Search results for: learning outcomes evaluation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15502

Search results for: learning outcomes evaluation

12352 Sparse Modelling of Cancer Patients’ Survival Based on Genomic Copy Number Alterations

Authors: Khaled M. Alqahtani

Abstract:

Copy number alterations (CNA) are variations in the structure of the genome, where certain regions deviate from the typical two chromosomal copies. These alterations are pivotal in understanding tumor progression and are indicative of patients' survival outcomes. However, effectively modeling patients' survival based on their genomic CNA profiles while identifying relevant genomic regions remains a statistical challenge. Various methods, such as the Cox proportional hazard (PH) model with ridge, lasso, or elastic net penalties, have been proposed but often overlook the inherent dependencies between genomic regions, leading to results that are hard to interpret. In this study, we enhance the elastic net penalty by incorporating an additional penalty that accounts for these dependencies. This approach yields smooth parameter estimates and facilitates variable selection, resulting in a sparse solution. Our findings demonstrate that this method outperforms other models in predicting survival outcomes, as evidenced by our simulation study. Moreover, it allows for a more meaningful interpretation of genomic regions associated with patients' survival. We demonstrate the efficacy of our approach using both real data from a lung cancer cohort and simulated datasets.

Keywords: copy number alterations, cox proportional hazard, lung cancer, regression, sparse solution

Procedia PDF Downloads 47
12351 Bridging the Educational Gap: A Curriculum Framework for Mass Timber Construction Education and Comparative Analysis of Physical vs. Virtual Prototypes in Construction Management

Authors: Farnaz Jafari

Abstract:

The surge in mass timber construction represents a pivotal moment in sustainable building practices, yet the lack of comprehensive education in construction management poses a challenge in harnessing this innovation effectively. This research endeavors to bridge this gap by developing a curriculum framework integrating mass timber construction into undergraduate and industry certificate programs. To optimize learning outcomes, the study explores the impact of two prototype formats -Virtual Reality (VR) simulations and physical mock-ups- on students' understanding and skill development. The curriculum framework aims to equip future construction managers with a holistic understanding of mass timber, covering its unique properties, construction methods, building codes, and sustainable advantages. The study adopts a mixed-methods approach, commencing with a systematic literature review and leveraging surveys and interviews with educators and industry professionals to identify existing educational gaps. The iterative development process involves incorporating stakeholder feedback into the curriculum. The evaluation of prototype impact employs pre- and post-tests administered to participants engaged in pilot programs. Through qualitative content analysis and quantitative statistical methods, the study seeks to compare the effectiveness of VR simulations and physical mock-ups in conveying knowledge and skills related to mass timber construction. The anticipated findings will illuminate the strengths and weaknesses of each approach, providing insights for future curriculum development. The curriculum's expected contribution to sustainable construction education lies in its emphasis on practical application, bridging the gap between theoretical knowledge and hands-on skills. The research also seeks to establish a standard for mass timber construction education, contributing to the field through a unique comparative analysis of VR simulations and physical mock-ups. The study's significance extends to the development of best practices and evidence-based recommendations for integrating technology and hands-on experiences in construction education. By addressing current educational gaps and offering a comparative analysis, this research aims to enrich the construction management education experience and pave the way for broader adoption of sustainable practices in the industry. The envisioned curriculum framework is designed for versatile integration, catering to undergraduate programs and industry training modules, thereby enhancing the educational landscape for aspiring construction professionals. Ultimately, this study underscores the importance of proactive educational strategies in preparing industry professionals for the evolving demands of the construction landscape, facilitating a seamless transition towards sustainable building practices.

Keywords: curriculum framework, mass timber construction, physical vs. virtual prototypes, sustainable building practices

Procedia PDF Downloads 72
12350 Decades of Educational Excellence: Case Studies of Successful Family-Owned Higher Educational Institutions

Authors: Maria Luz Macasinag

Abstract:

This study aims to determine and to examine critically successful family-owned higher educational institutions towards identifying the attributes and practices that may likely have led to their success. This research is confined to private, non-sectarian, family-owned higher institutions of learning that have been operating for more than fifty years, had only one founder and had at least two transitions in terms of generation. The criteria for selecting family-owned universities to be part of the cases under investigation include institutions (1) with increasing enrollment over the past five years, with level III accreditation status, (3) with good performance in the Board examinations in most of its programs and (4) with high employability of graduates. The study uses the multiple case study method. A model based on the cross-case analysis of the attributes and practices of all the case studies of successful family- owned higher institutions of learning is the output. The paper provides insights to current and future school owners and administrators in the management of their institutions for competitiveness, sustainability and advancement. This research encourages the evaluation of how the ideas that may lead to the success of schools owned by families in developing a sense of community, a reciprocal relationship among colleagues, the students and other stakeholders will result to the attainment of the vision and mission of the school. The study is beneficial to entrepreneurs and to business students whose know-how may provide insights that would be helpful in guiding prospective school owners. The commission on higher education and the Department of Education stand to benefit from this academic paper for the guidance that they provide to family-owned educational institutions. Banks and other financial institutions may find valuable ideas from this academic paper for the purpose of providing financial assistance to colleges and universities that are family-owned. Researchers in the field of educational management and administration may be able to extract from this study related topics for future research.

Keywords: administration practices, attributes, family-owned schools, success factors

Procedia PDF Downloads 274
12349 Designing for Sustainable Public Housing from Property Management and Financial Feasibility Perspectives

Authors: Kung-Jen Tu

Abstract:

Many public housing properties developed by local governments in Taiwan in the 1980s have deteriorated severely as these rental apartment buildings aged. The lack of building maintainability considerations during project design phase as well as insufficient maintenance funds have made it difficult and costly for local governments to maintain and keep public housing properties in good shape. In order to assist the local governments in achieving and delivering sustainable public housing, this paper intends to present a developed design evaluation method to be used to evaluate the presented design schemes from property management and financial feasibility perspectives during project design phase of public housing projects. The design evaluation results, i.e. the property management and financial implications of presented design schemes that could occur later during the building operation and maintenance phase, will be reported to the client (the government) and design schemes revised consequently. It is proposed that the design evaluation be performed from two main perspectives: (1) Operation and property management perspective: Three criteria such as spatial appropriateness, people and vehicle circulation and control, property management working spaces are used to evaluate the ‘operation and PM effectiveness’ of a design scheme. (2) Financial feasibility perspective: Four types of financial analyses are performed to assess the long term financial feasibility of a presented design scheme, such as operational and rental income analysis, management fund analysis, regular operational and property management service expense analysis, capital expense analysis. The ongoing Chung-Li Public Housing Project developed by the Taoyuan City Government will be used as a case to demonstrate how the presented design evaluation method is implemented. The results of property management assessment as well as the annual operational and capital expenses of a proposed design scheme are presented.

Keywords: design evaluation method, management fund, operational and capital expenses, rental apartment buildings

Procedia PDF Downloads 309
12348 Academic Staff Perspective of Adoption of Augmented Reality in Teaching Practice to Support Students Learning Remotely in a Crisis Time in Higher

Authors: Ebtisam Alqahtani

Abstract:

The purpose of this study is to investigate academic staff perspectives on using Augmented Reality in teaching practice to support students learning remotely during the COVID pandemic. the study adopted the DTPB theoretical model to guide the identification of key potential factors that could motivate academic staff to use or not use AR in teaching practices. A mixing method design was adopted for a better understanding of the study problem. A survey was completed by 851 academic staff, and this was followed by interviews with 20 academic staff. Statistical analyses were used to assess the survey data, and thematic analysis was used to assess the interview data. The study finding indicates that 75% of academic staff were aware of AR as a pedagogical tool, and they agreed on the potential benefits of AR in teaching and learning practices. However, 36% of academic staff use it in teaching and learning practice, and most of them agree with most of the potential barriers to adopting AR in educational environments. In addition, the study results indicate that 91% of them are planning to use it in the future. The most important factors that motivated them to use it in the future are the COVID pandemic factor, hedonic motivation factor, and academic staff attitude factor. The perceptions of academic staff differed according to the universities they attended, the faculties they worked in, and their gender. This study offers further empirical support for the DTPB model, as well as recommendations to help higher education implement technology in its educational environment based on the findings of the study. It is unprecedented the study the necessity of the use of AR technologies in the time of Covid-19. Therefore, the contribution is both theoretical and practice

Keywords: higher education, academic staff, AR technology as pedological tools, teaching and learning practice, benefits of AR, barriers of adopting AR, and motivating factors to adopt AR

Procedia PDF Downloads 128
12347 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management

Authors: Thewodros K. Geberemariam

Abstract:

The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.

Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space

Procedia PDF Downloads 152
12346 A Triple Win: Linking Students, Academics, and External Organisations to Provide Real-World Learning Experiences with Real-World Benefits

Authors: Anne E. Goodenough

Abstract:

Students often learn best ‘on the job’ through holistic real-world projects. They need real-world experiences to make classroom learning applicable and to increase their employability. Academics typically value working on projects where new knowledge is created and have a genuine desire to help students engage with learning and develop new skills. They might also have institutional pressure to enhance student engagement, retention, and satisfaction. External organizations - especially non-governmental bodies, charities, and small enterprises - often have fundamental and pressing questions, but lack the manpower and academic expertise to answer them effectively. They might also be on the lookout for talented potential employees. This study examines ways in which these diverse requirements can be met simultaneously by creating three-way projects that provide excellent academic and real-world outcomes for all involved. It studied a range of innovative projects across natural sciences (biology, ecology, physical geography and social sciences (human geography, sociology, criminology, and community engagement) to establish how to best harness the potential of this powerful approach. Focal collaborations included: (1) development of practitioner-linked modules; (2) frameworks where students collected/analyzed data for link organizations in research methods modules; (3) placement-based internships and dissertations; and (4) immersive fieldwork projects in novel locations to allow students engage first-hand with contemporary issues as diverse as rhino poaching in South Africa, segregation in Ireland, and gun crime in Florida. Although there was no ‘magic formula’ for success, the approach was found to work best when small projects were developed that were achievable in a short time-frame, both to tie into modular curricula and meet the immediacy expectations of many link organizations. Bigger projects were found to work well in some cases, especially when they were essentially a series of linked smaller projects, either running concurrently or successively with each building on previous work. Opportunities were maximized when there were tangible benefits to the link organization as this generally increased organization investment in the project and motivated students too. The importance of finding the right approach for a given project was found to be key: it was vital to ensure that something that could work effectively as an independent research project for one student, for example, was not shoehorned into being a project for multiple students within a taught module. In general, students were very positive about collaboration projects. They identified benefits to confidence, time-keeping and communication, as well as conveying their enthusiasm when their work was of benefit to the wider community. Several students have gone on to do further work with the link organization in a voluntary capacity or as paid staff, or used the experiences to help them break into the ever-more competitive job market in other ways. Although this approach involves a substantial time investment, especially from academics, the benefits can be profound. The approach has strong potential to engage students, help retention, improve student satisfaction, and teach new skills; keep the knowledge of academics fresh and current; and provide valuable tangible benefits for link organizations: a real triple win.

Keywords: authentic learning, curriculum development, effective education, employability, higher education, innovative pedagogy, link organizations, student experience

Procedia PDF Downloads 219
12345 Factors Affecting and Impeding Teachers’ Use of Learning Management System in Kingdom of Saudi Arabia Universities

Authors: Omran Alharbi, Victor Lally

Abstract:

The advantages of the adoption of new technology such as learning management systems (LMSs) in education and teaching methods have been widely recognised. This has led a large number of universities to integrate this type of technology into their daily learning and teaching activities in order to facilitate the education process for both learners and teachers. On the other hand, in some developing countries such as Saudi Arabia, educators have seldom used this technology. As a result, this study was conducted in order to investigate the factors that impede teachers’ use of technology (LMSs) in their teaching in Saudi Arabian institutions. This study used a qualitative approach. Eight participants were invited to take part in this study, and they were asked to give their opinions about the most significant factors that prevented them from integrating technology into their daily activities. The results revealed that a lack of LMS skills, interest in and knowledge about the LMS among teachers were the most significant factors impeding them from using technology in their lessons. The participants suggested that incentive training should be provided to reduce these challenges.

Keywords: LMS, factors, KSA, teachers

Procedia PDF Downloads 129
12344 A Unified Approach to Support the Coordination of Usability Work in Agile Software Development

Authors: Fouad Abdulameer Salman, Aziz Bin Deraman, Masita Binti Abdul Jalil

Abstract:

Usability evaluation is essential for developing usable software systems, yet its integration within agile software development remains a challenging interdisciplinary endeavour. In this paper, the authors present a study to investigate obstacles of such integration from the management perspective. The study incorporates two methods, namely an online questionnaire survey and a series of interviews with participants that answered the questionnaire. Based on the obtained results, a unified approach is proposed for enabling coordinate the efforts of agile developers and usability engineers to produce usable software systems.

Keywords: usability, usability evaluation, software development process, usability management

Procedia PDF Downloads 458
12343 Physical Activity and Academic Achievement: How Physical Activity Should Be Implemented to Enhance Mathematical Achievement and Mathematical Self-Concept

Authors: Laura C. Dapp, Claudia M. Roebers

Abstract:

Being physically active has many benefits for children and adolescents. It is crucial for various aspects of physical and mental health, the development of a healthy self-concept, and also positively influences academic performance and school achievement. In addressing the still incomplete understanding of the link between physical activity (PA) and academic achievement, the current study scrutinized the open issue of how PA has to be implemented to positively affect mathematical outcomes in N = 138 fourth graders. Therefore, the current study distinguished between structured PA (formal, organized, adult-led exercise and deliberate sports practice) and unstructured PA (non-formal, playful, peer-led physically active play and sports activities). Results indicated that especially structured PA has the potential to contribute to mathematical outcomes. Although children spent almost twice as much time engaging in unstructured PA as compared to structured PA, only structured PA was significantly related to mathematical achievement as well as to mathematical self-concept. Furthermore, the pending issue concerning the quantity of PA needed to enhance children’s mathematical achievement was addressed. As to that, results indicated that the amount of time spent in structured PA constitutes a critical factor in accounting for mathematical outcomes, since children engaging in PA for two hours or more a week were shown to be both the ones with the highest mathematical self-concept as well as those attaining the highest mathematical achievement scores. Finally, the present study investigated the indirect effect of PA on mathematical achievement by controlling for the mathematical self-concept as a mediating variable. The results of a maximum likelihood mediation analysis with a 2’000 resampling bootstrapping procedure for the 95% confidence intervals revealed a full mediation, indicating that PA improves mathematical self-concept, which, in turn, positively affects mathematical achievement. Thus, engaging in high amounts of structured PA constitutes an advantageous leisure activity for children and adolescents, not only to enhance their physical health but also to foster their self-concept in a way that is favorable and encouraging for promoting their academic achievement. Note: The content of this abstract is partially based on a paper published elswhere by the authors.

Keywords: Academic Achievement, Mathematical Performance, Physical Activity, Self-Concept

Procedia PDF Downloads 113
12342 A Study of EFL Learners with Different Goal Orientations in Response to Cognitive Diagnostic Reading Feedback

Authors: Yuxuan Tang

Abstract:

Cognitive diagnostic assessment has received much attention in second language education, and assessment for it can provide pedagogically useful feedback for language learners. However, there is a lack of research on how students interpret and use cognitive diagnostic feedback. Thus the present study aims to adopt a mixed-method approach mainly to explore the relationship between the goal-orientation and students' response to cognitive diagnostic feedback. Almost 200 Chinese undergraduates from two universities in Xi'an, China, will be invited to do a cognitive diagnostic reading test, and each student will receive specialized cognitive diagnostic feedback, comprising of students' reading attributes mastery level generated by applying a well-selected cognitive diagnostic model, students' perceived reading ability assessed by a self-assessing questionnaire and students’ level position in the whole class. And a goal-orientation questionnaire and a self-generated questionnaire on the perception of feedback will be given to students the moment they receive feedback. In addition, interviews of students will be conducted on their future plans to see whether they have awareness of carrying out studying plans. The study aims to find a new perspective towards how students use and interpret cognitive diagnostic feedback in terms of their different goal-orientation (self-based, task-based, and other-based goals) by applying the newest goal orientation model, which is an important construct of motivation in psychology, seldom researched under language learning area. And the study is expected to provide evidence on how diagnostic feedback promotes students' learning under the educational belief of assessment for learning. Practically speaking, according to the personalized diagnostic feedback, students can take remedial self-learning more purposefully, and teachers can target students' weaknesses to adjust teaching methods and carry out tailored teaching.

Keywords: assessment for learning, cognitive diagnostic assessment, goal-orientation, personalized feedback

Procedia PDF Downloads 133
12341 Using Analytic Hierarchy Process as a Decision-Making Tool in Project Portfolio Management

Authors: Darius Danesh, Michael J. Ryan, Alireza Abbasi

Abstract:

Project Portfolio Management (PPM) is an essential component of an organisation’s strategic procedures, which requires attention of several factors to envisage a range of long-term outcomes to support strategic project portfolio decisions. To evaluate overall efficiency at the portfolio level, it is essential to identify the functionality of specific projects as well as to aggregate those findings in a mathematically meaningful manner that indicates the strategic significance of the associated projects at a number of levels of abstraction. PPM success is directly associated with the quality of decisions made and poor judgment increases portfolio costs. Hence, various Multi-Criteria Decision Making (MCDM) techniques have been designed and employed to support the decision-making functions. This paper reviews possible option to improve the decision-making outcomes in the organisational portfolio management processes using the Analytic Hierarchy Process (AHP) both from academic and practical perspectives and will examine the usability, certainty and quality of the technique. The results of the study will also provide insight into the technical risk associated with current decision-making model to underpin initiative tracking and strategic portfolio management.

Keywords: analytic hierarchy process, decision support systems, multi-criteria decision making, project portfolio management

Procedia PDF Downloads 321
12340 LIS Students’ Experience of Online Learning During Covid-19

Authors: Larasati Zuhro, Ida F Priyanto

Abstract:

Background: In March 2020, Indonesia started to be affected by Covid-19, and the number of victims increased slowly but surely until finally, the highest number of victims reached the highest—about 50,000 persons—for the daily cases in the middle of 2021. Like other institutions, schools and universities were suddenly closed in March 2020, and students had to change their ways of studying from face-to-face to online. This sudden changed affected students and faculty, including LIS students and faculty because they never experienced online classes in Indonesia due to the previous regulation that academic and school activities were all conducted onsite. For almost two years, school and academic activities were held online. This indeed has affected the way students learned and faculty delivered their courses. This raises the question of whether students are now ready for their new learning activities due to the covid-19 disruption. Objectives: this study was conducted to find out the impact of covid-19 pandemic on the LIS learning process and the effectiveness of online classes for students of LIS in Indonesia. Methodology: This was qualitative research conducted among LIS students at UIN Sunan Kalijaga, Yogyakarta, Indonesia. The population are students who were studying for masters’program during covid-19 pandemic. Results: The study showed that students were ready with the online classes because they are familiar with the technology. However, the Internet and technology infrastructure do not always support the process of learning. Students mention slow WIFI is one factor that causes them not being able to study optimally. They usually compensate themselves by visiting a public library, a café, or any other places to get WIFI network. Noises come from the people surrounding them while they are studying online.Some students could not concentrate well when attending the online classes as they studied at home, and their families sometimes talk to other family members, or they asked the students while they are attending the online classes. The noise also came when they studied in a café. Another issue is that the classes were held in shorter time than that in the face-to-face. Students said they still enjoyed the onsite classes instead of online, although they do not mind to have hybrid model of learning. Conclusion: Pandemic of Covid-19 has changed the way students of LIS in Indonesia learn. They have experienced a process of migrating the way they learn from onsite to online. They also adapted their learning with the condition of internet access speed, infrastructure, and the environment. They expect to have hybrid classes in the future.

Keywords: learning, LIS students, pandemic, covid-19

Procedia PDF Downloads 128
12339 Vehicle Risk Evaluation in Low Speed Accidents: Consequences for Relevant Test Scenarios

Authors: Philip Feig, Klaus Gschwendtner, Julian Schatz, Frank Diermeyer

Abstract:

Projects of accident research analysis are mostly focused on accidents involving personal damage. Property damage only has a high frequency of occurrence combined with high economic impact. This paper describes main influencing parameters for the extent of damage and presents a repair cost model. For a prospective evaluation method of the monetary effect of advanced driver assistance systems (ADAS), it is necessary to be aware of and quantify all influencing parameters. Furthermore, this method allows the evaluation of vehicle concepts in combination with an ADAS at an early point in time of the product development process. In combination with a property damage database and the introduced repair cost model relevant test scenarios for specific vehicle configurations and their individual property damage risk may be determined. Currently, equipment rates of ADAS are low and a purchase incentive for customers would be beneficial. The next ADAS generation will prevent property damage to a large extent or at least reduce damage severity. Both effects may be a purchasing incentive for the customer and furthermore contribute to increased traffic safety.

Keywords: accident research, accident scenarios, ADAS, effectiveness, property damage analysis

Procedia PDF Downloads 340
12338 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey

Authors: Hayriye Anıl, Görkem Kar

Abstract:

In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.

Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting

Procedia PDF Downloads 110
12337 Effectiveness of Prehabilitation on Improving Emotional and Clinical Recovery of Patients Undergoing Open Heart Surgeries

Authors: Fatma Ahmed, Heba Mostafa, Bassem Ramdan, Azza El-Soussi

Abstract:

Background: World Health Organization stated that by 2020 cardiac disease will be the number one cause of death worldwide and estimates that 25 million people per year will suffer from heart disease. Cardiac surgery is considered an effective treatment for severe forms of cardiovascular diseases that cannot be treated by medical treatment or cardiac interventions. In spite of the benefits of cardiac surgery, it is considered a major stressful experience for patients who are candidate for surgery. Prehabilitation can decrease incidences of postoperative complications as it prepares patients for surgical stress through enhancing their defenses to meet the demands of surgery. When patients anticipate the postoperative sequence of events, they will prepare themselves to act certain behaviors, identify their roles and actively participate in their own recovery, therefore, anxiety levels are decreased and functional capacity is enhanced. Prehabilitation programs can comprise interventions that include physical exercise, psychological prehabilitation, nutritional optimization and risk factor modification. Physical exercises are associated with improvements in the functioning of the various physiological systems, reflected in increased functional capacity, improved cardiac and respiratory functions and make patients fit for surgical intervention. Prehabilitation programs should also prepare patients psychologically in order to cope with stress, anxiety and depression associated with postoperative pain, fatigue, limited ability to perform the usual activities of daily living through acting in a healthy manner. Notwithstanding the benefits of psychological preparations, there are limited studies which investigated the effect of psychological prehabilitation to confirm its effect on psychological, quality of life and physiological outcomes of patients who had undergone cardiac surgery. Aim of the study: The study aims to determine the effect of prehabilitation interventions on outcomes of patients undergoing cardiac surgeries. Methods: Quasi experimental study design was used to conduct this study. Sixty eligible and consenting patients were recruited and divided into two groups: control and intervention group (30 participants in each). One tool namely emotional, physiological, clinical, cognitive and functional capacity outcomes of prehabilitation intervention assessment tool was utilized to collect the data of this study. Results: Data analysis showed significant improvement in patients' emotional state, physiological and clinical outcomes (P < 0.000) with the use of prehabilitation interventions. Conclusions: Cardiac prehabilitation in the form of providing information about surgery, circulation exercise, deep breathing exercise, incentive spirometer training and nutritional education implemented daily by patients scheduled for elective open heart surgery one week before surgery have been shown to improve patients' emotional state, physiological and clinical outcomes.

Keywords: emotional recovery, clinical recovery, coronary artery bypass grafting patients, prehabilitation

Procedia PDF Downloads 206
12336 SNR Classification Using Multiple CNNs

Authors: Thinh Ngo, Paul Rad, Brian Kelley

Abstract:

Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.

Keywords: classification, CNN, deep learning, prediction, SNR

Procedia PDF Downloads 134
12335 Numerical Investigation of Fluid Flow, Characteristics of Thermal Performance and Enhancement of Heat Transfer of Corrugated Pipes with Various Geometrical Configurations

Authors: Ahmed Ramadhan Al-Obaidi, Jassim Alhamid

Abstract:

In this investigation, the flow pattern, characteristics of thermal-hydraulic, and improvement of heat transfer performance are evaluated using a numerical technique in three dimensions corrugated pipe heat exchanger. The modification was made under different corrugated pipe geometrical parameters, including corrugated ring angle (CRA), distance between corrugated ring (DBCR), and corrugated diameter (CD), the range of Re number from 2000 to 12000. The numerical results are validated with available experimental data. The numerical outcomes reveal that there is an important change in flow field behaviour and a significant increase in friction factor and improvement in heat transfer performance owing to the use of the corrugated shape in the heat exchanger pipe as compared to the conventional smooth pipe. Using corrugated pipe with different configurations makes the flow more turbulence, flow separation, boundary layer distribution, flow mixing, and that leads to augmenting the performance of heat transfer. Moreover, the value of pressure drop, and the Nusselt number increases as the corrugated pipe geometrical parameters increase. Furthermore, the corrugation configuration shapes have an important influence on the thermal evaluation performance factor, and the maximum value was more than 1.3. Numerical simulation can be performed to predict the various geometrical configurations effects on fluid flow, thermal performance, and heat transfer enhancement.

Keywords: corrugated ring angle, corrugated diameter, Nusselt number, heat transfer

Procedia PDF Downloads 143
12334 Applications of Big Data in Education

Authors: Faisal Kalota

Abstract:

Big Data and analytics have gained a huge momentum in recent years. Big Data feeds into the field of Learning Analytics (LA) that may allow academic institutions to better understand the learners’ needs and proactively address them. Hence, it is important to have an understanding of Big Data and its applications. The purpose of this descriptive paper is to provide an overview of Big Data, the technologies used in Big Data, and some of the applications of Big Data in education. Additionally, it discusses some of the concerns related to Big Data and current research trends. While Big Data can provide big benefits, it is important that institutions understand their own needs, infrastructure, resources, and limitation before jumping on the Big Data bandwagon.

Keywords: big data, learning analytics, analytics, big data in education, Hadoop

Procedia PDF Downloads 427
12333 Active Learning in Engineering Courses Using Excel Spreadsheet

Authors: Promothes Saha

Abstract:

Recently, transportation engineering industry members at the study university showed concern that students lacked the skills needed to solve real-world engineering problems using spreadsheet data analysis. In response to the concerns shown by industry members, this study investigated how to engage students in a better way by incorporating spreadsheet analysis during class - also, help them learn the course topics. Helping students link theoretical knowledge to real-world problems can be a challenge. In this effort, in-class activities and worksheets were redesigned to integrate with Excel to solve example problems using built-in tools including cell referencing, equations, data analysis tool pack, solver tool, conditional formatting, charts, etc. The effectiveness of this technique was investigated using students’ evaluations of the course, enrollment data, and students’ comments. Based on the data of those criteria, it is evident that the spreadsheet activities may increase student learning.

Keywords: civil, engineering, active learning, transportation

Procedia PDF Downloads 138
12332 Self-Determination Theory at the Workplace: Associations between Need Satisfaction and Employment Outcomes

Authors: Wendy I. E. Wesseling

Abstract:

The unemployment rate has been on the rise since the outbreak of the global financial crisis in 2008. Especially labor market entrants suffer from economic downfall. Despite the abundance of programs and agencies that help to reintegrate unemployed youth, considerable less research attention has been paid to 'fit' between these programs and its participants that ensure a durable labor market transition. According to Self-Determination Theory, need satisfaction is associated with better (mental) adjustment. As such, three hypothesis were formulated: when workers’ needs for competence (H1), relatedness (H2), and autonomy (H3) are satisfied in the workplace, they are more likely to remain employed at the same employer. To test these assumptions, a sample of approximately 800 young people enrolled in a youth unemployment policy participated in a longitudinal study. The unemployment policy was aimed at the development of generic and vocational competences, and had a maximum duration of six months. Need satisfaction during the program was measured, as well as their employment outcomes up to 12 months after completion of the policy. All hypotheses were (partly) supported. Some limitations should be noted. First, since our sample consisted primarily of highly educated white graduates, it remains to be tested whether our results generalize to other groups of unemployed youth. Moreover, we are unable to conclude whether the results are due to the intervention, participants (selection effect), or both, because of the lack of a control group.

Keywords: need satisfaction, person-job fit, self-determination theory, youth unemployment policy

Procedia PDF Downloads 256
12331 Curriculum Based Measurement and Precision Teaching in Writing Empowerment Enhancement: Results from an Italian Learning Center

Authors: I. Pelizzoni, C. Cavallini, I. Salvaderi, F. Cavallini

Abstract:

We present the improvement in writing skills obtained by 94 participants (aged between six and 10 years) with special educational needs through a writing enhancement program based on fluency principles. The study was planned and conducted with a single-subject experimental plan for each of the participants, in order to confirm the results in the literature. These results were obtained using precision teaching (PT) methodology to increase the number of written graphemes per minute in the pre- and post-test, by curriculum based measurement (CBM). Results indicated an increase in the number of written graphemes for all participants. The average overall duration of the intervention is 144 minutes in five months of treatment. These considerations have been analyzed taking account of the complexity of the implementation of measurement systems in real operational contexts (an Italian learning center) and important aspects of replicability and cost-effectiveness of such interventions.

Keywords: curriculum based measurement, precision teaching, writing skill, Italian learning center

Procedia PDF Downloads 129
12330 Teaching Method for a Classroom of Students at Different Language Proficiency Levels: Content and Language Integrated Learning in a Japanese Culture Classroom

Authors: Yukiko Fujiwara

Abstract:

As a language learning methodology, Content and Language Integrated Learning (CLIL) has become increasingly prevalent in Japan. Most CLIL classroom practice and its research are conducted in EFL fields. However, much less research has been done in the Japanese language learning setting. Therefore, there are still many issues to work out using CLIL in the Japanese language teaching (JLT) setting. it is expected that more research will be conducted on both authentically and academically. Under such circumstances, this is one of the few classroom-based CLIL researches experiments in JLT and aims to find an effective course design for a class with students at different proficiency levels. The class was called ‘Japanese culture A’. This class was offered as one of the elective classes for International exchange students at a Japanese university. The Japanese proficiency level of the class was above the Japanese Language Proficiency Test Level N3. Since the CLIL approach places importance on ‘authenticity’, the class was designed with materials and activities; such as books, magazines, a film and TV show and a field trip to Kyoto. On the field trip, students experienced making traditional Japanese desserts, by receiving guidance directly from a Japanese artisan. Through the course, designated task sheets were used so the teacher could get feedback from each student to grasp what the class proficiency gap was. After reading an article on Japanese culture, students were asked to write down the words they did not understand and what they thought they needed to learn. It helped both students and teachers to set learning goals and work together for it. Using questionnaires and interviews with students, this research examined whether the attempt was effective or not. Essays they wrote in class were also analyzed. The results from the students were positive. They were motivated by learning authentic, natural Japanese, and they thrived setting their own personal goals. Some students were motivated to learn Japanese by studying the language and others were motivated by studying the cultural context. Most of them said they learned better this way; by setting their own Japanese language and culture goals. These results will provide teachers with new insight towards designing class materials and activities that support students in a multilevel CLIL class.

Keywords: authenticity, CLIL, Japanese language and culture, multilevel class

Procedia PDF Downloads 252
12329 A Study on User Authentication Method Using Haptic Actuator and Security Evaluation

Authors: Yo Han Choi, Hee Suk Seo, Seung Hwan Ju, Sung Hyu Han

Abstract:

As currently various portable devices were launched, smart business conducted using them became common. Since smart business can use company-internal resources in an external remote place, user authentication that can identify authentic users is an important factor. Commonly used user authentication is a method of using user ID and Password. In the user authentication using ID and Password, the user should see and enter authentication information him or herself. In this user authentication system depending on the user’s vision, there is the threat of password leaks through snooping in the process which the user enters his or her authentication information. This study designed and produced a user authentication module using an actuator to respond to the snooping threat.

Keywords: actuator, user authentication, security evaluation, haptic actuator

Procedia PDF Downloads 346
12328 AI-Driven Forecasting Models for Anticipating Oil Market Trends and Demand

Authors: Gaurav Kumar Sinha

Abstract:

The volatility of the oil market, influenced by geopolitical, economic, and environmental factors, presents significant challenges for stakeholders in predicting trends and demand. This article explores the application of artificial intelligence (AI) in developing robust forecasting models to anticipate changes in the oil market more accurately. We delve into various AI techniques, including machine learning, deep learning, and time series analysis, that have been adapted to analyze historical data and current market conditions to forecast future trends. The study evaluates the effectiveness of these models in capturing complex patterns and dependencies in market data, which traditional forecasting methods often miss. Additionally, the paper discusses the integration of external variables such as political events, economic policies, and technological advancements that influence oil prices and demand. By leveraging AI, stakeholders can achieve a more nuanced understanding of market dynamics, enabling better strategic planning and risk management. The article concludes with a discussion on the potential of AI-driven models in enhancing the predictive accuracy of oil market forecasts and their implications for global economic planning and strategic resource allocation.

Keywords: AI forecasting, oil market trends, machine learning, deep learning, time series analysis, predictive analytics, economic factors, geopolitical influence, technological advancements, strategic planning

Procedia PDF Downloads 35
12327 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations

Authors: Zhao Gao, Eran Edirisinghe

Abstract:

The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.

Keywords: RNN, GAN, NLP, facial composition, criminal investigation

Procedia PDF Downloads 162
12326 A Method for Rapid Evaluation of Ore Breakage Parameters from Core Images

Authors: A. Nguyen, K. Nguyen, J. Jackson, E. Manlapig

Abstract:

With the recent advancement in core imaging systems, a large volume of high resolution drill core images can now be collected rapidly. This paper presents a method for rapid prediction of ore-specific breakage parameters from high resolution mineral classified core images. The aim is to allow for a rapid assessment of the variability in ore hardness within a mineral deposit with reduced amount of physical breakage tests. This method sees its application primarily in project evaluation phase, where proper evaluation of the variability in ore hardness of the orebody normally requires prolong and costly metallurgical test work program. Applying this image-based texture analysis method on mineral classified core images, the ores are classified according to their textural characteristics. A small number of physical tests are performed to produce a dataset used for developing the relationship between texture classes and measured ore hardness. The paper also presents a case study in which this method has been applied on core samples from a copper porphyry deposit to predict the ore-specific breakage A*b parameter, obtained from JKRBT tests.

Keywords: geometallurgy, hyperspectral drill core imaging, process simulation, texture analysis

Procedia PDF Downloads 361
12325 Online or Offline: A Pilot Study of Blended Ear-Training Course

Authors: Monika Benedek

Abstract:

This paper intends to present a pilot study of blended ear-training course at a Finnish university. The course ran for ten weeks and included both traditional (offline) group lessons for 90 minutes each week and an online learning platform. Twelve students majored in musicology and music education participated in the course. The aims of pilot research were to develop a new blended ear-training course at university level, to determine the ideal amount of workload in each part of the blended instruction (offline and online) and to develop the course material. The course material was selected from the Classical period in order to develop students’ aural skills together with their stylistic knowledge. Students were asked to provide written feedback of the course content and learning approaches of face-to-face group lessons and online learning platform each week during the course. Therefore, the teaching material is continuously planned for each week. This qualitative data collection and weekly analysis of data are on progress. However, based on the teacher-researcher’s experiences and the students’ feedback already collected, it could be seen that the blended instruction would be an ideal teaching strategy for ear-trainging at the music programmes of universities to develop students’ aural skills and stylistic knowledge. It is also presumed that such blended instruction with less workload would already improve university students’ aural skills and related musicianship skills. The preliminary findings of research also indicated that students generally found those ear-training tasks the most useful to learn online that combined listening, singing, singing and playing an instrument. This paper intends to summarise the final results of the pilot study.

Keywords: blended-learning, ear-training, higher music education, online-learning, pilot study

Procedia PDF Downloads 155
12324 The Impact of Blended Learning on Developing the students' Writing Skills and the Perception of Instructors and Students: Hawassa University in Focus

Authors: Mulu G. Gencha, Gebremedhin Simon, Menna Olango

Abstract:

This study was conducted at Hawassa University (HwU) in the Southern Nation Nationalities Peoples Regional State (SNNPRS) of Ethiopia. The prime concern of this study was to examine the writing performances of experimental and control group students, perception of experimental group students, and subject instructors. The course was blended learning (BL). Blended learning is a hybrid of classroom and on-line learning. Participants were eighty students from the School of Computer Science. Forty students attended the BL delivery involved using Face-to-Face (FTF) and campus-based online instruction. All instructors, fifty, of School of Language and Communication Studies along with 10 FGD members participated in the study. The experimental group went to the computer lab two times a week for four months, March-June, 2012, using the local area network (LAN), and software (MOODLE) writing program. On the other hand, the control group, forty students, took the FTF writing course five times a week for four months in similar academic calendar. The three instruments, the attitude questionnaire, tests and FGD were designed to identify views of students, instructors, and FGD participants on BL. At the end of the study, students’ final course scores were evaluated. Data were analyzed using independent samples t-tests. A statistically, significant difference was found between the FTF and BL (p<0.05). The analysis showed that the BL group was more successful than the conventional group. Besides, both instructors and students had positive attitude towards BL. The final section of the thesis showed the potential benefits and challenges, considering the pedagogical implications for the BL, and recommended possible avenues for further works.

Keywords: blended learning, computer attitudes, computer usefulness, computer liking, computer confidence, computer phobia

Procedia PDF Downloads 410
12323 Early Prediction of Diseases in a Cow for Cattle Industry

Authors: Ghufran Ahmed, Muhammad Osama Siddiqui, Shahbaz Siddiqui, Rauf Ahmad Shams Malick, Faisal Khan, Mubashir Khan

Abstract:

In this paper, a machine learning-based approach for early prediction of diseases in cows is proposed. Different ML algos are applied to extract useful patterns from the available dataset. Technology has changed today’s world in every aspect of life. Similarly, advanced technologies have been developed in livestock and dairy farming to monitor dairy cows in various aspects. Dairy cattle monitoring is crucial as it plays a significant role in milk production around the globe. Moreover, it has become necessary for farmers to adopt the latest early prediction technologies as the food demand is increasing with population growth. This highlight the importance of state-ofthe-art technologies in analyzing how important technology is in analyzing dairy cows’ activities. It is not easy to predict the activities of a large number of cows on the farm, so, the system has made it very convenient for the farmers., as it provides all the solutions under one roof. The cattle industry’s productivity is boosted as the early diagnosis of any disease on a cattle farm is detected and hence it is treated early. It is done on behalf of the machine learning output received. The learning models are already set which interpret the data collected in a centralized system. Basically, we will run different algorithms on behalf of the data set received to analyze milk quality, and track cows’ health, location, and safety. This deep learning algorithm draws patterns from the data, which makes it easier for farmers to study any animal’s behavioral changes. With the emergence of machine learning algorithms and the Internet of Things, accurate tracking of animals is possible as the rate of error is minimized. As a result, milk productivity is increased. IoT with ML capability has given a new phase to the cattle farming industry by increasing the yield in the most cost-effective and time-saving manner.

Keywords: IoT, machine learning, health care, dairy cows

Procedia PDF Downloads 71