconstructed by first creating an STL file from the raw MRI data using the open source imaging software ITK-SNAP. The resulting geometry was then transformed with Solidworks into volumes that are compatible with Ansys softwares. Tetrahedral meshes of the wall and fluid domains were built using the ANSYS Meshing software, with a near-wall mesh refinement method in the case of the fluid domain to improve the accuracy of the fluid flow calculations. Ansys Structural was used for the numerical simulation of the vessel deformation and Ansys CFX for the simulation of the blood flow. The fluid structure interaction simulations showed that the systolic and diastolic blood pressures of the common carotid artery could be taken as reference pressures to identify the mechanical properties of the different arteries of the network. The coefficients of the hyperelastic law were identified using Ansys Design model for the common carotid. Under large deformations, a stiffness of 800 kPa is measured, which is of the same order of magnitude as the Young modulus of collagen fibers. Areas of maximum deformations were highlighted near bifurcations. This study is a first step towards patient-specific characterization of the mechanical properties of the facial vessels. The method is currently applied on patients suffering from facial vascular malformations and on patients scheduled for facial reconstruction. Information on the blood flow velocity as well as on the vessel anatomy and deformability will be key to improve surgical planning in the case of such vascular pathologies.Keywords: identification, mechanical properties, arterial walls, MRI measurements, numerical simulations
Procedia PDF Downloads 31975 Stochastic Matrices and Lp Norms for Ill-Conditioned Linear Systems
Authors: Riadh Zorgati, Thomas Triboulet
Abstract:
In quite diverse application areas such as astronomy, medical imaging, geophysics or nondestructive evaluation, many problems related to calibration, fitting or estimation of a large number of input parameters of a model from a small amount of output noisy data, can be cast as inverse problems. Due to noisy data corruption, insufficient data and model errors, most inverse problems are ill-posed in a Hadamard sense, i.e. existence, uniqueness and stability of the solution are not guaranteed. A wide class of inverse problems in physics relates to the Fredholm equation of the first kind. The ill-posedness of such inverse problem results, after discretization, in a very ill-conditioned linear system of equations, the condition number of the associated matrix can typically range from 109 to 1018. This condition number plays the role of an amplifier of uncertainties on data during inversion and then, renders the inverse problem difficult to handle numerically. Similar problems appear in other areas such as numerical optimization when using interior points algorithms for solving linear programs leads to face ill-conditioned systems of linear equations. Devising efficient solution approaches for such system of equations is therefore of great practical interest. Efficient iterative algorithms are proposed for solving a system of linear equations. The approach is based on a preconditioning of the initial matrix of the system with an approximation of a generalized inverse leading to a stochastic preconditioned matrix. This approach, valid for non-negative matrices, is first extended to hermitian, semi-definite positive matrices and then generalized to any complex rectangular matrices. The main results obtained are as follows: 1) We are able to build a generalized inverse of any complex rectangular matrix which satisfies the convergence condition requested in iterative algorithms for solving a system of linear equations. This completes the (short) list of generalized inverse having this property, after Kaczmarz and Cimmino matrices. Theoretical results on both the characterization of the type of generalized inverse obtained and the convergence are derived. 2) Thanks to its properties, this matrix can be efficiently used in different solving schemes as Richardson-Tanabe or preconditioned conjugate gradients. 3) By using Lp norms, we propose generalized Kaczmarz’s type matrices. We also show how Cimmino's matrix can be considered as a particular case consisting in choosing the Euclidian norm in an asymmetrical structure. 4) Regarding numerical results obtained on some pathological well-known test-cases (Hilbert, Nakasaka, …), some of the proposed algorithms are empirically shown to be more efficient on ill-conditioned problems and more robust to error propagation than the known classical techniques we have tested (Gauss, Moore-Penrose inverse, minimum residue, conjugate gradients, Kaczmarz, Cimmino). We end on a very early prospective application of our approach based on stochastic matrices aiming at computing some parameters (such as the extreme values, the mean, the variance, …) of the solution of a linear system prior to its resolution. Such an approach, if it were to be efficient, would be a source of information on the solution of a system of linear equations.Keywords: conditioning, generalized inverse, linear system, norms, stochastic matrix
Procedia PDF Downloads 13674 Pva-bg58s-cl-based Barrier Membranes For Guided Tissue/bone Regeneration Therapy
Authors: Isabela S. Gonçalves, Vitor G. P. Lima, Tiago M. B. Campos, Marcos Jacobovitz, Luana M. R. Vasconcellos, Ivone R. Oliveira
Abstract:
Periodontitis is an infectious disease of multifactorial origin, which originates from a periodontogenic bacterial biofilm that colonizes the surfaces of the teeth, resulting in an inflammatory reaction to microbial aggression. In the absence of adequate treatment, it can lead to the gradual destruction of the periodontal ligaments, cementum and alveolar bone. In guided tissue/bone regeneration therapy (GTR/GBR), a barrier membrane is placed between the fibrous tissues and the bone defect to prevent unwanted incursions of fibrous tissues into the bone defect, thus allowing the regeneration of quality bone. Currently, there are a significant number of biodegradable barrier membranes available on the market. However, a very common problem is that the membranes are not bioactive/osteogenic, that is, they are incapable of inducing a favorable osteogenic response and integration with the host tissue, resulting in many cases in displacement/expulsion of the membrane, requiring a new surgical procedure and replacement of the implant. Aiming to improve the bioactive and osteogenic properties of the membrane, this work evaluated the production of membranes that integrate the biocompatibility of the hydrophilic synthetic polymer (polyvinyl alcohol - PVA) with the osteogenic effects of chlorinated bioactive glasses (BG58S-Cl), using the electrospinning equipment (AeroSpinner L1.0 from Areka) which allows the execution of spinning by high voltage and/or blowing in solution and with a high production rate, enabling development on an industrial scale. In the formulation of bioactive glasses, the replacement of nitrates by chlorinated molecules has shown to be a promising alternative, since the chloride ion is naturally present in the body and, with its presence in the bioactive glass, the biocompatibility of the material increases. Thus, in this work, chlorinated bioactive glasses were synthesized by the sol-gel route using the compounds tetraethyl orthosilicate (TEOS), calcium chloride dihydrate and monobasic ammonium phosphate with pH adjustments with 37% HCl (1.5 or 2.5) and different calcination temperatures (500, 600 and 700 °C) were evaluated. The BG-58S-Cl powders obtained were characterized by pH, conductivity and zeta potential x time curves and by SEM/FEG, FTIR-ATR and Raman tests. The material produced under the selected conditions was evaluated in relation to the milling procedure, obtaining particles suitable for incorporation into PVA polymer solutions to be electrospun (D50 = 22 µm). Membranes were produced and evaluated regarding the influence of the crosslinking agent content as well as the crosslinking treatment temperature (3, 5 and 10 wt% citric acid) and (130 or 175 oC) and were characterized by SEM/FEG, FTIR, TG and DSC. From the optimization of the crosslinking conditions, membranes were prepared by adding BG58S-Cl powder (5 and 10 wt%) to the PVA solutions and were characterized by SEM-FEG, DSC, bioactivity in SBF and behavior in cell culture (cell viability, total protein content, alkaline phosphatase, mineralization nodules). The micrographs showed homogeneity of the distribution of BG58S-Cl particles throughout the sample, favoring cell differentiation.Keywords: barrier membranes, chlorinated bioactive glasses, polyvinyl alcohol, tissue regeneration.
Procedia PDF Downloads 1273 Fiber Stiffness Detection of GFRP Using Combined ABAQUS and Genetic Algorithms
Authors: Gyu-Dong Kim, Wuk-Jae Yoo, Sang-Youl Lee
Abstract:
Composite structures offer numerous advantages over conventional structural systems in the form of higher specific stiffness and strength, lower life-cycle costs, and benefits such as easy installation and improved safety. Recently, there has been a considerable increase in the use of composites in engineering applications and as wraps for seismic upgrading and repairs. However, these composites deteriorate with time because of outdated materials, excessive use, repetitive loading, climatic conditions, manufacturing errors, and deficiencies in inspection methods. In particular, damaged fibers in a composite result in significant degradation of structural performance. In order to reduce the failure probability of composites in service, techniques to assess the condition of the composites to prevent continual growth of fiber damage are required. Condition assessment technology and nondestructive evaluation (NDE) techniques have provided various solutions for the safety of structures by means of detecting damage or defects from static or dynamic responses induced by external loading. A variety of techniques based on detecting the changes in static or dynamic behavior of isotropic structures has been developed in the last two decades. These methods, based on analytical approaches, are limited in their capabilities in dealing with complex systems, primarily because of their limitations in handling different loading and boundary conditions. Recently, investigators have introduced direct search methods based on metaheuristics techniques and artificial intelligence, such as genetic algorithms (GA), simulated annealing (SA) methods, and neural networks (NN), and have promisingly applied these methods to the field of structural identification. Among them, GAs attract our attention because they do not require a considerable amount of data in advance in dealing with complex problems and can make a global solution search possible as opposed to classical gradient-based optimization techniques. In this study, we propose an alternative damage-detection technique that can determine the degraded stiffness distribution of vibrating laminated composites made of Glass Fiber-reinforced Polymer (GFRP). The proposed method uses a modified form of the bivariate Gaussian distribution function to detect degraded stiffness characteristics. In addition, this study presents a method to detect the fiber property variation of laminated composite plates from the micromechanical point of view. The finite element model is used to study free vibrations of laminated composite plates for fiber stiffness degradation. In order to solve the inverse problem using the combined method, this study uses only first mode shapes in a structure for the measured frequency data. In particular, this study focuses on the effect of the interaction among various parameters, such as fiber angles, layup sequences, and damage distributions, on fiber-stiffness damage detection.Keywords: stiffness detection, fiber damage, genetic algorithm, layup sequences
Procedia PDF Downloads 27472 Organizational Resilience in the Perspective of Supply Chain Risk Management: A Scholarly Network Analysis
Authors: William Ho, Agus Wicaksana
Abstract:
Anecdotal evidence in the last decade shows that the occurrence of disruptive events and uncertainties in the supply chain is increasing. The coupling of these events with the nature of an increasingly complex and interdependent business environment leads to devastating impacts that quickly propagate within and across organizations. For example, the recent COVID-19 pandemic increased the global supply chain disruption frequency by at least 20% in 2020 and is projected to have an accumulative cost of $13.8 trillion by 2024. This crisis raises attention to organizational resilience to weather business uncertainty. However, the concept has been criticized for being vague and lacking a consistent definition, thus reducing the significance of the concept for practice and research. This study is intended to solve that issue by providing a comprehensive review of the conceptualization, measurement, and antecedents of operational resilience that have been discussed in the supply chain risk management literature (SCRM). We performed a Scholarly Network Analysis, combining citation-based and text-based approaches, on 252 articles published from 2000 to 2021 in top-tier journals based on three parameters: AJG ranking and ABS ranking, UT Dallas and FT50 list, and editorial board review. We utilized a hybrid scholarly network analysis by combining citation-based and text-based approaches to understand the conceptualization, measurement, and antecedents of operational resilience in the SCRM literature. Specifically, we employed a Bibliographic Coupling Analysis in the research cluster formation stage and a Co-words Analysis in the research cluster interpretation and analysis stage. Our analysis reveals three major research clusters of resilience research in the SCRM literature, namely (1) supply chain network design and optimization, (2) organizational capabilities, and (3) digital technologies. We portray the research process in the last two decades in terms of the exemplar studies, problems studied, commonly used approaches and theories, and solutions provided in each cluster. We then provide a conceptual framework on the conceptualization and antecedents of resilience based on studies in these clusters and highlight potential areas that need to be studied further. Finally, we leverage the concept of abnormal operating performance to propose a new measurement strategy for resilience. This measurement overcomes the limitation of most current measurements that are event-dependent and focus on the resistance or recovery stage - without capturing the growth stage. In conclusion, this study provides a robust literature review through a scholarly network analysis that increases the completeness and accuracy of research cluster identification and analysis to understand conceptualization, antecedents, and measurement of resilience. It also enables us to perform a comprehensive review of resilience research in SCRM literature by including research articles published during the pandemic and connects this development with a plethora of articles published in the last two decades. From the managerial perspective, this study provides practitioners with clarity on the conceptualization and critical success factors of firm resilience from the SCRM perspective.Keywords: supply chain risk management, organizational resilience, scholarly network analysis, systematic literature review
Procedia PDF Downloads 7471 Interdisciplinary Method Development - A Way to Realize the Full Potential of Textile Resources
Authors: Nynne Nørup, Julie Helles Eriksen, Rikke M. Moalem, Else Skjold
Abstract:
Despite a growing focus on the high environmental impact of textiles, textile waste is only recently considered as part of the waste field. Consequently, there is a general lack of knowledge and data within this field. Particularly the lack of a common perception of textiles generates several problems e.g., to recognize the full material potential the fraction contains, which is cruel if the textile must enter the circular economy. This study aims to qualify a method to make the resources in textile waste visible in a way that makes it possible to move them as high up in the waste hierarchy as possible. Textiles are complex and cover many different types of products, fibers and combinations of fibers and production methods. In garments alone, there is a great variety, even when narrowing it to only undergarments. However, textile waste is often reduced to one fraction, assessed solely by quantity, and compared to quantities of other waste fractions. Disregarding the complexity and reducing textiles to a single fraction that covers everything made of textiles increase the risk of neglecting the value of the materials, both with regards to their properties and economical. Instead of trying to fit textile waste into the current primarily linear waste system where volume is a key part of the business models, this study focused on integrating textile waste as a resource in the design and production phase. The study combined interdisciplinary methods for determining replacement rates used in Life Cycle Assessments and Mass Flow Analysis methods with the designer’s toolbox to hereby activate the properties of textile waste in a way that can unleash its potential optimally. It was hypothesized that by activating Denmark's tradition for design and high level of craftsmanship, it is possible to find solutions that can be used today and create circular resource models that reduce the use of virgin fibers. Through waste samples, case studies, and testing of various design approaches, this study explored how to functionalize the method so that the product after the end-use is kept as a material and only then processed at fiber level to obtain the best environmental utilization. The study showed that the designers' ability to decode the properties of the materials and understanding of craftsmanship were decisive for how well the materials could be utilized today. The later in the life cycle the textiles appeared as waste, the more demanding the description of the materials to be sufficient, especially if to achieve the best possible use of the resources and thus a higher replacement rate. In addition, it also required adaptation in relation to the current production because the materials often varied more. The study found good indications that part of the solution is to use geodata i.e., where in the life cycle the materials were discarded. An important conclusion is that a fully developed method can help support better utilization of textile resources. However, it stills requires a better understanding of materials by the designers, as well as structural changes in business and society.Keywords: circular economy, development of sustainable processes, environmental impacts, environmental management of textiles, environmental sustainability through textile recycling, interdisciplinary method development, resource optimization, recycled textile materials and the evaluation of recycling, sustainability and recycling opportunities in the textile and apparel sector
Procedia PDF Downloads 9570 Modeling the Demand for the Healthcare Services Using Data Analysis Techniques
Authors: Elizaveta S. Prokofyeva, Svetlana V. Maltseva, Roman D. Zaitsev
Abstract:
Rapidly evolving modern data analysis technologies in healthcare play a large role in understanding the operation of the system and its characteristics. Nowadays, one of the key tasks in urban healthcare is to optimize the resource allocation. Thus, the application of data analysis in medical institutions to solve optimization problems determines the significance of this study. The purpose of this research was to establish the dependence between the indicators of the effectiveness of the medical institution and its resources. Hospital discharges by diagnosis; hospital days of in-patients and in-patient average length of stay were selected as the performance indicators and the demand of the medical facility. The hospital beds by type of care, medical technology (magnetic resonance tomography, gamma cameras, angiographic complexes and lithotripters) and physicians characterized the resource provision of medical institutions for the developed models. The data source for the research was an open database of the statistical service Eurostat. The choice of the source is due to the fact that the databases contain complete and open information necessary for research tasks in the field of public health. In addition, the statistical database has a user-friendly interface that allows you to quickly build analytical reports. The study provides information on 28 European for the period from 2007 to 2016. For all countries included in the study, with the most accurate and complete data for the period under review, predictive models were developed based on historical panel data. An attempt to improve the quality and the interpretation of the models was made by cluster analysis of the investigated set of countries. The main idea was to assess the similarity of the joint behavior of the variables throughout the time period under consideration to identify groups of similar countries and to construct the separate regression models for them. Therefore, the original time series were used as the objects of clustering. The hierarchical agglomerate algorithm k-medoids was used. The sampled objects were used as the centers of the clusters obtained, since determining the centroid when working with time series involves additional difficulties. The number of clusters used the silhouette coefficient. After the cluster analysis it was possible to significantly improve the predictive power of the models: for example, in the one of the clusters, MAPE error was only 0,82%, which makes it possible to conclude that this forecast is highly reliable in the short term. The obtained predicted values of the developed models have a relatively low level of error and can be used to make decisions on the resource provision of the hospital by medical personnel. The research displays the strong dependencies between the demand for the medical services and the modern medical equipment variable, which highlights the importance of the technological component for the successful development of the medical facility. Currently, data analysis has a huge potential, which allows to significantly improving health services. Medical institutions that are the first to introduce these technologies will certainly have a competitive advantage.Keywords: data analysis, demand modeling, healthcare, medical facilities
Procedia PDF Downloads 14469 A Comparison Between Different Discretization Techniques for the Doyle-Fuller-Newman Li+ Battery Model
Authors: Davide Gotti, Milan Prodanovic, Sergio Pinilla, David Muñoz-Torrero
Abstract:
Since its proposal, the Doyle-Fuller-Newman (DFN) lithium-ion battery model has gained popularity in the electrochemical field. In fact, this model provides the user with theoretical support for designing the lithium-ion battery parameters, such as the material particle or the diffusion coefficient adjustment direction. However, the model is mathematically complex as it is composed of several partial differential equations (PDEs) such as Fick’s law of diffusion, the MacInnes and Ohm’s equations, among other phenomena. Thus, to efficiently use the model in a time-domain simulation environment, the selection of the discretization technique is of a pivotal importance. There are several numerical methods available in the literature that can be used to carry out this task. In this study, a comparison between the explicit Euler, Crank-Nicolson, and Chebyshev discretization methods is proposed. These three methods are compared in terms of accuracy, stability, and computational times. Firstly, the explicit Euler discretization technique is analyzed. This method is straightforward to implement and is computationally fast. In this work, the accuracy of the method and its stability properties are shown for the electrolyte diffusion partial differential equation. Subsequently, the Crank-Nicolson method is considered. It represents a combination of the implicit and explicit Euler methods that has the advantage of being of the second order in time and is intrinsically stable, thus overcoming the disadvantages of the simpler Euler explicit method. As shown in the full paper, the Crank-Nicolson method provides accurate results when applied to the DFN model. Its stability does not depend on the integration time step, thus it is feasible for both short- and long-term tests. This last remark is particularly important as this discretization technique would allow the user to implement parameter estimation and optimization techniques such as system or genetic parameter identification methods using this model. Finally, the Chebyshev discretization technique is implemented in the DFN model. This discretization method features swift convergence properties and, as other spectral methods used to solve differential equations, achieves the same accuracy with a smaller number of discretization nodes. However, as shown in the literature, these methods are not suitable for handling sharp gradients, which are common during the first instants of the charge and discharge phases of the battery. The numerical results obtained and presented in this study aim to provide the guidelines on how to select the adequate discretization technique for the DFN model according to the type of application to be performed, highlighting the pros and cons of the three methods. Specifically, the non-eligibility of the simple Euler method for longterm tests will be presented. Afterwards, the Crank-Nicolson and the Chebyshev discretization methods will be compared in terms of accuracy and computational times under a wide range of battery operating scenarios. These include both long-term simulations for aging tests, and short- and mid-term battery charge/discharge cycles, typically relevant in battery applications like grid primary frequency and inertia control and electrical vehicle breaking and acceleration.Keywords: Doyle-Fuller-Newman battery model, partial differential equations, discretization, numerical methods
Procedia PDF Downloads 2368 Catalytic Dehydrogenation of Formic Acid into H2/CO2 Gas: A Novel Approach
Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy
Abstract:
Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of biomass platform, comprising a potential pool of hydrogen energy that stands as a new energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need of in-situ H2 production, which plays a key role in the hydrogenation reactions of biomass into higher value components. It is reported elsewhere in literature that catalytic decomposition of FA is usually performed in poorly designed setup using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. it work suggests an approach that integrates designing a novel catalyst featuring magnetic property with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H2 gas from FA. Using ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under inert medium. Through a novel approach, FA is charged into the reactor via high-pressure positive displacement pump at steady state conditions. The produced gas (H2+CO2) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The novelty of this work lies in designing a very responsive catalyst, pumping consistent amount of FA into a sealed reactor running at steady state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at lower temperature range (35-50°C) yielded more gas while the catalyst loading and Pd doping wt.% were found to be the most significant factors with a P-values 0.026 & 0.031, respectively.Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles
Procedia PDF Downloads 5267 On-Farm Biopurification Systems: Fungal Bioaugmentation of Biomixtures For Carbofuran Removal
Authors: Carlos E. Rodríguez-Rodríguez, Karla Ruiz-Hidalgo, Kattia Madrigal-Zúñiga, Juan Salvador Chin-Pampillo, Mario Masís-Mora, Elizabeth Carazo-Rojas
Abstract:
One of the main causes of contamination linked to agricultural activities is the spillage and disposal of pesticides, especially during the loading, mixing or cleaning of agricultural spraying equipment. One improvement in the handling of pesticides is the use of biopurification systems (BPS), simple and cheap degradation devices where the pesticides are biologically degraded at accelerated rates. The biologically active core of BPS is the biomixture, which is constituted by soil pre-exposed to the target pesticide, a lignocellulosic substrate to promote the activity of ligninolitic fungi and a humic component (peat or compost), mixed at a volumetric proportion of 50:25:25. Considering the known ability of lignocellulosic fungi to degrade a wide range of organic pollutants, and the high amount of lignocellulosic waste used in biomixture preparation, the bioaugmentation of biomixtures with these fungi represents an interesting approach for improving biomixtures. The present work aimed at evaluating the effect of the bioaugmentation of rice husk based biomixtures with the fungus Trametes versicolor in the removal of the insectice/nematicide carbofuran (CFN) and to optimize the composition of the biomixture to obtain the best performance in terms of CFN removal and mineralization, reduction in formation of transformation products and decrease in residual toxicity of the matrix. The evaluation of several lignocellulosic residues (rice husk, wood chips, coconut fiber, sugarcane bagasse or newspaper print) revealed the best colonization by T. versicolor in rice husk. Pre-colonized rice husk was then used in the bioaugmentation of biomixtures also containing soil pre-exposed to CFN and either peat (GTS biomixture) or compost (GCS biomixture). After spiking with 10 mg/kg CBF, the efficiency of the biomixture was evaluated through a multi-component approach that included: monitoring of CBF removal and production of CBF transformation products, mineralization of radioisotopically labeled carbofuran (14C-CBF) and changes in the toxicity of the matrix after the treatment (Daphnia magna acute immobilization test). Estimated half-lives of CBF in the biomixtures were 3.4 d and 8.1 d in GTS and GCS, respectively. The transformation products 3-hydroxycarbofuran and 3-ketocarbofuran were detected at the moment of CFN application, however their concentration continuously disappeared. Mineralization of 14C-CFN was also faster in GTS than GCS. The toxicological evaluation showed a complete toxicity removal in the biomixtures after 48 d of treatment. The composition of the GCS biomixture was optimized using a central composite design and response surface methodology. The design variables were the volumetric content of fungally pre-colonized rice husk and the volumetric ratio compost/soil. According to the response models, maximization of CFN removal and mineralization rate, and minimization in the accumulation of transformation products were obtained with an optimized biomixture of composition 30:43:27 (pre-colonized rice husk:compost:soil), which differs from the 50:25:25 composition commonly employed in BPS. Results suggest that fungal bioaugmentation may enhance the performance of biomixtures in CFN removal. Optimization reveals the importance of assessing new biomixture formulations in order to maximize their performance.Keywords: bioaugmentation, biopurification systems, degradation, fungi, pesticides, toxicity
Procedia PDF Downloads 31166 Hygrothermal Interactions and Energy Consumption in Cold Climate Hospitals: Integrating Numerical Analysis and Case Studies to Investigate and Analyze the Impact of Air Leakage and Vapor Retarding
Authors: Amir E. Amirzadeh, Richard K. Strand
Abstract:
Moisture-induced problems are a significant concern for building owners, architects, construction managers, and building engineers, as they can have substantial impacts on building enclosures' durability and performance. Computational analyses, such as hygrothermal and thermal analysis, can provide valuable information and demonstrate the expected relative performance of building enclosure systems but are not grounded in absolute certainty. This paper evaluates the hygrothermal performance of common enclosure systems in hospitals in cold climates. The study aims to investigate the impact of exterior wall systems on hospitals, focusing on factors such as durability, construction deficiencies, and energy performance. The study primarily examines the impact of air leakage and vapor retarding layers relative to energy consumption. While these factors have been studied in residential and commercial buildings, there is a lack of information on their impact on hospitals in a holistic context. The study integrates various research studies and professional experience in hospital building design to achieve its objective. The methodology involves surveying and observing exterior wall assemblies, reviewing common exterior wall assemblies and details used in hospital construction, performing simulations and numerical analyses of various variables, validating the model and mechanism using available data from industry and academia, visualizing the outcomes of the analysis, and developing a mechanism to demonstrate the relative performance of exterior wall systems for hospitals under specific conditions. The data sources include case studies from real-world projects and peer-reviewed articles, industry standards, and practices. This research intends to integrate and analyze the in-situ and as-designed performance and durability of building enclosure assemblies with numerical analysis. The study's primary objective is to provide a clear and precise roadmap to better visualize and comprehend the correlation between the durability and performance of common exterior wall systems used in the construction of hospitals and the energy consumption of these buildings under certain static and dynamic conditions. As the construction of new hospitals and renovation of existing ones have grown over the last few years, it is crucial to understand the effect of poor detailing or construction deficiencies on building enclosure systems' performance and durability in healthcare buildings. This study aims to assist stakeholders involved in hospital design, construction, and maintenance in selecting durable and high-performing wall systems. It highlights the importance of early design evaluation, regular quality control during the construction of hospitals, and understanding the potential impacts of improper and inconsistent maintenance and operation practices on occupants, owner, building enclosure systems, and Heating, Ventilation, and Air Conditioning (HVAC) systems, even if they are designed to meet the project requirements.Keywords: hygrothermal analysis, building enclosure, hospitals, energy efficiency, optimization and visualization, uncertainty and decision making
Procedia PDF Downloads 7065 Lean Comic GAN (LC-GAN): a Light-Weight GAN Architecture Leveraging Factorized Convolution and Teacher Forcing Distillation Style Loss Aimed to Capture Two Dimensional Animated Filtered Still Shots Using Mobile Phone Camera and Edge Devices
Authors: Kaustav Mukherjee
Abstract:
In this paper we propose a Neural Style Transfer solution whereby we have created a Lightweight Separable Convolution Kernel Based GAN Architecture (SC-GAN) which will very useful for designing filter for Mobile Phone Cameras and also Edge Devices which will convert any image to its 2D ANIMATED COMIC STYLE Movies like HEMAN, SUPERMAN, JUNGLE-BOOK. This will help the 2D animation artist by relieving to create new characters from real life person's images without having to go for endless hours of manual labour drawing each and every pose of a cartoon. It can even be used to create scenes from real life images.This will reduce a huge amount of turn around time to make 2D animated movies and decrease cost in terms of manpower and time. In addition to that being extreme light-weight it can be used as camera filters capable of taking Comic Style Shots using mobile phone camera or edge device cameras like Raspberry Pi 4,NVIDIA Jetson NANO etc. Existing Methods like CartoonGAN with the model size close to 170 MB is too heavy weight for mobile phones and edge devices due to their scarcity in resources. Compared to the current state of the art our proposed method which has a total model size of 31 MB which clearly makes it ideal and ultra-efficient for designing of camera filters on low resource devices like mobile phones, tablets and edge devices running OS or RTOS. .Owing to use of high resolution input and usage of bigger convolution kernel size it produces richer resolution Comic-Style Pictures implementation with 6 times lesser number of parameters and with just 25 extra epoch trained on a dataset of less than 1000 which breaks the myth that all GAN need mammoth amount of data. Our network reduces the density of the Gan architecture by using Depthwise Separable Convolution which does the convolution operation on each of the RGB channels separately then we use a Point-Wise Convolution to bring back the network into required channel number using 1 by 1 kernel.This reduces the number of parameters substantially and makes it extreme light-weight and suitable for mobile phones and edge devices. The architecture mentioned in the present paper make use of Parameterised Batch Normalization Goodfellow etc al. (Deep Learning OPTIMIZATION FOR TRAINING DEEP MODELS page 320) which makes the network to use the advantage of Batch Norm for easier training while maintaining the non-linear feature capture by inducing the learnable parametersKeywords: comic stylisation from camera image using GAN, creating 2D animated movie style custom stickers from images, depth-wise separable convolutional neural network for light-weight GAN architecture for EDGE devices, GAN architecture for 2D animated cartoonizing neural style, neural style transfer for edge, model distilation, perceptual loss
Procedia PDF Downloads 13264 Catalytic Decomposition of Formic Acid into H₂/CO₂ Gas: A Distinct Approach
Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy
Abstract:
Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of the biomass platform, comprising a potential pool of hydrogen energy that stands as a distinct energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need for in-situ H₂ production, which plays a key role in the hydrogenation reactions of biomass into higher-value components. It is reported elsewhere in the literature that catalytic decomposition of FA is usually performed in poorly designed setups using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. Our work suggests an approach that integrates designing a distinct catalyst featuring magnetic properties with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for the dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H₂ gas from FA. Using an ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under an inert medium. Through a distinct approach, FA is charged into the reactor via a high-pressure positive displacement pump at steady-state conditions. The produced gas (H₂+CO₂) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The uniqueness of this work lies in designing a very responsive catalyst, pumping a consistent amount of FA into a sealed reactor running at steady-state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at a lower temperature range (35-50°C) yielded more gas, while the catalyst loading and Pd doping wt.% were found to be the most significant factors with P-values 0.026 & 0.031, respectively.Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles
Procedia PDF Downloads 5663 Reduced General Dispersion Model in Cylindrical Coordinates and Isotope Transient Kinetic Analysis in Laminar Flow
Authors: Masood Otarod, Ronald M. Supkowski
Abstract:
This abstract discusses a method that reduces the general dispersion model in cylindrical coordinates to a second order linear ordinary differential equation with constant coefficients so that it can be utilized to conduct kinetic studies in packed bed tubular catalytic reactors at a broad range of Reynolds numbers. The model was tested by 13CO isotope transient tracing of the CO adsorption of Boudouard reaction in a differential reactor at an average Reynolds number of 0.2 over Pd-Al2O3 catalyst. Detailed experimental results have provided evidence for the validity of the theoretical framing of the model and the estimated parameters are consistent with the literature. The solution of the general dispersion model requires the knowledge of the radial distribution of axial velocity. This is not always known. Hence, up until now, the implementation of the dispersion model has been largely restricted to the plug-flow regime. But, ideal plug-flow is impossible to achieve and flow regimes approximating plug-flow leave much room for debate as to the validity of the results. The reduction of the general dispersion model transpires as a result of the application of a factorization theorem. Factorization theorem is derived from the observation that a cross section of a catalytic bed consists of a solid phase across which the reaction takes place and a void or porous phase across which no significant measure of reaction occurs. The disparity in flow and the heterogeneity of the catalytic bed cause the concentration of reacting compounds to fluctuate radially. These variabilities signify the existence of radial positions at which the radial gradient of concentration is zero. Succinctly, factorization theorem states that a concentration function of axial and radial coordinates in a catalytic bed is factorable as the product of the mean radial cup-mixing function and a contingent dimensionless function. The concentration of adsorbed compounds are also factorable since they are piecewise continuous functions and suffer the same variability but in the reverse order of the concentration of mobile phase compounds. Factorability is a property of packed beds which transforms the general dispersion model to an equation in terms of the measurable mean radial cup-mixing concentration of the mobile phase compounds and mean cross-sectional concentration of adsorbed species. The reduced model does not require the knowledge of the radial distribution of the axial velocity. Instead, it is characterized by new transport parameters so denoted by Ωc, Ωa, Ωc, and which are respectively denominated convection coefficient cofactor, axial dispersion coefficient cofactor, and radial dispersion coefficient cofactor. These cofactors adjust the dispersion equation as compensation for the unavailability of the radial distribution of the axial velocity. Together with the rest of the kinetic parameters they can be determined from experimental data via an optimization procedure. Our data showed that the estimated parameters Ωc, Ωa Ωr, are monotonically correlated with the Reynolds number. This is expected to be the case based on the theoretical construct of the model. Computer generated simulations of methanation reaction on nickel provide additional support for the utility of the newly conceptualized dispersion model.Keywords: factorization, general dispersion model, isotope transient kinetic, partial differential equations
Procedia PDF Downloads 26962 Bacteriophages for Sustainable Wastewater Treatment: Application in Black Water Decontamination with an Emphasis to DRDO Biotoilet
Authors: Sonika Sharma, Mohan G. Vairale, Sibnarayan Datta, Soumya Chatterjee, Dharmendra Dubey, Rajesh Prasad, Raghvendra Budhauliya, Bidisha Das, Vijay Veer
Abstract:
Bacteriophages are viruses that parasitize specific bacteria and multiply in metabolising host bacteria. Bacteriophages hunt for a single or a subset of bacterial species, making them potential antibacterial agents. Utilizing the ability of phages to control bacterial populations has several applications from medical to the fields of agriculture, aquaculture and the food industry. However, harnessing phage based techniques in wastewater treatments to improve quality of effluent and sludge release into the environment is a potential area for R&D application. Phage mediated bactericidal effect in any wastewater treatment process has many controlling factors that lead to treatment performance. In laboratory conditions, titer of bacteriophages (coliphages) isolated from effluent water of a specially designed anaerobic digester of human night soil (DRDO Biotoilet) was successfully increased with a modified protocol of the classical double layer agar technique. Enrichment of the same was carried out and efficacy of the phage enriched medium was evaluated at different conditions (specific media, temperature, storage conditions). Growth optimization study was carried out on different media like soybean casein digest medium (Tryptone soya medium), Luria-Bertani medium, phage deca broth medium and MNA medium (Modified nutrient medium). Further, temperature-phage yield relationship was also observed at three different temperatures 27˚C, 37˚C and 44˚C at laboratory condition. Results showed the higher activity of coliphage 27˚C and at 37˚C. Further, addition of divalent ions (10mM MgCl2, 5mM CaCl2) and 5% glycerol resulted in a significant increase in phage titer. Besides this, effect of antibiotics addition like ampicillin and kanamycin at different concentration on plaque formation was analysed and reported that ampicillin at a concentration of 1mg/ml ampicillin stimulates phage infection and results in more number of plaques. Experiments to test viability of phage showed that it can remain active for 6 months at 4˚C in fresh tryptone soya broth supplemented with fresh culture of coliforms (early log phase). The application of bacteriophages (especially coliphages) for treatment of effluent of human faecal matter contaminated effluent water is unique. This environment-friendly treatment system not only reduces the pathogenic coliforms, but also decreases the competition between nuisance bacteria and functionally important microbial populations. Therefore, the phage based cocktail to treat fecal pathogenic bacteria present in black water has many implication in wastewater treatment processes including ‘DRDO Biotoilet’, which is an ecofriendly appropriate and affordable human faecal matter treatment technology for different climates and situations.Keywords: wastewater, microbes, virus, biotoilet, phage viability
Procedia PDF Downloads 43661 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data
Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann
Abstract:
Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers
Procedia PDF Downloads 20560 Artificial Intelligence for Traffic Signal Control and Data Collection
Authors: Reggie Chandra
Abstract:
Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal
Procedia PDF Downloads 16959 Health Risk Assessment from Potable Water Containing Tritium and Heavy Metals
Authors: Olga A. Momot, Boris I. Synzynys, Alla A. Oudalova
Abstract:
Obninsk is situated in the Kaluga region 100 km southwest of Moscow on the left bank of the Protva River. Several enterprises utilizing nuclear energy are operating in the town. A special attention in the region where radiation-hazardous facilities are located has traditionally been paid to radioactive gas and aerosol releases into the atmosphere; liquid waste discharges into the Protva river and groundwater pollution. Municipal intakes involve 34 wells arranged 15 km apart in a sequence north-south along the foot of the left slope of the Protva river valley. Northern and southern water intakes are upstream and downstream of the town, respectively. They belong to river valley intakes with mixed feeding, i.e. precipitation infiltration is responsible for a smaller part of groundwater, and a greater amount is being formed by overflowing from Protva. Water intakes are maintained by the Protva river runoff, the volume of which depends on the precipitation fallen out and watershed area. Groundwater contamination with tritium was first detected in a sanitary-protective zone of the Institute of Physics and Power Engineering (SRC-IPPE) by Roshydromet researchers when realizing the “Program of radiological monitoring in the territory of nuclear industry enterprises”. A comprehensive survey of the SRC-IPPE’s industrial site and adjacent territories has revealed that research nuclear reactors and accelerators where tritium targets are applied as well as radioactive waste storages could be considered as potential sources of technogenic tritium. All the above sources are located within the sanitary controlled area of intakes. Tritium activity in water of springs and wells near the SRC-IPPE is about 17.4 – 3200 Bq/l. The observed values of tritium activity are below the intervention levels (7600 Bq/l for inorganic compounds and 3300 Bq/l for organically bound tritium). The risk has being assessed to estimate possible effect of considered tritium concentrations on human health. Data on tritium concentrations in pipe-line drinking water were used for calculations. The activity of 3H amounted to 10.6 Bq/l and corresponded to the risk of such water consumption of ~ 3·10-7 year-1. The risk value given in magnitude is close to the individual annual death risk for population living near a NPP – 1.6·10-8 year-1 and at the same time corresponds to the level of tolerable risk (10-6) and falls within “risk optimization”, i.e. in the sphere for planning the economically sound measures on exposure risk reduction. To estimate the chemical risk, physical and chemical analysis was made of waters from all springs and wells near the SRC-IPPE. Chemical risk from groundwater contamination was estimated according to the EPA US guidance. The risk of carcinogenic diseases at a drinking water consumption amounts to 5·10-5. According to the classification accepted the health risk in case of spring water consumption is inadmissible. The compared assessments of risk associated with tritium exposure, on the one hand, and the dangerous chemical (e.g. heavy metals) contamination of Obninsk drinking water, on the other hand, have confirmed that just these chemical pollutants are responsible for health risk.Keywords: radiation-hazardous facilities, water intakes, tritium, heavy metal, health risk
Procedia PDF Downloads 24058 Calculation of Pressure-Varying Langmuir and Brunauer-Emmett-Teller Isotherm Adsorption Parameters
Authors: Trevor C. Brown, David J. Miron
Abstract:
Gas-solid physical adsorption methods are central to the characterization and optimization of the effective surface area, pore size and porosity for applications such as heterogeneous catalysis, and gas separation and storage. Properties such as adsorption uptake, capacity, equilibrium constants and Gibbs free energy are dependent on the composition and structure of both the gas and the adsorbent. However, challenges remain, in accurately calculating these properties from experimental data. Gas adsorption experiments involve measuring the amounts of gas adsorbed over a range of pressures under isothermal conditions. Various constant-parameter models, such as Langmuir and Brunauer-Emmett-Teller (BET) theories are used to provide information on adsorbate and adsorbent properties from the isotherm data. These models typically do not provide accurate interpretations across the full range of pressures and temperatures. The Langmuir adsorption isotherm is a simple approximation for modelling equilibrium adsorption data and has been effective in estimating surface areas and catalytic rate laws, particularly for high surface area solids. The Langmuir isotherm assumes the systematic filling of identical adsorption sites to a monolayer coverage. The BET model is based on the Langmuir isotherm and allows for the formation of multiple layers. These additional layers do not interact with the first layer and the energetics are equal to the adsorbate as a bulk liquid. This BET method is widely used to measure the specific surface area of materials. Both Langmuir and BET models assume that the affinity of the gas for all adsorption sites are identical and so the calculated adsorbent uptake at the monolayer and equilibrium constant are independent of coverage and pressure. Accurate representations of adsorption data have been achieved by extending the Langmuir and BET models to include pressure-varying uptake capacities and equilibrium constants. These parameters are determined using a novel regression technique called flexible least squares for time-varying linear regression. For isothermal adsorption the adsorption parameters are assumed to vary slowly and smoothly with increasing pressure. The flexible least squares for pressure-varying linear regression (FLS-PVLR) approach assumes two distinct types of discrepancy terms, dynamic and measurement for all parameters in the linear equation used to simulate the data. Dynamic terms account for pressure variation in successive parameter vectors, and measurement terms account for differences between observed and theoretically predicted outcomes via linear regression. The resultant pressure-varying parameters are optimized by minimizing both dynamic and measurement residual squared errors. Validation of this methodology has been achieved by simulating adsorption data for n-butane and isobutane on activated carbon at 298 K, 323 K and 348 K and for nitrogen on mesoporous alumina at 77 K with pressure-varying Langmuir and BET adsorption parameters (equilibrium constants and uptake capacities). This modeling provides information on the adsorbent (accessible surface area and micropore volume), adsorbate (molecular areas and volumes) and thermodynamic (Gibbs free energies) variations of the adsorption sites.Keywords: Langmuir adsorption isotherm, BET adsorption isotherm, pressure-varying adsorption parameters, adsorbate and adsorbent properties and energetics
Procedia PDF Downloads 234