Search results for: a priori algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3680

Search results for: a priori algorithm

500 Analysing Trends in Rice Cropping Intensity and Seasonality across the Philippines Using 14 Years of Moderate Resolution Remote Sensing Imagery

Authors: Bhogendra Mishra, Andy Nelson, Mirco Boschetti, Lorenzo Busetto, Alice Laborte

Abstract:

Rice is grown on over 100 million hectares in almost every country of Asia. It is the most important staple crop for food security and has high economic and cultural importance in Asian societies. The combination of genetic diversity and management options, coupled with the large geographic extent means that there is a large variation in seasonality (when it is grown) and cropping intensity (how often it is grown per year on the same plot of land), even over relatively small distances. Seasonality and intensity can and do change over time depending on climatic, environmental and economic factors. Detecting where and when these changes happen can provide information to better understand trends in regional and even global rice production. Remote sensing offers a unique opportunity to estimate these trends. We apply the recently published PhenoRice algorithm to 14 years of moderate resolution remote sensing (MODIS) data (utilizing 250m resolution 16 day composites from Terra and Aqua) to estimate seasonality and cropping intensity per year and changes over time. We compare the results to the surveyed data collected by International Rice Research Institute (IRRI). The study results in a unique and validated dataset on the extent and change of extent, the seasonality and change in seasonality and the cropping intensity and change in cropping intensity between 2003 and 2016 for the Philippines. Observed trends and their implications for food security and trade policies are also discussed.

Keywords: rice, cropping intensity, moderate resolution remote sensing (MODIS), phenology, seasonality

Procedia PDF Downloads 311
499 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures

Authors: Milad Abbasi

Abstract:

Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.

Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network

Procedia PDF Downloads 154
498 Suppressing Vibration in a Three-axis Flexible Satellite: An Approach with Composite Control

Authors: Jalal Eddine Benmansour, Khouane Boulanoir, Nacera Bekhadda, Elhassen Benfriha

Abstract:

This paper introduces a novel composite control approach that addresses the challenge of stabilizing the three-axis attitude of a flexible satellite in the presence of vibrations caused by flexible appendages. The key contribution of this research lies in the development of a disturbance observer, which effectively observes and estimates the unwanted torques induced by the vibrations. By utilizing the estimated disturbance, the proposed approach enables efficient compensation for the detrimental effects of vibrations on the satellite system. To govern the attitude angles of the spacecraft, a proportional derivative controller (PD) is specifically designed and proposed. The PD controller ensures precise control over all attitude angles, facilitating stable and accurate spacecraft maneuvering. In order to demonstrate the global stability of the system, the Lyapunov method, a well-established technique in control theory, is employed. Through rigorous analysis, the Lyapunov method verifies the convergence of system dynamics, providing strong evidence of system stability. To evaluate the performance and efficacy of the proposed control algorithm, extensive simulations are conducted. The simulation results validate the effectiveness of the combined approach, showcasing significant improvements in the stabilization and control of the satellite's attitude, even in the presence of disruptive vibrations from flexible appendages. This novel composite control approach presented in this paper contributes to the advancement of satellite attitude control techniques, offering a promising solution for achieving enhanced stability and precision in challenging operational environments.

Keywords: attitude control, flexible satellite, vibration control, disturbance observer

Procedia PDF Downloads 87
497 Harmonic Assessment and Mitigation in Medical Diagonesis Equipment

Authors: S. S. Adamu, H. S. Muhammad, D. S. Shuaibu

Abstract:

Poor power quality in electrical power systems can lead to medical equipment at healthcare centres to malfunction and present wrong medical diagnosis. Equipment such as X-rays, computerized axial tomography, etc. can pollute the system due to their high level of harmonics production, which may cause a number of undesirable effects like heating, equipment damages and electromagnetic interferences. The conventional approach of mitigation uses passive inductor/capacitor (LC) filters, which has some drawbacks such as, large sizes, resonance problems and fixed compensation behaviours. The current trends of solutions generally employ active power filters using suitable control algorithms. This work focuses on assessing the level of Total Harmonic Distortion (THD) on medical facilities and various ways of mitigation, using radiology unit of an existing hospital as a case study. The measurement of the harmonics is conducted with a power quality analyzer at the point of common coupling (PCC). The levels of measured THD are found to be higher than the IEEE 519-1992 standard limits. The system is then modelled as a harmonic current source using MATLAB/SIMULINK. To mitigate the unwanted harmonic currents a shunt active filter is developed using synchronous detection algorithm to extract the fundamental component of the source currents. Fuzzy logic controller is then developed to control the filter. The THD without the active power filter are validated using the measured values. The THD with the developed filter show that the harmonics are now within the recommended limits.

Keywords: power quality, total harmonics distortion, shunt active filters, fuzzy logic

Procedia PDF Downloads 479
496 Research on Level Adjusting Mechanism System of Large Space Environment Simulator

Authors: Han Xiao, Zhang Lei, Huang Hai, Lv Shizeng

Abstract:

Space environment simulator is a device for spacecraft test. KM8 large space environment simulator built in Tianjing Space City is the largest as well as the most advanced space environment simulator in China. Large deviation of spacecraft level will lead to abnormally work of the thermal control device in spacecraft during the thermal vacuum test. In order to avoid thermal vacuum test failure, level adjusting mechanism system is developed in the KM8 large space environment simulator as one of the most important subsystems. According to the level adjusting requirements of spacecraft’s thermal vacuum tests, the four fulcrums adjusting model is established. By means of collecting level instruments and displacement sensors data, stepping motors controlled by PLC drive four supporting legs simultaneous movement. In addition, a PID algorithm is used to control the temperature of supporting legs and level instruments which long time work under the vacuum cold and black environment in KM8 large space environment simulator during thermal vacuum tests. Based on the above methods, the data acquisition and processing, the analysis and calculation, real time adjustment and fault alarming of the level adjusting mechanism system are implemented. The level adjusting accuracy reaches 1mm/m, and carrying capacity is 20 tons. Debugging showed that the level adjusting mechanism system of KM8 large space environment simulator can meet the thermal vacuum test requirement of the new generation spacecraft. The performance and technical indicators of the level adjusting mechanism system which provides important support for the development of spacecraft in China have been ahead of similar equipment in the world.

Keywords: space environment simulator, thermal vacuum test, level adjusting, spacecraft, parallel mechanism

Procedia PDF Downloads 248
495 One Step Further: Pull-Process-Push Data Processing

Authors: Romeo Botes, Imelda Smit

Abstract:

In today’s modern age of technology vast amounts of data needs to be processed in real-time to keep users satisfied. This data comes from various sources and in many formats, including electronic and mobile devices such as GPRS modems and GPS devices. They make use of different protocols including TCP, UDP, and HTTP/s for data communication to web servers and eventually to users. The data obtained from these devices may provide valuable information to users, but are mostly in an unreadable format which needs to be processed to provide information and business intelligence. This data is not always current, it is mostly historical data. The data is not subject to implementation of consistency and redundancy measures as most other data usually is. Most important to the users is that the data are to be pre-processed in a readable format when it is entered into the database. To accomplish this, programmers build processing programs and scripts to decode and process the information stored in databases. Programmers make use of various techniques in such programs to accomplish this, but sometimes neglect the effect some of these techniques may have on database performance. One of the techniques generally used,is to pull data from the database server, process it and push it back to the database server in one single step. Since the processing of the data usually takes some time, it keeps the database busy and locked for the period of time that the processing takes place. Because of this, it decreases the overall performance of the database server and therefore the system’s performance. This paper follows on a paper discussing the performance increase that may be achieved by utilizing array lists along with a pull-process-push data processing technique split in three steps. The purpose of this paper is to expand the number of clients when comparing the two techniques to establish the impact it may have on performance of the CPU storage and processing time.

Keywords: performance measures, algorithm techniques, data processing, push data, process data, array list

Procedia PDF Downloads 245
494 Decision Support System Based On GIS and MCDM to Identify Land Suitability for Agriculture

Authors: Abdelkader Mendas

Abstract:

The integration of MultiCriteria Decision Making (MCDM) approaches in a Geographical Information System (GIS) provides a powerful spatial decision support system which offers the opportunity to efficiently produce the land suitability maps for agriculture. Indeed, GIS is a powerful tool for analyzing spatial data and establishing a process for decision support. Because of their spatial aggregation functions, MCDM methods can facilitate decision making in situations where several solutions are available, various criteria have to be taken into account and decision-makers are in conflict. The parameters and the classification system used in this work are inspired from the FAO (Food and Agriculture Organization) approach dedicated to a sustainable agriculture. A spatial decision support system has been developed for establishing the land suitability map for agriculture. It incorporates the multicriteria analysis method ELECTRE Tri (ELimitation Et Choix Traduisant la REalité) in a GIS within the GIS program package environment. The main purpose of this research is to propose a conceptual and methodological framework for the combination of GIS and multicriteria methods in a single coherent system that takes into account the whole process from the acquisition of spatially referenced data to decision-making. In this context, a spatial decision support system for developing land suitability maps for agriculture has been developed. The algorithm of ELECTRE Tri is incorporated into a GIS environment and added to the other analysis functions of GIS. This approach has been tested on an area in Algeria. A land suitability map for durum wheat has been produced. Through the obtained results, it appears that ELECTRE Tri method, integrated into a GIS, is better suited to the problem of land suitability for agriculture. The coherence of the obtained maps confirms the system effectiveness.

Keywords: multicriteria decision analysis, decision support system, geographical information system, land suitability for agriculture

Procedia PDF Downloads 642
493 Weakly Solving Kalah Game Using Artificial Intelligence and Game Theory

Authors: Hiba El Assibi

Abstract:

This study aims to weakly solve Kalah, a two-player board game, by developing a start-to-finish winning strategy using an optimized Minimax algorithm with Alpha-Beta Pruning. In weakly solving Kalah, our focus is on creating an optimal strategy from the game's beginning rather than analyzing every possible position. The project will explore additional enhancements like symmetry checking and code optimizations to speed up the decision-making process. This approach is expected to give insights into efficient strategy formulation in board games and potentially help create games with a fair distribution of outcomes. Furthermore, this research provides a unique perspective on human versus Artificial Intelligence decision-making in strategic games. By comparing the AI-generated optimal moves with human choices, we can explore how seemingly advantageous moves can, in the long run, be harmful, thereby offering a deeper understanding of strategic thinking and foresight in games. Moreover, this paper discusses the evaluation of our strategy against existing methods, providing insights on performance and computational efficiency. We also discuss the scalability of our approach to the game, considering different board sizes (number of pits and stones) and rules (different variations) and studying how that affects performance and complexity. The findings have potential implications for the development of AI applications in strategic game planning, enhancing our understanding of human cognitive processes in game settings, and offer insights into creating balanced and engaging game experiences.

Keywords: minimax, alpha beta pruning, transposition tables, weakly solving, game theory

Procedia PDF Downloads 55
492 A Context Aware Mobile Learning System with a Cognitive Recommendation Engine

Authors: Jalal Maqbool, Gyu Myoung Lee

Abstract:

Using smart devices for context aware mobile learning is becoming increasingly popular. This has led to mobile learning technology becoming an indispensable part of today’s learning environment and platforms. However, some fundamental issues remain - namely, mobile learning still lacks the ability to truly understand human reaction and user behaviour. This is due to the fact that current mobile learning systems are passive and not aware of learners’ changing contextual situations. They rely on static information about mobile learners. In addition, current mobile learning platforms lack the capability to incorporate dynamic contextual situations into learners’ preferences. Thus, this thesis aims to address these issues highlighted by designing a context aware framework which is able to sense learner’s contextual situations, handle data dynamically, and which can use contextual information to suggest bespoke learning content according to a learner’s preferences. This is to be underpinned by a robust recommendation system, which has the capability to perform these functions, thus providing learners with a truly context-aware mobile learning experience, delivering learning contents using smart devices and adapting to learning preferences as and when it is required. In addition, part of designing an algorithm for the recommendation engine has to be based on learner and application needs, personal characteristics and circumstances, as well as being able to comprehend human cognitive processes which would enable the technology to interact effectively and deliver mobile learning content which is relevant, according to the learner’s contextual situations. The concept of this proposed project is to provide a new method of smart learning, based on a capable recommendation engine for providing an intuitive mobile learning model based on learner actions.

Keywords: aware, context, learning, mobile

Procedia PDF Downloads 245
491 Near Optimal Closed-Loop Guidance Gains Determination for Vector Guidance Law, from Impact Angle Errors and Miss Distance Considerations

Authors: Karthikeyan Kalirajan, Ashok Joshi

Abstract:

An optimization problem is to setup to maximize the terminal kinetic energy of a maneuverable reentry vehicle (MaRV). The target location, the impact angle is given as constraints. The MaRV uses an explicit guidance law called Vector guidance. This law has two gains which are taken as decision variables. The problem is to find the optimal value of these gains which will result in minimum miss distance and impact angle error. Using a simple 3DOF non-rotating flat earth model and Lockheed martin HP-MARV as the reentry vehicle, the nature of solutions of the optimization problem is studied. This is achieved by carrying out a parametric study for a range of closed loop gain values and the corresponding impact angle error and the miss distance values are generated. The results show that there are well defined lower and upper bounds on the gains that result in near optimal terminal guidance solution. It is found from this study, that there exist common permissible regions (values of gains) where all constraints are met. Moreover, the permissible region lies between flat regions and hence the optimization algorithm has to be chosen carefully. It is also found that, only one of the gain values is independent and that the other dependent gain value is related through a simple straight-line expression. Moreover, to reduce the computational burden of finding the optimal value of two gains, a guidance law called Diveline guidance is discussed, which uses single gain. The derivation of the Diveline guidance law from Vector guidance law is discussed in this paper.

Keywords: Marv guidance, reentry trajectory, trajectory optimization, guidance gain selection

Procedia PDF Downloads 429
490 Development of a Geomechanical Risk Assessment Model for Underground Openings

Authors: Ali Mortazavi

Abstract:

The main objective of this research project is to delve into a multitude of geomechanical risks associated with various mining methods employed within the underground mining industry. Controlling geotechnical design parameters and operational factors affecting the selection of suitable mining techniques for a given underground mining condition will be considered from a risk assessment point of view. Important geomechanical challenges will be investigated as appropriate and relevant to the commonly used underground mining methods. Given the complicated nature of rock mass in-situ and complicated boundary conditions and operational complexities associated with various underground mining methods, the selection of a safe and economic mining operation is of paramount significance. Rock failure at varying scales within the underground mining openings is always a threat to mining operations and causes human and capital losses worldwide. Geotechnical design is a major design component of all underground mines and basically dominates the safety of an underground mine. With regard to uncertainties that exist in rock characterization prior to mine development, there are always risks associated with inappropriate design as a function of mining conditions and the selected mining method. Uncertainty often results from the inherent variability of rock masse, which in turn is a function of both geological materials and rock mass in-situ conditions. The focus of this research is on developing a methodology which enables a geomechanical risk assessment of given underground mining conditions. The outcome of this research is a geotechnical risk analysis algorithm, which can be used as an aid in selecting the appropriate mining method as a function of mine design parameters (e.g., rock in-situ properties, design method, governing boundary conditions such as in-situ stress and groundwater, etc.).

Keywords: geomechanical risk assessment, rock mechanics, underground mining, rock engineering

Procedia PDF Downloads 147
489 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks

Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin

Abstract:

Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.

Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network

Procedia PDF Downloads 139
488 Vibration Analysis of Stepped Nanoarches with Defects

Authors: Jaan Lellep, Shahid Mubasshar

Abstract:

A numerical solution is developed for simply supported nanoarches based on the non-local theory of elasticity. The nanoarch under consideration has a step-wise variable cross-section and is weakened by crack-like defects. It is assumed that the cracks are stationary and the mechanical behaviour of the nanoarch can be modeled by Eringen’s non-local theory of elasticity. The physical and thermal properties are sensitive with respect to changes of dimensions in the nano level. The classical theory of elasticity is unable to describe such changes in material properties. This is because, during the development of the classical theory of elasticity, the speculation of molecular objects was avoided. Therefore, the non-local theory of elasticity is applied to study the vibration of nanostructures and it has been accepted by many researchers. In the non-local theory of elasticity, it is assumed that the stress state of the body at a given point depends on the stress state of each point of the structure. However, within the classical theory of elasticity, the stress state of the body depends only on the given point. The system of main equations consists of equilibrium equations, geometrical relations and constitutive equations with boundary and intermediate conditions. The system of equations is solved by using the method of separation of variables. Consequently, the governing differential equations are converted into a system of algebraic equations whose solution exists if the determinant of the coefficients of the matrix vanishes. The influence of cracks and steps on the natural vibration of the nanoarches is prescribed with the aid of additional local compliance at the weakened cross-section. An algorithm to determine the eigenfrequencies of the nanoarches is developed with the help of computer software. The effects of various physical and geometrical parameters are recorded and drawn graphically.

Keywords: crack, nanoarches, natural frequency, step

Procedia PDF Downloads 129
487 Fatigue Life Prediction under Variable Loading Based a Non-Linear Energy Model

Authors: Aid Abdelkrim

Abstract:

A method of fatigue damage accumulation based upon application of energy parameters of the fatigue process is proposed in the paper. Using this model is simple, it has no parameter to be determined, it requires only the knowledge of the curve W–N (W: strain energy density N: number of cycles at failure) determined from the experimental Wöhler curve. To examine the performance of nonlinear models proposed in the estimation of fatigue damage and fatigue life of components under random loading, a batch of specimens made of 6082 T 6 aluminium alloy has been studied and some of the results are reported in the present paper. The paper describes an algorithm and suggests a fatigue cumulative damage model, especially when random loading is considered. This work contains the results of uni-axial random load fatigue tests with different mean and amplitude values performed on 6082T6 aluminium alloy specimens. The proposed model has been formulated to take into account the damage evolution at different load levels and it allows the effect of the loading sequence to be included by means of a recurrence formula derived for multilevel loading, considering complex load sequences. It is concluded that a ‘damaged stress interaction damage rule’ proposed here allows a better fatigue damage prediction than the widely used Palmgren–Miner rule, and a formula derived in random fatigue could be used to predict the fatigue damage and fatigue lifetime very easily. The results obtained by the model are compared with the experimental results and those calculated by the most fatigue damage model used in fatigue (Miner’s model). The comparison shows that the proposed model, presents a good estimation of the experimental results. Moreover, the error is minimized in comparison to the Miner’s model.

Keywords: damage accumulation, energy model, damage indicator, variable loading, random loading

Procedia PDF Downloads 396
486 Peril´s Environment of Energetic Infrastructure Complex System, Modelling by the Crisis Situation Algorithms

Authors: Jiří F. Urbánek, Alena Oulehlová, Hana Malachová, Jiří J. Urbánek Jr.

Abstract:

Crisis situations investigation and modelling are introduced and made within the complex system of energetic critical infrastructure, operating on peril´s environments. Every crisis situations and perils has an origin in the emergency/ crisis event occurrence and they need critical/ crisis interfaces assessment. Here, the emergency events can be expected - then crisis scenarios can be pre-prepared by pertinent organizational crisis management authorities towards their coping; or it may be unexpected - without pre-prepared scenario of event. But the both need operational coping by means of crisis management as well. The operation, forms, characteristics, behaviour and utilization of crisis management have various qualities, depending on real critical infrastructure organization perils, and prevention training processes. An aim is always - better security and continuity of the organization, which successful obtainment needs to find and investigate critical/ crisis zones and functions in critical infrastructure organization models, operating in pertinent perils environment. Our DYVELOP (Dynamic Vector Logistics of Processes) method is disposables for it. Here, it is necessary to derive and create identification algorithm of critical/ crisis interfaces. The locations of critical/ crisis interfaces are the flags of crisis situation in organization of critical infrastructure models. Then, the model of crisis situation will be displayed at real organization of Czech energetic crisis infrastructure subject in real peril environment. These efficient measures are necessary for the infrastructure protection. They will be derived for peril mitigation, crisis situation coping and for environmentally friendly organization survival, continuity and its sustainable development advanced possibilities.

Keywords: algorithms, energetic infrastructure complex system, modelling, peril´s environment

Procedia PDF Downloads 403
485 Exploring Data Stewardship in Fog Networking Using Blockchain Algorithm

Authors: Ruvaitha Banu, Amaladhithyan Krishnamoorthy

Abstract:

IoT networks today solve various consumer problems, from home automation systems to aiding in driving autonomous vehicles with the exploration of multiple devices. For example, in an autonomous vehicle environment, multiple sensors are available on roads to monitor weather and road conditions and interact with each other to aid the vehicle in reaching its destination safely and timely. IoT systems are predominantly dependent on the cloud environment for data storage, and computing needs that result in latency problems. With the advent of Fog networks, some of this storage and computing is pushed to the edge/fog nodes, saving the network bandwidth and reducing the latency proportionally. Managing the data stored in these fog nodes becomes crucial as it might also store sensitive information required for a certain application. Data management in fog nodes is strenuous because Fog networks are dynamic in terms of their availability and hardware capability. It becomes more challenging when the nodes in the network also live a short span, detaching and joining frequently. When an end-user or Fog Node wants to access, read, or write data stored in another Fog Node, then a new protocol becomes necessary to access/manage the data stored in the fog devices as a conventional static way of managing the data doesn’t work in Fog Networks. The proposed solution discusses a protocol that acts by defining sensitivity levels for the data being written and read. Additionally, a distinct data distribution and replication model among the Fog nodes is established to decentralize the access mechanism. In this paper, the proposed model implements stewardship towards the data stored in the Fog node using the application of Reinforcement Learning so that access to the data is determined dynamically based on the requests.

Keywords: IoT, fog networks, data stewardship, dynamic access policy

Procedia PDF Downloads 60
484 Evaluating the Validity of CFD Model of Dispersion in a Complex Urban Geometry Using Two Sets of Experimental Measurements

Authors: Mohammad R. Kavian Nezhad, Carlos F. Lange, Brian A. Fleck

Abstract:

This research presents the validation study of a computational fluid dynamics (CFD) model developed to simulate the scalar dispersion emitted from rooftop sources around the buildings at the University of Alberta North Campus. The ANSYS CFX code was used to perform the numerical simulation of the wind regime and pollutant dispersion by solving the 3D steady Reynolds-averaged Navier-Stokes (RANS) equations on a building-scale high-resolution grid. The validation study was performed in two steps. First, the CFD model performance in 24 cases (eight wind directions and three wind speeds) was evaluated by comparing the predicted flow fields with the available data from the previous measurement campaign designed at the North Campus, using the standard deviation method (SDM), while the estimated results of the numerical model showed maximum average percent errors of approximately 53% and 37% for wind incidents from the North and Northwest, respectively. Good agreement with the measurements was observed for the other six directions, with an average error of less than 30%. In the second step, the reliability of the implemented turbulence model, numerical algorithm, modeling techniques, and the grid generation scheme was further evaluated using the Mock Urban Setting Test (MUST) dispersion dataset. Different statistical measures, including the fractional bias (FB), the geometric mean bias (MG), and the normalized mean square error (NMSE), were used to assess the accuracy of the predicted dispersion field. Our CFD results are in very good agreement with the field measurements.

Keywords: CFD, plume dispersion, complex urban geometry, validation study, wind flow

Procedia PDF Downloads 137
483 Numerical Simulations of Acoustic Imaging in Hydrodynamic Tunnel with Model Adaptation and Boundary Layer Noise Reduction

Authors: Sylvain Amailland, Jean-Hugh Thomas, Charles Pézerat, Romuald Boucheron, Jean-Claude Pascal

Abstract:

The noise requirements for naval and research vessels have seen an increasing demand for quieter ships in order to fulfil current regulations and to reduce the effects on marine life. Hence, new methods dedicated to the characterization of propeller noise, which is the main source of noise in the far-field, are needed. The study of cavitating propellers in closed-section is interesting for analyzing hydrodynamic performance but could involve significant difficulties for hydroacoustic study, especially due to reverberation and boundary layer noise in the tunnel. The aim of this paper is to present a numerical methodology for the identification of hydroacoustic sources on marine propellers using hydrophone arrays in a large hydrodynamic tunnel. The main difficulties are linked to the reverberation of the tunnel and the boundary layer noise that strongly reduce the signal-to-noise ratio. In this paper it is proposed to estimate the reflection coefficients using an inverse method and some reference transfer functions measured in the tunnel. This approach allows to reduce the uncertainties of the propagation model used in the inverse problem. In order to reduce the boundary layer noise, a cleaning algorithm taking advantage of the low rank and sparse structure of the cross-spectrum matrices of the acoustic and the boundary layer noise is presented. This approach allows to recover the acoustic signal even well under the boundary layer noise. The improvement brought by this method is visible on acoustic maps resulting from beamforming and DAMAS algorithms.

Keywords: acoustic imaging, boundary layer noise denoising, inverse problems, model adaptation

Procedia PDF Downloads 336
482 Clustering for Detection of the Population at Risk of Anticholinergic Medication

Authors: A. Shirazibeheshti, T. Radwan, A. Ettefaghian, G. Wilson, C. Luca, Farbod Khanizadeh

Abstract:

Anticholinergic medication has been associated with events such as falls, delirium, and cognitive impairment in older patients. To further assess this, anticholinergic burden scores have been developed to quantify risk. A risk model based on clustering was deployed in a healthcare management system to cluster patients into multiple risk groups according to anticholinergic burden scores of multiple medicines prescribed to patients to facilitate clinical decision-making. To do so, anticholinergic burden scores of drugs were extracted from the literature, which categorizes the risk on a scale of 1 to 3. Given the patients’ prescription data on the healthcare database, a weighted anticholinergic risk score was derived per patient based on the prescription of multiple anticholinergic drugs. This study was conducted on over 300,000 records of patients currently registered with a major regional UK-based healthcare provider. The weighted risk scores were used as inputs to an unsupervised learning algorithm (mean-shift clustering) that groups patients into clusters that represent different levels of anticholinergic risk. To further evaluate the performance of the model, any association between the average risk score within each group and other factors such as socioeconomic status (i.e., Index of Multiple Deprivation) and an index of health and disability were investigated. The clustering identifies a group of 15 patients at the highest risk from multiple anticholinergic medication. Our findings also show that this group of patients is located within more deprived areas of London compared to the population of other risk groups. Furthermore, the prescription of anticholinergic medicines is more skewed to female than male patients, indicating that females are more at risk from this kind of multiple medications. The risk may be monitored and controlled in well artificial intelligence-equipped healthcare management systems.

Keywords: anticholinergic medicines, clustering, deprivation, socioeconomic status

Procedia PDF Downloads 212
481 Exploring the Role of Data Mining in Crime Classification: A Systematic Literature Review

Authors: Faisal Muhibuddin, Ani Dijah Rahajoe

Abstract:

This in-depth exploration, through a systematic literature review, scrutinizes the nuanced role of data mining in the classification of criminal activities. The research focuses on investigating various methodological aspects and recent developments in leveraging data mining techniques to enhance the effectiveness and precision of crime categorization. Commencing with an exposition of the foundational concepts of crime classification and its evolutionary dynamics, this study details the paradigm shift from conventional methods towards approaches supported by data mining, addressing the challenges and complexities inherent in the modern crime landscape. Specifically, the research delves into various data mining techniques, including K-means clustering, Naïve Bayes, K-nearest neighbour, and clustering methods. A comprehensive review of the strengths and limitations of each technique provides insights into their respective contributions to improving crime classification models. The integration of diverse data sources takes centre stage in this research. A detailed analysis explores how the amalgamation of structured data (such as criminal records) and unstructured data (such as social media) can offer a holistic understanding of crime, enriching classification models with more profound insights. Furthermore, the study explores the temporal implications in crime classification, emphasizing the significance of considering temporal factors to comprehend long-term trends and seasonality. The availability of real-time data is also elucidated as a crucial element in enhancing responsiveness and accuracy in crime classification.

Keywords: data mining, classification algorithm, naïve bayes, k-means clustering, k-nearest neigbhor, crime, data analysis, sistematic literature review

Procedia PDF Downloads 68
480 Forecasting Nokoué Lake Water Levels Using Long Short-Term Memory Network

Authors: Namwinwelbere Dabire, Eugene C. Ezin, Adandedji M. Firmin

Abstract:

The prediction of hydrological flows (rainfall-depth or rainfall-discharge) is becoming increasingly important in the management of hydrological risks such as floods. In this study, the Long Short-Term Memory (LSTM) network, a state-of-the-art algorithm dedicated to time series, is applied to predict the daily water level of Nokoue Lake in Benin. This paper aims to provide an effective and reliable method enable of reproducing the future daily water level of Nokoue Lake, which is influenced by a combination of two phenomena: rainfall and river flow (runoff from the Ouémé River, the Sô River, the Porto-Novo lagoon, and the Atlantic Ocean). Performance analysis based on the forecasting horizon indicates that LSTM can predict the water level of Nokoué Lake up to a forecast horizon of t+10 days. Performance metrics such as Root Mean Square Error (RMSE), coefficient of correlation (R²), Nash-Sutcliffe Efficiency (NSE), and Mean Absolute Error (MAE) agree on a forecast horizon of up to t+3 days. The values of these metrics remain stable for forecast horizons of t+1 days, t+2 days, and t+3 days. The values of R² and NSE are greater than 0.97 during the training and testing phases in the Nokoué Lake basin. Based on the evaluation indices used to assess the model's performance for the appropriate forecast horizon of water level in the Nokoué Lake basin, the forecast horizon of t+3 days is chosen for predicting future daily water levels.

Keywords: forecasting, long short-term memory cell, recurrent artificial neural network, Nokoué lake

Procedia PDF Downloads 64
479 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based on Li-Ion Battery and Solar Energy Supply

Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan

Abstract:

Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries. In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.

Keywords: ZigBee, Li-ion battery, solar panel, CC2530

Procedia PDF Downloads 376
478 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease

Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani

Abstract:

Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.

Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence

Procedia PDF Downloads 22
477 Lamb Waves Wireless Communication in Healthy Plates Using Coherent Demodulation

Authors: Rudy Bahouth, Farouk Benmeddour, Emmanuel Moulin, Jamal Assaad

Abstract:

Guided ultrasonic waves are used in Non-Destructive Testing (NDT) and Structural Health Monitoring (SHM) for inspection and damage detection. Recently, wireless data transmission using ultrasonic waves in solid metallic channels has gained popularity in some industrial applications such as nuclear, aerospace and smart vehicles. The idea is to find a good substitute for electromagnetic waves since they are highly attenuated near metallic components due to Faraday shielding. The proposed solution is to use ultrasonic guided waves such as Lamb waves as an information carrier due to their capability of propagation for long distances. In addition to this, valuable information about the health of the structure could be extracted simultaneously. In this work, the reliable frequency bandwidth for communication is extracted experimentally from dispersion curves at first. Then, an experimental platform for wireless communication using Lamb waves is described and built. After this, coherent demodulation algorithm used in telecommunications is tested for Amplitude Shift Keying, On-Off Keying and Binary Phase Shift Keying modulation techniques. Signal processing parameters such as threshold choice, number of cycles per bit and Bit Rate are optimized. Experimental results are compared based on the average Bit Error Rate. Results have shown high sensitivity to threshold selection for Amplitude Shift Keying and On-Off Keying techniques resulting a Bit Rate decrease. Binary Phase Shift Keying technique shows the highest stability and data rate between all tested modulation techniques.

Keywords: lamb waves communication, wireless communication, coherent demodulation, bit error rate

Procedia PDF Downloads 263
476 HLA-DPB1 Matching on the Outcome of Unrelated Donor Hematopoietic Stem Cell Transplantation

Authors: Shi-xia Xu, Zai-wen Zhang, Ru-xue Chen, Shan Zhou, Xiang-feng Tang

Abstract:

Objective: The clinical influence of HLA-DPB1 mismatches on clinical outcome of HSCT is less clear. This is the first meta-analysis to study the HLA-DPB1 matching statues on clinical outcomes after unrelated donor HSCT. Methods: We searched the CIBMTR, Cochrane Central Register of Controlled Trials (CENTRAL) and related databases (1995.01–2017.06) for all relevant articles. Comparative studies were used to investigate the HLA-DPB1 loci mismatches on clinical outcomes after unrelated donor HSCT, such as the disease-free survival (DFS), overall survival, GVHD, relapse, and transplant-related mortality (TRM). We performed meta-analysis using Review Manager 5.2 software and funnel plot to assess the bias. Results: At first, 1246 articles were retrieved, and 18 studies totaling 26368 patients analyzed. Pooled comparisons of studies found that the HLA-DPB1 mismatched group had a lower rate of DFS than the DPB1-matched group, and lower OS in non-T cell depleted transplantation. The DPB1 mismatched group has a higher incidence of aGVHD and more severe ( ≥ III degree) aGvHD, lower rate of relapse and higher TRM. Moreover, compared with 1-antigen mismatch, 2-antigen mismatched led to a higher risk of TRM and lower relapse rate. Conclusions: This meta-analysis indicated HLA-DPB1 has important influence on survival and transplant-related complications during unrelated donor HSCT and HLA-DPB1 donor selection strategies have been proposed based on a personalized algorithm.

Keywords: human leukocyte antigen, DPB1, transplant, meta-analysis, outcome

Procedia PDF Downloads 298
475 Loading and Unloading Scheduling Problem in a Multiple-Multiple Logistics Network: Modelling and Solving

Authors: Yasin Tadayonrad

Abstract:

Most of the supply chain networks have many nodes starting from the suppliers’ side up to the customers’ side that each node sends/receives the raw materials/products from/to the other nodes. One of the major concerns in this kind of supply chain network is finding the best schedule for loading /unloading the shipments through the whole network by which all the constraints in the source and destination nodes are met and all the shipments are delivered on time. One of the main constraints in this problem is loading/unloading capacity in each source/ destination node at each time slot (e.g., per week/day/hour). Because of the different characteristics of different products/groups of products, the capacity of each node might differ based on each group of products. In most supply chain networks (especially in the Fast-moving consumer goods industry), there are different planners/planning teams working separately in different nodes to determine the loading/unloading timeslots in source/destination nodes to send/receive the shipments. In this paper, a mathematical problem has been proposed to find the best timeslots for loading/unloading the shipments minimizing the overall delays subject to respecting the capacity of loading/unloading of each node, the required delivery date of each shipment (considering the lead-times), and working-days of each node. This model was implemented on python and solved using Python-MIP on a sample data set. Finally, the idea of a heuristic algorithm has been proposed as a way of improving the solution method that helps to implement the model on larger data sets in real business cases, including more nodes and shipments.

Keywords: supply chain management, transportation, multiple-multiple network, timeslots management, mathematical modeling, mixed integer programming

Procedia PDF Downloads 92
474 A Real-Time Moving Object Detection and Tracking Scheme and Its Implementation for Video Surveillance System

Authors: Mulugeta K. Tefera, Xiaolong Yang, Jian Liu

Abstract:

Detection and tracking of moving objects are very important in many application contexts such as detection and recognition of people, visual surveillance and automatic generation of video effect and so on. However, the task of detecting a real shape of an object in motion becomes tricky due to various challenges like dynamic scene changes, presence of shadow, and illumination variations due to light switch. For such systems, once the moving object is detected, tracking is also a crucial step for those applications that used in military defense, video surveillance, human computer interaction, and medical diagnostics as well as in commercial fields such as video games. In this paper, an object presents in dynamic background is detected using adaptive mixture of Gaussian based analysis of the video sequences. Then the detected moving object is tracked using the region based moving object tracking and inter-frame differential mechanisms to address the partial overlapping and occlusion problems. Firstly, the detection algorithm effectively detects and extracts the moving object target by enhancing and post processing morphological operations. Secondly, the extracted object uses region based moving object tracking and inter-frame difference to improve the tracking speed of real-time moving objects in different video frames. Finally, the plotting method was applied to detect the moving objects effectively and describes the object’s motion being tracked. The experiment has been performed on image sequences acquired both indoor and outdoor environments and one stationary and web camera has been used.

Keywords: background modeling, Gaussian mixture model, inter-frame difference, object detection and tracking, video surveillance

Procedia PDF Downloads 477
473 Predicting Emerging Agricultural Investment Opportunities: The Potential of Structural Evolution Index

Authors: Kwaku Damoah

Abstract:

The agricultural sector is characterized by continuous transformation, driven by factors such as demographic shifts, evolving consumer preferences, climate change, and migration trends. This dynamic environment presents complex challenges for key stakeholders including farmers, governments, and investors, who must navigate these changes to achieve optimal investment returns. To effectively predict market trends and uncover promising investment opportunities, a systematic, data-driven approach is essential. This paper introduces the Structural Evolution Index (SEI), a machine learning-based methodology. SEI is specifically designed to analyse long-term trends and forecast the potential of emerging agricultural products for investment. Versatile in application, it evaluates various agricultural metrics such as production, yield, trade, land use, and consumption, providing a comprehensive view of the evolution within agricultural markets. By harnessing data from the UN Food and Agricultural Organisation (FAOSTAT), this study demonstrates the SEI's capabilities through Comparative Exploratory Analysis and evaluation of international trade in agricultural products, focusing on Malaysia and Singapore. The SEI methodology reveals intricate patterns and transitions within the agricultural sector, enabling stakeholders to strategically identify and capitalize on emerging markets. This predictive framework is a powerful tool for decision-makers, offering crucial insights that help anticipate market shifts and align investments with anticipated returns.

Keywords: agricultural investment, algorithm, comparative exploratory analytics, machine learning, market trends, predictive analytics, structural evolution index

Procedia PDF Downloads 63
472 Anti-Forensic Countermeasure: An Examination and Analysis Extended Procedure for Information Hiding of Android SMS Encryption Applications

Authors: Ariq Bani Hardi

Abstract:

Empowerment of smartphone technology is growing very rapidly in various fields of science. One of the mobile operating systems that dominate the smartphone market today is Android by Google. Unfortunately, the expansion of mobile technology is misused by criminals to hide the information that they store or exchange with each other. It makes law enforcement more difficult to prove crimes committed in the judicial process (anti-forensic). One of technique that used to hide the information is encryption, such as the usages of SMS encryption applications. A Mobile Forensic Examiner or an investigator should prepare a countermeasure technique if he finds such things during the investigation process. This paper will discuss an extension procedure if the investigator found unreadable SMS in android evidence because of encryption. To define the extended procedure, we create and analyzing a dataset of android SMS encryption application. The dataset was grouped by application characteristics related to communication permissions, as well as the availability of source code and the documentation of encryption scheme. Permissions indicate the possibility of how applications exchange the data and keys. Availability of the source code and the encryption scheme documentation can show what the cryptographic algorithm specification is used, how long the key length, how the process of key generation, key exchanges, encryption/decryption is done, and other related information. The output of this paper is an extended or alternative procedure for examination and analysis process of android digital forensic. It can be used to help the investigators while they got a confused cause of SMS encryption during examining and analyzing. What steps should the investigator take, so they still have a chance to discover the encrypted SMS in android evidence?

Keywords: anti-forensic countermeasure, SMS encryption android, examination and analysis, digital forensic

Procedia PDF Downloads 128
471 A Hybrid Energy Storage Module for the Emergency Energy System of the Community Shelter in Yucatán, México

Authors: María Reveles-Miranda, Daniella Pacheco-Catalán

Abstract:

Sierra Papacal commissary is located north of Merida, Yucatan, México, where the indigenous Maya population predominates. Due to its location, the region has an elevation of fewer than 4.5 meters above sea level, with a high risk of flooding associated with storms and hurricanes and a high vulnerability of infrastructure and housing in the presence of strong gusts of wind. In environmental contingencies, the challenge is providing an autonomous electrical supply using renewable energy sources that cover vulnerable populations' health, food, and water pumping needs. To address this challenge, a hybrid energy storage module is proposed for the emergency photovoltaic (PV) system of the community shelter in Sierra Papacal, Yucatán, which combines high-energy-density batteries and high-power-density supercapacitors (SC) in a single module, providing a quick response to energy demand, reducing the thermal stress on batteries and extending their useful life. Incorporating SC in energy storage modules can provide fast response times to power variations and balanced energy extraction, ensuring a more extended period of electrical supply to vulnerable populations during contingencies. The implemented control strategy increases the module's overall performance by ensuring the optimal use of devices and balanced energy exploitation. The operation of the module with the control algorithm is validated with MATLAB/Simulink® and experimental tests.

Keywords: batteries, community shelter, environmental contingencies, hybrid energy storage, isolated photovoltaic system, supercapacitors

Procedia PDF Downloads 92