Search results for: project classification
3930 Management of Nutrition Education in Spa Resorts in Poland
Authors: Joanna Wozniak-Holecka, Sylwia Jaruga-Sekowska
Abstract:
There are 45 statutory spa and treatment areas in Poland, and the demand for spa and treatment services increases year by year. Within each type of spa treatment facilities, nutritional education services are provided. During spa treatment, the patient learns the principles of rational nutrition and applied diet therapy. It should help him develop proper eating habits, which will also follow at home. However, the nutrition education system of spa resort patients should be considered as very imperfect and requiring a definite systemic correction. It has, at the same time, a wide human and infrastructure base, which guarantees to obtain positive reinforcement in the scope of undertaken activities and management. Unfortunately, this advantage is not fully used. The aim of the project was to assess the quality of implemented nutritional education and to assess the diet of patients in spa treatment entities from a nationwide perspective. The material for the study was data obtained as part of an in-depth interview conducted among nutrition department managers (25 interviews) and a survey addressed to patients (600 questionnaires) of a selected group of spa resorts from across the country about the implementation of nutritional education in institutions. Also, decade menus for the basic diet, easily digestible diet and diet with limitation of easily digestible carbohydrates (a total of 1,120 menus) were obtained for the study. Almost 2/3 of respondents (73.2%) were overweight or obese, but only 32.8% decided on an easily digestible or low-energy diet during the treatment. Most of the surveyed patients rated the nutrition in spa resorts as satisfactory. Classes on nutrition education were carried out mainly by a dietitian (65% of meetings), the other educators were doctors and nurses. The meetings (95%) were of a group nature and lasted only 30 minutes on average. The subjects of the classes concerned the principles of proper nutrition and composition of meals, a nutrition pyramid and a diet adapted to a given disease. The assessed menus did not meet the nutrition standards and, therefore, did not provide patients with the correct quality of nutrition. The norm of protein, fat, vitamin A, B12, phosphorus, iron and sodium was exceeded, while vitamin D, folic acid, magnesium and zinc were not enough than recommended. The study allowed to conclude that there is a large discrepancy between the recommendations presented during the nutrition education classes and the quality of diet implemented in the examined institutions. The project may contribute to the development of effective educational tools in nutrition, especially about a specific group of chronically ill patients.Keywords: diet, management, nutritional education, spa resort
Procedia PDF Downloads 1443929 Adaptation to the Current Health Situation as a Determinant of Adherence in Pre - and Senior Age People
Authors: Mariola Głowacka
Abstract:
The aim of the study was to determine the level of adaptation to the current health situation and its impact on the adherence state of people in the pre- and senior age. The work covers the results of the first of the fourteen parts of the study conducted in a group of 2,000 people aged 55 plus. This part of the project was carried out with the use of two standardized tools: the HLC adaptation scale (the health locus of control scale and The Adherence in Chronic DiseasesScale (ACDS). The obtained results showed the range of influence of particular areas of self-acceptance of the health state (health and disease) on their adherence, taking into account specific clinical conditions.Keywords: adaptation to the current health situation, adherence, senior, badania
Procedia PDF Downloads 1023928 Numerical Simulation of the Remaining Life of Ramshir Bridge over the Karoon River
Authors: M. Jalali Azizpour, V.Tavvaf, E. Akhlaghi, H. Mohammadi Majd, A. Shirani, S. M. Moravvej, M. Kazemi, A. R. Aboudi Asl, A. Jaderi
Abstract:
The static and corrosion behavior of the bridge using for pipelines in the south of country have been evaluated. The bridge was constructed more than 40 years ago on the Karoon River. Mentioned bridge is located in Khuzestan province and at a distance of 15 km east from the suburbs of Ahwaz. In order to determine the mechanical properties, the experimental tools such as measuring the thickness and static simulations based on the actual load were used. In addition, the metallurgical studies were used to achieve a rate of corrosion of pipes in the river and in the river bed. The aim of this project is to determine the remaining life of the bridge using mechanical and metallurgical studies.Keywords: FEM, stress, corrosion, bridge
Procedia PDF Downloads 4753927 Enhancing the Recruitment Process through Machine Learning: An Automated CV Screening System
Authors: Kaoutar Ben Azzou, Hanaa Talei
Abstract:
Human resources is an important department in each organization as it manages the life cycle of employees from recruitment training to retirement or termination of contracts. The recruitment process starts with a job opening, followed by a selection of the best-fit candidates from all applicants. Matching the best profile for a job position requires a manual way of looking at many CVs, which requires hours of work that can sometimes lead to choosing not the best profile. The work presented in this paper aims at reducing the workload of HR personnel by automating the preliminary stages of the candidate screening process, thereby fostering a more streamlined recruitment workflow. This tool introduces an automated system designed to help with the recruitment process by scanning candidates' CVs, extracting pertinent features, and employing machine learning algorithms to decide the most fitting job profile for each candidate. Our work employs natural language processing (NLP) techniques to identify and extract key features from unstructured text extracted from a CV, such as education, work experience, and skills. Subsequently, the system utilizes these features to match candidates with job profiles, leveraging the power of classification algorithms.Keywords: automated recruitment, candidate screening, machine learning, human resources management
Procedia PDF Downloads 563926 Performance Measurement of Logistics Systems for Thailand's Wholesales and Retails Industries by Data Envelopment Analysis
Authors: Pornpimol Chaiwuttisak
Abstract:
The study aims to compare the performance of the logistics for Thailand’s wholesale and retail trade industries (except motor vehicles, motorcycle, and stalls) by using data (data envelopment analysis). Thailand Standard Industrial Classification in 2009 (TSIC - 2009) categories that industries into sub-group no. 45: wholesale and retail trade (except for the repair of motor vehicles and motorcycles), sub-group no. 46: wholesale trade (except motor vehicles and motorcycles), and sub-group no. 47: retail trade (except motor vehicles and motorcycles. Data used in the study is collected by the National Statistical Office, Thailand. The study consisted of four input factors include the number of companies, the number of personnel in logistics, the training cost in logistics, and outsourcing logistics management. Output factor includes the percentage of enterprises having inventory management. The results showed that the average relative efficiency of small-sized enterprises equals to 27.87 percent and 49.68 percent for the medium-sized enterprises.Keywords: DEA, wholesales and retails, logistics, Thailand
Procedia PDF Downloads 4163925 Image Segmentation: New Methods
Authors: Flaurence Benjamain, Michel Casperance
Abstract:
We present in this paper, first, a comparative study of three mathematical theories to achieve the fusion of information sources. This study aims to identify the characteristics inherent in theories of possibilities, belief functions (DST) and plausible and paradoxical reasoning to establish a strategy of choice that allows us to adopt the most appropriate theory to solve a problem of fusion in order, taking into account the acquired information and imperfections that accompany them. Using the new theory of plausible and paradoxical reasoning, also called Dezert-Smarandache Theory (DSmT), to fuse information multi-sources needs, at first step, the generation of the composites events witch is, in general, difficult. Thus, we present in this paper a new approach to construct pertinent paradoxical classes based on gray levels histograms, which also allows to reduce the cardinality of the hyper-powerset. Secondly, we developed a new technique for order and coding generalized focal elements. This method is exploited, in particular, to calculate the cardinality of Dezert and Smarandache. Then, we give an experimentation of classification of a remote sensing image that illustrates the given methods and we compared the result obtained by the DSmT with that resulting from the use of the DST and theory of possibilities.Keywords: segmentation, image, approach, vision computing
Procedia PDF Downloads 2763924 Mixotrophic Growth as a Tool for Increasing Polyhydroxyalkanoates (PHA) Production in Cyanobacteria
Authors: Zuzana Sedrlova, Eva Slaninova, Ines Fritz, Christina Daffert, Stanislav Obruca
Abstract:
Cyanobacteria are ecologically extremely important phototrophic gram-negative bacteria capable of oxygenic photosynthesis. They synthesize many interesting metabolites such as glycogen, carotenoids, but the most interesting metabolites are polyhydroxyalkanoates (PHA). The main advantage of cyanobacteria is the fact they do not require costly organic substrate and, oppositely, cyanobacteria can fix CO₂. PHA serves primarily as a carbon and energy source and occurs in the form of intracellular granules in bacterial cells. It is possible, PHA helps cyanobacteria to survive stress conditions since increased PHA synthesis was observed during cultivation in stress conditions. PHA is microbial biopolymers that are biodegradable with similar properties as petrochemical synthetic plastics. Production of PHA by heterotrophic bacteria is expensive; for price reduction waste materials as input, materials are used. Positively, cyanobacteria principally do not require organic carbon substrate since they are capable of CO₂ fixation. In this work, we demonstrated that stress conditions lead to the highest obtained yields of PHA in cyanobacterial cultures. Two cyanobacterial cultures from genera Synechocystis were used in this work. Cultivations were performed either in Erlenmayer flask or in tube multicultivator. Multiple stressors were applied on cyanobacterial cultures, and stressors include PHA precursors. PHA precursors are chemical substances and some of them do not occur naturally in the environment. Cultivation with the same PHA precursors in the same concentration led to a 1,6x higher amount of PHA when a multicultivator was used. The highest amount of PHA reached 25 % of PHA in dry cyanobacterial biomass. Both strains are capable of co-polymer synthesis in the presence of their structural precursor. The composition of co-polymer differs in Synechocystis sp. PCC 6803 and Synechocystis salina CCALA 192. Synechocystis sp. PCC 6803 cultivated with γ-butyrolakton accumulated co-polymer of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) the composition of the copolymer was 56 % of 4HB and 44 % of 3HB. The total amount of PHA, as well as yield of biomass, was lower than in control due to the toxic properties of γ-butyrolakton. Funding: This study was partly funded by the project GA19- 19-29651L of the Czech Science Foundation (GACR) and partly funded by the Austrian Science Fund (FWF), a project I 4082-B25. This work was supported by Brno, Ph.D. Talent – Funded by the Brno City Municipality.Keywords: co-polymer, cyanobacteria, PHA, synechocystis
Procedia PDF Downloads 2023923 Design an Development of an Agorithm for Prioritizing the Test Cases Using Neural Network as Classifier
Authors: Amit Verma, Simranjeet Kaur, Sandeep Kaur
Abstract:
Test Case Prioritization (TCP) has gained wide spread acceptance as it often results in good quality software free from defects. Due to the increase in rate of faults in software traditional techniques for prioritization results in increased cost and time. Main challenge in TCP is difficulty in manually validate the priorities of different test cases due to large size of test suites and no more emphasis are made to make the TCP process automate. The objective of this paper is to detect the priorities of different test cases using an artificial neural network which helps to predict the correct priorities with the help of back propagation algorithm. In our proposed work one such method is implemented in which priorities are assigned to different test cases based on their frequency. After assigning the priorities ANN predicts whether correct priority is assigned to every test case or not otherwise it generates the interrupt when wrong priority is assigned. In order to classify the different priority test cases classifiers are used. Proposed algorithm is very effective as it reduces the complexity with robust efficiency and makes the process automated to prioritize the test cases.Keywords: test case prioritization, classification, artificial neural networks, TF-IDF
Procedia PDF Downloads 3973922 A Preliminary Study of the Subcontractor Evaluation System for the International Construction Market
Authors: Hochan Seok, Woosik Jang, Seung-Heon Han
Abstract:
The stagnant global construction market has intensified competition since 2008 among firms that aim to win overseas contracts. Against this backdrop, subcontractor selection is identified as one of the most critical success factors in overseas construction project. However, it is difficult to select qualified subcontractors due to the lack of evaluation standards and reliability. This study aims to identify the problems associated with existing subcontractor evaluations using a correlations analysis and a multiple regression analysis with pre-qualification and performance evaluation of 121 firms in six countries.Keywords: subcontractor evaluation system, pre-qualification, performance evaluation, correlation analysis, multiple regression analysis
Procedia PDF Downloads 3693921 Polarity Classification of Social Media Comments in Turkish
Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras
Abstract:
People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews
Procedia PDF Downloads 1463920 Investigating the Role of Supplier Involvement in the Design Process as an Approach for Enhancing Building Maintainability
Authors: Kamal Ahmed, Othman Ayman, Refat Mostafa
Abstract:
The post-construction phase represents a critical milestone in the project lifecycle. This is because design errors and omissions, as well as construction defects, are examined during this phase. The traditional procurement approaches that are commonly adopted in construction projects separate design from construction, which ultimately inhibits contractors, suppliers and other parties from providing the design team with constructive comments and feedback to improve the project design. As a result, a lack of considering maintainability aspects during the design process results in increasing maintenance and operation costs as well as reducing building performance. This research aims to investigate the role of Early Supplier Involvement (ESI) in the design process as an approach to enhancing building maintainability. In order to achieve this aim, a research methodology consisting of a literature review, case studies and a survey questionnaire was designed to accomplish four objectives. Firstly, a literature review was used to examine the concepts of building maintenance, maintainability, the design process and ESI. Secondly, three case studies were presented and analyzed to investigate the role of ESI in enhancing building maintainability during the design process. Thirdly, a survey questionnaire was conducted with a representative sample of Architectural Design Firms (ADFs) in Egypt to investigate their perception and application of ESI towards enhancing building maintainability during the design process. Finally, the research developed a framework to facilitate ESI in the design process in ADFs in Egypt. Data analysis showed that the ‘Difficulty of trusting external parties and sharing information with transparency’ was ranked the highest challenge of ESI in ADFs in Egypt, followed by ‘Legal competitive advantage restrictions’. Moreover, ‘Better estimation for operation and maintenance costs’ was ranked the highest contribution of ESI towards enhancing building maintainability, followed by ‘Reduce the number of operation and maintenance problems or reworks’. Finally, ‘Innovation, technical expertise, and competence’ was ranked the highest supplier’s selection criteria, while ‘paying consultation fees for offering advice and recommendations to the design team’ was ranked the highest form of supplier’s remuneration. The proposed framework represents a synthesis that is creative in thought and adds value to the knowledge in a manner that has not previously occurred.Keywords: maintenance, building maintainability, building life cycle cost (ICC), material supplier
Procedia PDF Downloads 473919 Hyperspectral Mapping Methods for Differentiating Mangrove Species along Karachi Coast
Authors: Sher Muhammad, Mirza Muhammad Waqar
Abstract:
It is necessary to monitor and identify mangroves types and spatial extent near coastal areas because it plays an important role in coastal ecosystem and environmental protection. This research aims at identifying and mapping mangroves types along Karachi coast ranging from 24.79 to 24.85 degree in latitude and 66.91 to 66.97 degree in longitude using hyperspectral remote sensing data and techniques. Image acquired during February, 2012 through Hyperion sensor have been used for this research. Image preprocessing includes geometric and radiometric correction followed by Minimum Noise Fraction (MNF) and Pixel Purity Index (PPI). The output of MNF and PPI has been analyzed by visualizing it in n-dimensions for end-member extraction. Well-distributed clusters on the n-dimensional scatter plot have been selected with the region of interest (ROI) tool as end members. These end members have been used as an input for classification techniques applied to identify and map mangroves species including Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF), and Spectral Information Diversion (SID). Only two types of mangroves namely Avicennia Marina (white mangroves) and Avicennia Germinans (black mangroves) have been observed throughout the study area.Keywords: mangrove, hyperspectral, hyperion, SAM, SFF, SID
Procedia PDF Downloads 3623918 Land Suitability Analysis for Maize Production in Egbeda Local Government Area of Oyo State Using GIS Techniques
Authors: Abegunde Linda, Adedeji Oluwatayo, Tope-Ajayi Opeyemi
Abstract:
Maize constitutes a major agrarian production for use by the vast population but despite its economic importance, it has not been produced to meet the economic needs of the country. Achieving optimum yield in maize can meaningfully be supported by land suitability analysis in order to guarantee self-sufficiency for future production optimization. This study examines land suitability for maize production through the analysis of the physic-chemical variations in soil properties over space using a Geographic Information System (GIS) framework. Physic-chemical parameters of importance selected include slope, landuse, and physical and chemical properties of the soil. Landsat imagery was used to categorize the landuse, Shuttle Radar Topographic Mapping (SRTM) generated the slope and soil samples were analyzed for its physical and chemical components. Suitability was categorized into highly, moderately and marginally suitable based on Food and Agricultural Organisation (FAO) classification using the Analytical Hierarchy Process (AHP) technique of GIS. This result can be used by small scale farmers for efficient decision making in the allocation of land for maize production.Keywords: AHP, GIS, MCE, suitability, Zea mays
Procedia PDF Downloads 3963917 Grammatical and Lexical Cohesion in the Japan’s Prime Minister Shinzo Abe’s Speech Text ‘Nihon wa Modottekimashita’
Authors: Nadya Inda Syartanti
Abstract:
This research aims to identify, classify, and analyze descriptively the aspects of grammatical and lexical cohesion in the speech text of Japan’s Prime Minister Shinzo Abe entitled Nihon wa Modotte kimashita delivered in Washington DC, the United States on February 23, 2013, as a research data source. The method used is qualitative research, which uses descriptions through words that are applied by analyzing aspects of grammatical and lexical cohesion proposed by Halliday and Hasan (1976). The aspects of grammatical cohesion consist of references (personal, demonstrative, interrogative pronouns), substitution, ellipsis, and conjunction. In contrast, lexical cohesion consists of reiteration (repetition, synonym, antonym, hyponym, meronym) and collocation. Data classification is based on the 6 aspects of the cohesion. Through some aspects of cohesion, this research tries to find out the frequency of using grammatical and lexical cohesion in Shinzo Abe's speech text entitled Nihon wa Modotte kimashita. The results of this research are expected to help overcome the difficulty of understanding speech texts in Japanese. Therefore, this research can be a reference for learners, researchers, and anyone who is interested in the field of discourse analysis.Keywords: cohesion, grammatical cohesion, lexical cohesion, speech text, Shinzo Abe
Procedia PDF Downloads 1623916 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World
Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber
Abstract:
Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.Keywords: semantic segmentation, urban environment, deep learning, urban building, classification
Procedia PDF Downloads 1913915 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices
Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi
Abstract:
In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.Keywords: Iot, activity recognition, automatic classification, unconstrained environment
Procedia PDF Downloads 2243914 Evaluation of the Effect of Magnetic Field on Fibroblast Attachment in Contact with PHB/Iron Oxide Nanocomposite
Authors: Shokooh Moghadam, Mohammad Taghi Khorasani, Sajjad Seifi Mofarah, M. Daliri
Abstract:
Through the recent two decades, the use of magnetic-property materials with the aim of target cell’s separation and eventually cancer treatment has incredibly increased. Numerous factors can alter the efficacy of this method on curing. In this project, the effect of magnetic field on adhesion of PDL and L929 cells on nanocomposite of iron oxide/PHB with different density of iron oxides (1%, 2.5%, 5%) has been studied. The nanocamposite mentioned includes a polymeric film of poly hydroxyl butyrate and γ-Fe2O3 particles with the average size of 25 nanometer dispersed in it and during this process, poly vinyl alcohol with 98% hydrolyzed and 78000 molecular weight was used as an emulsion to achieve uniform distribution. In order to get the homogenous film, the solution of PHB and iron oxide nanoparticles were put in a dry freezer and in liquid nitrogen, which resulted in a uniform porous scaffold and for removing porosities a 100◦C press was used. After the synthesis of a desirable nanocomposite film, many different tests were performed, First, the particles size and their distribution in the film were evaluated by transmission electron microscopy (TEM) and even FTIR analysis and DMTA test were run in order to observe and accredit the chemical connections and mechanical properties of nanocomposites respectively. By comparing the graphs of case and control samples, it was established that adding nano particles caused an increase in crystallization temperature and the more density of γ-Fe2O3 lead to more Tg (glass temperature). Furthermore, its dispersion range and dumping property of samples were raised up. Moreover, the toxicity, morphologic changes and adhesion of fibroblast and cancer cells were evaluated by a variety of tests. All samples were grown in different density and in contact with cells for 24 and 48 hours within the magnetic fields of 2×10^-3 Tesla. After 48 hours, the samples were photographed with an optic and SEM and no sign of toxicity was traced. The number of cancer cells in the case of sample group was fairly more than the control group. However, there are many gaps and unclear aspects to use magnetic field and their effects in cancer and all diseases treatments yet to be discovered, not to neglect that there have been prominent step on this way in these recent years and we hope this project can be at least a minimum movement in this issue.Keywords: nanocomposite, cell attachment, magnetic field, cytotoxicity
Procedia PDF Downloads 2593913 Public-Private Partnership Projects in Canada: A Case Study Approach
Authors: Samuel Carpintero
Abstract:
Public-private partnerships (PPP) arrangements have emerged all around the world as a response to infrastructure deficits and the need to refurbish existing infrastructure. The motivations of governments for embarking on PPPs for the delivery of public infrastructure are manifold, and include on-time and on-budget delivery as well as access to private project management expertise. The PPP formula has been used by some State governments in United States and Canada, where the participation of private companies in financing and managing infrastructure projects has increased significantly in the last decade, particularly in the transport sector. On the one hand, this paper examines the various ways used in these two countries in the implementation of PPP arrangements, with a particular focus on risk transfer. The examination of risk transfer in this paper is carried out with reference to the following key PPP risk categories: construction risk, revenue risk, operating risk and availability risk. The main difference between both countries is that in Canada the demand risk remains usually within the public sector whereas in the United States this risk is usually transferred to the private concessionaire. The aim is to explore which lessons can be learnt from both models than might be useful for other countries. On the other hand, the paper also analyzes why the Spanish companies have been so successful in winning PPP contracts in North America during the past decade. Contrary to the Latin American PPP market, the Spanish companies do not have any cultural advantage in the case of the United States and Canada. Arguably, some relevant reasons for the success of the Spanish groups are their extensive experience in PPP projects (that dates back to the late 1960s in some cases), their high technical level (that allows them to be aggressive in their bids), and their good position and track-record in the financial markets. The article’s empirical base consists of data provided by official sources of both countries as well as information collected through face-to-face interviews with public and private representatives of the stakeholders participating in some of the PPP schemes. Interviewees include private project managers of the concessionaires, representatives of banks involved as financiers in the projects, and experts in the PPP industry with close knowledge of the North American market. Unstructured in-depth interviews have been adopted as a means of investigation for this study because of its powers to achieve honest and robust responses and to ensure realism in the collection of an overall impression of stakeholders’ perspectives.Keywords: PPP, concession, infrastructure, construction
Procedia PDF Downloads 3003912 Forensic Speaker Verification in Noisy Environmental by Enhancing the Speech Signal Using ICA Approach
Authors: Ahmed Kamil Hasan Al-Ali, Bouchra Senadji, Ganesh Naik
Abstract:
We propose a system to real environmental noise and channel mismatch for forensic speaker verification systems. This method is based on suppressing various types of real environmental noise by using independent component analysis (ICA) algorithm. The enhanced speech signal is applied to mel frequency cepstral coefficients (MFCC) or MFCC feature warping to extract the essential characteristics of the speech signal. Channel effects are reduced using an intermediate vector (i-vector) and probabilistic linear discriminant analysis (PLDA) approach for classification. The proposed algorithm is evaluated by using an Australian forensic voice comparison database, combined with car, street and home noises from QUT-NOISE at a signal to noise ratio (SNR) ranging from -10 dB to 10 dB. Experimental results indicate that the MFCC feature warping-ICA achieves a reduction in equal error rate about (48.22%, 44.66%, and 50.07%) over using MFCC feature warping when the test speech signals are corrupted with random sessions of street, car, and home noises at -10 dB SNR.Keywords: noisy forensic speaker verification, ICA algorithm, MFCC, MFCC feature warping
Procedia PDF Downloads 4083911 Validation and Interpretation about Precedence Diagram for Start to Finish Relationship by Graph Theory
Authors: Naoki Ohshima, Ken Kaminishi
Abstract:
Four types of dependencies, which are 'Finish-to-start', 'Finish-to-finish', 'Start-to-start' and 'Start-to-finish (S-F)' as logical relationship are modeled based on the definition by 'the predecessor activity is defined as an activity to come before a dependent activity in a schedule' in PMBOK. However, it is found a self-contradiction in the precedence diagram for S-F relationship by PMBOK. In this paper, author would like to validate logical relationship of S-F by Graph Theory and propose a new interpretation of the precedence diagram for S-F relationship.Keywords: project time management, sequence activity, start-to-finish relationship, precedence diagram, PMBOK
Procedia PDF Downloads 2703910 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems
Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan
Abstract:
Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.Keywords: hybrid storage system, data mining, recurrent neural network, support vector machine
Procedia PDF Downloads 3083909 Participatory Planning of the III Young Sea Meeting: An Experience of the Young Albatroz Collective
Authors: Victor V. Ribeiro, Thais C. Lopes, Rafael A. A. Monteiro
Abstract:
The Albatroz, Baleia Jubarte, Coral Vivo, Golfinho Rotador and Tamar projects make up the Young Sea Network (YSN), part of the BIOMAR Network, which aims to integrate the environmental youths of the Brazilian coast. For this, three editions of the Young Sea Meeting (YSM) were performed. Seeking to stimulate belonging, self-knowledge, participation, autonomy and youth protagonism, the Albatroz Project hosted the III YSM, in Bertioga (SP), in April 2019 and aimed to collectively plan the meeting. Five pillars of Environmental Education were used: identity, community, dialogue, power to act and happiness, the OCA Method and the Young Educates Young; Young Chooses Young; and One Generation Learns from the Other principals. In December 2018, still in the II YSM, the participatory planning of the III YSM began. Two "representatives" of each group were voluntarily elected to facilitate joint decisions, propose, receive and communicate demands from their groups and coordinators. The Young Albatroz Collective (YAC) facilitated the organization process as a whole. The purpose of the meeting was collectively constructed, answering the following question: "What is the YSM for?". Only two of the five pairs of representatives responded. There was difficulty gathering the young people in each group, because it was the end of the year, with people traveling. Thus, due to the short planning time, the YAC built a pre-programming to be validated by the other groups, defining as the objective of the meeting the strengthening of youth protagonism within the YSN. In the planning process, the YAC held 20 meetings, with 60 hours of face-to-face work, in three months, and two technical visits to the headquarters of the III YSM. The participatory dynamics of consultation, when it occurred, required up to two weeks, evidencing the limits of participation. The project coordinations stated that they were not being included in the process by their young people. There is a need to work more to be able to aloud the participation, developing skills and understanding about its principles. This training must take place in an articulated way between the network, implying the important role of the five projects in jointly developing and implementing educator processes with this objective in a national dimension, but without forgetting the specificities of each young group. Finally, it is worth highlighting the great potential of the III YSM by stimulating the exercise of leading environmental youth in more than 50 young people from Brazilian coast, linked to the YSN, stimulating the learning and mobilization of young people in favor of coastal and marine conservation.Keywords: Marine Conservation, Environmental Education, Youth, Participation, Planning
Procedia PDF Downloads 1663908 A Machine Learning Based Method to Detect System Failure in Resource Constrained Environment
Authors: Payel Datta, Abhishek Das, Abhishek Roychoudhury, Dhiman Chattopadhyay, Tanushyam Chattopadhyay
Abstract:
Machine learning (ML) and deep learning (DL) is most predominantly used in image/video processing, natural language processing (NLP), audio and speech recognition but not that much used in system performance evaluation. In this paper, authors are going to describe the architecture of an abstraction layer constructed using ML/DL to detect the system failure. This proposed system is used to detect the system failure by evaluating the performance metrics of an IoT service deployment under constrained infrastructure environment. This system has been tested on the manually annotated data set containing different metrics of the system, like number of threads, throughput, average response time, CPU usage, memory usage, network input/output captured in different hardware environments like edge (atom based gateway) and cloud (AWS EC2). The main challenge of developing such system is that the accuracy of classification should be 100% as the error in the system has an impact on the degradation of the service performance and thus consequently affect the reliability and high availability which is mandatory for an IoT system. Proposed ML/DL classifiers work with 100% accuracy for the data set of nearly 4,000 samples captured within the organization.Keywords: machine learning, system performance, performance metrics, IoT, edge
Procedia PDF Downloads 1953907 An Examination of the Benefits of Disciplinary Classroom Support of Word Study, Vocabulary and Comprehension for Adolescent Students
Authors: Amanda Watson
Abstract:
The goal of this project is to create the conditions wherein every teacher, especially subjectarea experts, sees themselves as a teacher of language and vocabulary. Assessment and observational data suggest that students are not getting the support they need in vocabulary and reading comprehension, and secondary teachers do not currently have the confidence or expertise to provide this support. This study seeks to examine the impact of 10-20 minutes of daily, targeted instruction around orthography and vocabulary on student competence with the navigation of complex vocabulary and comprehension of subject-specific concepts and texts. The first phase of the pilot included 6 participating classroom teachers of grades 9 and 10 English (95 students in total) who administered an initial reading comprehension assessment. The results of this assessment indicated that the vast majority of students were reading below grade level. Teachers were then provided with a slide deck of complete lessons on orthography, vocabulary (etymology, roots and affixes) and reading comprehension strategies. For five weeks, teachers delivered lessons with their students, implementing the recommended evidence-based teaching strategies. Students and teachers completed surveys to provide feedback on the value and impact of the method. The results confirmed that this was new learning for the students and that the teaching strategies improved engagement. The lessons succeeded in providing equitable access to challenge by simultaneously offering theoretical learning to proficient readers, and exposure and practice to weaker readers. A second reading comprehension was administered after 5 weeks of daily instruction. Average scores increased by 41%, and almost every student experienced progress. The first phase was not long enough to measure the impact of the method on vocabulary acquisition or reading comprehension of subject-specific texts, however. The project will use the results of the first phase to design the second phase, and new teaching and learning strategies will be added. The goals of the second phases are to increase motivation, and to grow the daily practice beyond English class and into science and / or math. This team will continue to document a continuation of the daily lessons, Commented [E1]: Please do not use rhetorical questions in the abstract. measure the impact of the strategies, and address questions about the correlation between daily practice and improvements in the skills students need for vocabulary acquisition and disciplinary reading comprehension.Keywords: adolescent, comprehension, orthography, reading, vocabulary, etymology, word study, disciplinary, teaching strategies
Procedia PDF Downloads 763906 Water Detection in Aerial Images Using Fuzzy Sets
Authors: Caio Marcelo Nunes, Anderson da Silva Soares, Gustavo Teodoro Laureano, Clarimar Jose Coelho
Abstract:
This paper presents a methodology to pixel recognition in aerial images using fuzzy $c$-means algorithm. This algorithm is a alternative to recognize areas considering uncertainties and inaccuracies. Traditional clustering technics are used in recognizing of multispectral images of earth's surface. This technics recognize well-defined borders that can be easily discretized. However, in the real world there are many areas with uncertainties and inaccuracies which can be mapped by clustering algorithms that use fuzzy sets. The methodology presents in this work is applied to multispectral images obtained from Landsat-5/TM satellite. The pixels are joined using the $c$-means algorithm. After, a classification process identify the types of surface according the patterns obtained from spectral response of image surface. The classes considered are, exposed soil, moist soil, vegetation, turbid water and clean water. The results obtained shows that the fuzzy clustering identify the real type of the earth's surface.Keywords: aerial images, fuzzy clustering, image processing, pattern recognition
Procedia PDF Downloads 4833905 Observation of the Effect of Yingyangbao Intervention on Infants and Young Children Aged 6 to 23 Months in Poor Rural Areas of China
Authors: Jin Li, Jing Sun, Xiangkun Cai, Lijuanwang, Yanbin Tang, Junsheng Huo
Abstract:
In order to improve the malnutrition of infants and young children in poor rural areas of China, Chinese government implement a project on improvement of children's nutrition in poor rural areas. Each infant or young child aged 6 to 23 months in selected poor rural areas of China was provided a package of Yingyangbao (YYB) per day, which is a full fat soy powder mixed with multiple micronutrient powders. A technical direction to implement this project comprehensively in poor rural areas of China will be provided by assessing the nutritional status of infants and feeding practices of caregiver. The nutritional intervention was conducted using Yingyangbao for infants aged 6 to 23 months in six poor counties of Shanxi, Yunnan and Hubei Provinces. The caregiver or parents of infants were educated on feeding knowledge and practice. A total of 1840 infants were assessed before the intervention and 1789 infants one year later. The length, weight, hemoglobin concentration of infants were measured to evaluate nutritional status before and after the intervention respectively. The questionnaires were designed to collect data for the basic demographic information and feeding practices. The average weight of infants aged 6 to 23 months increased from 9.59 ± 1.54kg to 9.73 ± 1.61kg one years later (p<0.01), and the average length from 76.0±6.0 to 77.0±6.1(p<0.01). The weight and length of infants aged 12 to 17 months had most obviously improving effect among the three age groups. Before the intervention, the hemoglobin concentration value of infants was 11.7±1.2g/L, and the anemia prevalence was 32.9%. One year later, the hemoglobin concentration value of the infants was increased to 12.0±1.1g/dL, and the anemia prevalence was decreased to 26.0%. There were both statistically significant (p <0.01). The anemia prevalence of infants aged 18 to 23 months had most obviously improving effect,which decreased from 25.0% to 17.2%(p<0.01). The proportion of infants aged 6 to 8 months who received solid, semi-solid or soft foods in time was increased from 89.4% to 91.6%, while there was no statistically significant. The proportion of 6-23 month-old infants who received minimum dietary diversity increased from 55.6% to 60.3%(p <0.01). The differences of the proportion of infants who received minimum meal frequency was no statistically significant between before and after the intervention. The nutritional intervention using Yingyangbao showed the significant effect for improving infants aged 6 to 23 months anemia status, weight and length. The feeding practices were improved through education in the process of nutritional intervention, while the effect is not significant. It is need for Chinese government to explore new publicity pattern.Keywords: nutritional intervention, infants, nutritional status, feeding practice
Procedia PDF Downloads 4443904 Best Resource Recommendation for a Stochastic Process
Authors: Likewin Thomas, M. V. Manoj Kumar, B. Annappa
Abstract:
The aim of this study was to develop an Artificial Neural Network0 s recommendation model for an online process using the complexity of load, performance, and average servicing time of the resources. Here, the proposed model investigates the resource performance using stochastic gradient decent method for learning ranking function. A probabilistic cost function is implemented to identify the optimal θ values (load) on each resource. Based on this result the recommendation of resource suitable for performing the currently executing task is made. The test result of CoSeLoG project is presented with an accuracy of 72.856%.Keywords: ADALINE, neural network, gradient decent, process mining, resource behaviour, polynomial regression model
Procedia PDF Downloads 3903903 Analyzing the Impact of Local and International Artists in Creating Cultural Identity through Public Art: Case Study of Chicago Public Policies
Authors: Kaesha M. Freyaldenhoven
Abstract:
Chicago is a city in the United States whose cultural identity is largely shaped by public art pieces. Quintessential public works created by internationally renown artists – such as Anish Kapoor’s Cloud Gate in Millennium Park and 'The Picasso' in Daley Plaza – have historically contributed to developing a shared sense of community. In 2017, the city implemented a policy titled 50x50 Neighborhood Arts Project under the Chicago Public Art Plan. The policy promotes investments in contemporary public art to elevate neighborhood cultural assets and create a sense of place. Exclusively community-based artists were commissioned to accomplish the mission of the policy. Administrators felt only local artists would be capable of capturing the true essence of a neighborhood through art. This paper discusses the relationship between the public art and the culture of its respective neighborhood through close examination of aesthetic formal properties and social significance. Research compares the role of international artists with the role of local artists in cultivating the identity of a city through site-specific artworks in Chicago. Methodology unites theoretical research on understanding art and its function in the public space with empirical research on Chicago-based works. Theoretical frameworks provide an art historical foundation to explore the manner in which physical properties convey meaning through the work itself and its placement in an urban setting. Empirical research that examines policy documentation and press announcements released by the Department of Cultural Affairs and Special Events investigates project selection processes pertaining to the artists and neighborhoods. Ethnographies and interviews of individuals from diverse social segments in contemporary Chicago society measure impacts of the works on respective populations. Findings demonstrate works created by local artists activate neighborhoods and inculcate a sense of pride among community residents. Works created by international artists garner widespread media attention that frames the city’s cultural identity across temporal and geographic zones. This research can be utilized to inform future cultural policies pertaining to the commission of public art.Keywords: Chicago, cultural policy, public art, urban art
Procedia PDF Downloads 1273902 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering
Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal
Abstract:
The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease
Procedia PDF Downloads 2033901 Flood Monitoring in the Vietnamese Mekong Delta Using Sentinel-1 SAR with Global Flood Mapper
Authors: Ahmed S. Afifi, Ahmed Magdy
Abstract:
Satellite monitoring is an essential tool to study, understand, and map large-scale environmental changes that affect humans, climate, and biodiversity. The Sentinel-1 Synthetic Aperture Radar (SAR) instrument provides a high collection of data in all-weather, short revisit time, and high spatial resolution that can be used effectively in flood management. Floods occur when an overflow of water submerges dry land that requires to be distinguished from flooded areas. In this study, we use global flood mapper (GFM), a new google earth engine application that allows users to quickly map floods using Sentinel-1 SAR. The GFM enables the users to adjust manually the flood map parameters, e.g., the threshold for Z-value for VV and VH bands and the elevation and slope mask threshold. The composite R:G:B image results by coupling the bands of Sentinel-1 (VH:VV:VH) reduces false classification to a large extent compared to using one separate band (e.g., VH polarization band). The flood mapping algorithm in the GFM and the Otsu thresholding are compared with Sentinel-2 optical data. And the results show that the GFM algorithm can overcome the misclassification of a flooded area in An Giang, Vietnam.Keywords: SAR backscattering, Sentinel-1, flood mapping, disaster
Procedia PDF Downloads 106