Search results for: data space connector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28072

Search results for: data space connector

24922 Data Protection and Regulation Compliance on Handling Physical Child Abuse Scenarios- A Scoping Review

Authors: Ana Mafalda Silva, Rebeca Fontes, Ana Paula Vaz, Carla Carreira, Ana Corte-Real

Abstract:

Decades of research on the topic of interpersonal violence against minors highlight five main conclusions: 1) it causes harmful effects on children's development and health; 2) it is prevalent; 3) it violates children's rights; 4) it can be prevented and 5) parents are the main aggressors. The child abuse scenario is identified through clinical observation, administrative data and self-reports. The most used instruments are self-reports; however, there are no valid and reliable self-report instruments for minors, which consist of a retrospective interpretation of the situation by the victim already in her adult phase and/or by her parents. Clinical observation and collection of information, namely from the orofacial region, are essential in the early identification of these situations. The management of medical data, such as personal data, must comply with the General Data Protection Regulation (GDPR), in Europe, and with the General Law of Data Protection (LGPD), in Brazil. This review aims to answer the question: In a situation of medical assistance to minors, in the suspicion of interpersonal violence, due to mistreatment, is it necessary for the guardians to provide consent in the registration and sharing of personal data, namely medical ones. A scoping review was carried out based on a search by the Web of Science and Pubmed search engines. Four papers and two documents from the grey literature were selected. As found, the process of identifying and signaling child abuse by the health professional, and the necessary early intervention in defense of the minor as a victim of abuse, comply with the guidelines expressed in the GDPR and LGPD. This way, the notification in maltreatment scenarios by health professionals should be a priority and there shouldn’t be the fear or anxiety of legal repercussions that stands in the way of collecting and treating the data necessary for the signaling procedure that safeguards and promotes the welfare of children living with abuse.

Keywords: child abuse, disease notifications, ethics, healthcare assistance

Procedia PDF Downloads 100
24921 A Generic Middleware to Instantly Sync Intensive Writes of Heterogeneous Massive Data via Internet

Authors: Haitao Yang, Zhenjiang Ruan, Fei Xu, Lanting Xia

Abstract:

Industry data centers often need to sync data changes reliably and instantly from a large-scale of heterogeneous autonomous relational databases accessed via the not-so-reliable Internet, for which a practical universal sync middle of low maintenance and operation costs is most wanted, but developing such a product and adapting it for various scenarios are a very sophisticated and continuous practice. The authors have been devising, applying, and optimizing a generic sync middleware system, named GSMS since 2006, holding the principles or advantages that the middleware must be SyncML-compliant and transparent to data application layer logic, need not refer to implementation details of databases synced, does not rely on host computer operating systems deployed, and its construction is light weighted and hence, of low cost. A series of ultimate experiments with GSMS sync performance were conducted for a persuasive example of a source relational database that underwent a broad range of write loads, say, from one thousand to one million intensive writes within a few minutes. The tests proved that GSMS has achieved an instant sync level of well below a fraction of millisecond per record sync, and GSMS’ smooth performances under ultimate write loads also showed it is feasible and competent.

Keywords: heterogeneous massive data, instantly sync intensive writes, Internet generic middleware design, optimization

Procedia PDF Downloads 126
24920 Building Transparent Supply Chains through Digital Tracing

Authors: Penina Orenstein

Abstract:

In today’s world, particularly with COVID-19 a constant worldwide threat, organizations need greater visibility over their supply chains more than ever before, in order to find areas for improvement and greater efficiency, reduce the chances of disruption and stay competitive. The concept of supply chain mapping is one where every process and route is mapped in detail between each vendor and supplier. The simplest method of mapping involves sourcing publicly available data including news and financial information concerning relationships between suppliers. An additional layer of information would be disclosed by large, direct suppliers about their production and logistics sites. While this method has the advantage of not requiring any input from suppliers, it also doesn’t allow for much transparency beyond the first supplier tier and may generate irrelevant data—noise—that must be filtered out to find the actionable data. The primary goal of this research is to build data maps of supply chains by focusing on a layered approach. Using these maps, the secondary goal is to address the question as to whether the supply chain is re-engineered to make improvements, for example, to lower the carbon footprint. Using a drill-down approach, the end result is a comprehensive map detailing the linkages between tier-one, tier-two, and tier-three suppliers super-imposed on a geographical map. The driving force behind this idea is to be able to trace individual parts to the exact site where they’re manufactured. In this way, companies can ensure sustainability practices from the production of raw materials through the finished goods. The approach allows companies to identify and anticipate vulnerabilities in their supply chain. It unlocks predictive analytics capabilities and enables them to act proactively. The research is particularly compelling because it unites network science theory with empirical data and presents the results in a visual, intuitive manner.

Keywords: data mining, supply chain, empirical research, data mapping

Procedia PDF Downloads 180
24919 New Kinetic Effects in Spatial Distribution of Electron Flux and Excitation Rates in Glow Discharge Plasmas in Middle and High Pressures

Authors: Kirill D. Kapustin, Mikhail B. Krasilnikov, Anatoly A. Kudryavtsev

Abstract:

Physical formation mechanisms of differential electron fluxes is high pressure positive column gas discharge are discussed. It is shown that the spatial differential fluxes of the electrons are directed both inward and outward depending on the energy relaxation law. In some cases the direction of energy differential flux at intermediate energies (5-10eV) in whole volume, except region near the wall, appeared to be down directed, so electron in this region dissipate more energy than gain from axial electric field. Paradoxical behaviour of electron flux in spatial-energy space is presented.

Keywords: plasma kinetics, electron distribution function, excitation and radiation rates, local and nonlocal EDF

Procedia PDF Downloads 406
24918 Dietary Diversity of Pregnant Mothers in a Semi-Urban Setting: Sri Lanka

Authors: R. B. B. Samantha Ramachandra, L. D. J. Upul Senarath, S. H. Padmal De Silva

Abstract:

Dietary pattern largely differs over countries and even within a country, it shows cultural differences. The dietary pattern changes the energy consumption and micronutrient intake, directly affects the pregnancy outcome. The dietary diversity was used as an indirect measure to assess micronutrient adequacy for pregnant mothers in this study. The study was conducted as a baseline survey with the objective of designing an intervention to improve the dietary diversity of pregnant mothers in Sri Lanka. The survey was conducted in Kalutara district of Sri Lanka in 2015 among 769 pregnant mothers at different gestational ages. Dietary diversity questionnaire developed by Food and Agricultural Organization’s (FAO) Food and Nutrition technical Assistance (FANTA) II project, recommended for cross-country use with adaptations was used for data collection. Trained data collectors met pregnant mothers at field ante-natal clinic and questioned on last 24hr dietary recall with portion size and coded food items to identify the diversity. Pregnant mothers were identified from randomly selected 21 clusters of public health midwife areas. 81.5% mothers (n=627) in the sample had been registered at Public Health Midwife (PHM) before 8 weeks of gestation. 24.4% of mothers were with low starting BMI and 22.7% mothers were with high starting BMI. 47.6% (n=388) mothers had abstained from at least one food item during the pregnancy. The food group with the highest consumption was rice (98.4%) followed by sugar (89.9%). 76.1% mothers had consumed milk, 73% consumed fish and sea foods. Consumption of green leaves was 52% and Vit A rich foods consumed only by 49% mothers. Animal organs, flesh meat and egg all showed low prevalence as 4.7%, 21.6% and 20% respectively. Consumption of locally grown roots, nut, legumes all showed very low prevalence. Consumption of 6 or more food groups was considered as good dietary diversity (DD), 4 to 5 food groups as moderate diversity and 3 or less food groups as poor diversity by FAO FANTA II project. 42.1% mothers demonstrated good DD while another 42.1% recorded moderate diversity. Working mothers showed better DD (51.6%, n=82/159) compared to housewives in the sample (chi = 10.656a,. df=2, p=0.005). The good DD showed gradual improvement from 43.1% to 55.5% along the poorest to richest wealth index (Chi=48.045, df=8 and p=0.000). DD showed significant association with the ethnicity and Moors showed the lowest DD. DD showed no association with the home gardening even though where better diversity expected among those who have home gardening (p=0.548). Sri Lanka is a country where many food items can be grown in the garden and semi-urban setting have adequate space for gardening. Many Sri Lankan mothers do not add homegrown items in their meal. At the same time, their consumption of animal food shows low prevalence. The DD of most of the mothers being either moderate or low (58%) may result from inadequate micro nutrient intake during pregnancy. It is recommended that adding green leaves, locally grown vegetables, roots, nuts and legumes can help increasing the DD of Sri Lankan mothers at low cost.

Keywords: dietary diversity, pregnant mothers, micro-nutrient, food groups

Procedia PDF Downloads 167
24917 Synoptic Analysis of a Heavy Flood in the Province of Sistan-Va-Balouchestan: Iran January 2020

Authors: N. Pegahfar, P. Ghafarian

Abstract:

In this research, the synoptic weather conditions during the heavy flood of 10-12 January 2020 in the Sistan-va-Balouchestan Province of Iran will be analyzed. To this aim, reanalysis data from the National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR), NCEP Global Forecasting System (GFS) analysis data, measured data from a surface station together with satellite images from the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) have been used from 9 to 12 January 2020. Atmospheric parameters both at the lower troposphere and also at the upper part of that have been used, including absolute vorticity, wind velocity, temperature, geopotential height, relative humidity, and precipitation. Results indicated that both lower-level and upper-level currents were strong. In addition, the transport of a large amount of humidity from the Oman Sea and the Red Sea to the south and southeast of Iran (Sistan-va-Balouchestan Province) led to the vast and unexpected precipitation and then a heavy flood.

Keywords: Sistan-va-Balouchestn Province, heavy flood, synoptic, analysis data

Procedia PDF Downloads 104
24916 Role of Machine Learning in Internet of Things Enabled Smart Cities

Authors: Amit Prakash Singh, Shyamli Singh, Chavi Srivastav

Abstract:

This paper presents the idea of Internet of Thing (IoT) for the infrastructure of smart cities. Internet of Thing has been visualized as a communication prototype that incorporates myriad of digital services. The various component of the smart cities shall be implemented using microprocessor, microcontroller, sensors for network communication and protocols. IoT enabled systems have been devised to support the smart city vision, of which aim is to exploit the currently available precocious communication technologies to support the value-added services for function of the city. Due to volume, variety, and velocity of data, it requires analysis using Big Data concept. This paper presented the various techniques used to analyze big data using machine learning.

Keywords: IoT, smart city, embedded systems, sustainable environment

Procedia PDF Downloads 579
24915 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes

Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali

Abstract:

Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.

Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture

Procedia PDF Downloads 63
24914 A Tactic for a Cosmopolitan City Comparison through a Data-Driven Approach: Case of Climate City Networking

Authors: Sombol Mokhles

Abstract:

Tackling climate change requires expanding networking opportunities between a diverse range of cities to accelerate climate actions. Existing climate city networks have limitations in actively engaging “ordinary” cities in networking processes between cities, as they encourage a few powerful cities to be followed by the many “ordinary” cities. To reimagine the networking opportunities between cities beyond global cities, this paper incorporates “cosmopolitan comparison” to expand our knowledge of a diverse range of cities using a data-driven approach. Through a cosmopolitan perspective, a framework is presented on how to utilise large data to expand knowledge of cities beyond global cities to reimagine the existing hierarchical networking practices. The contribution of this framework is beyond urban climate governance but inclusive of different fields which strive for a more inclusive and cosmopolitan comparison attentive to the differences across cities.

Keywords: cosmopolitan city comparison, data-driven approach, climate city networking, urban climate governance

Procedia PDF Downloads 116
24913 An Analysis on Clustering Based Gene Selection and Classification for Gene Expression Data

Authors: K. Sathishkumar, V. Thiagarasu

Abstract:

Due to recent advances in DNA microarray technology, it is now feasible to obtain gene expression profiles of tissue samples at relatively low costs. Many scientists around the world use the advantage of this gene profiling to characterize complex biological circumstances and diseases. Microarray techniques that are used in genome-wide gene expression and genome mutation analysis help scientists and physicians in understanding of the pathophysiological mechanisms, in diagnoses and prognoses, and choosing treatment plans. DNA microarray technology has now made it possible to simultaneously monitor the expression levels of thousands of genes during important biological processes and across collections of related samples. Elucidating the patterns hidden in gene expression data offers a tremendous opportunity for an enhanced understanding of functional genomics. However, the large number of genes and the complexity of biological networks greatly increase the challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of measurements. A first step toward addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. This work presents an analysis of several clustering algorithms proposed to deals with the gene expression data effectively. The existing clustering algorithms like Support Vector Machine (SVM), K-means algorithm and evolutionary algorithm etc. are analyzed thoroughly to identify the advantages and limitations. The performance evaluation of the existing algorithms is carried out to determine the best approach. In order to improve the classification performance of the best approach in terms of Accuracy, Convergence Behavior and processing time, a hybrid clustering based optimization approach has been proposed.

Keywords: microarray technology, gene expression data, clustering, gene Selection

Procedia PDF Downloads 329
24912 Crystal Structures and High-Temperature Phase Transitions of the New Ordered Double Perovskites SrCaCoTeO6 and SrCaNiTeO6

Authors: Asmaa Zaraq

Abstract:

In the present work we report X-ray powder diffraction measurements of SrCaCoTeO6 and SrCaNiTeO6, at different temperatures. The crystal structures at room temperature of both compounds are determined; and results showing the existence of high-temperature phase transitions in them are presented. Both compounds have double perovskite structure with 1:1 ordered arrangement of the B site cations. At room temperature their symmetries are described with the P21/n space group, that correspond to the (a+b-b-) tilt system. The evolution with temperature of the structure of both compounds shows the presence of three phase transitions: a continuous one, at 450 and 500 K, a discontinuous one, at 700 and 775 K, and a continuous one at 900 and 950 K for SrCaCoTeO6 and SrCaNiTeO6, respectively with the following phase-transition sequence: P21/n → I2/m → I4/m → Fm-3m.

Keywords: double perovskites, caracterisation DRX, transition de phase

Procedia PDF Downloads 525
24911 Generalized Mean-Field Theory of Phase Unwrapping via Multiple Interferograms

Authors: Yohei Saika

Abstract:

On the basis of Bayesian inference using the maximizer of the posterior marginal estimate, we carry out phase unwrapping using multiple interferograms via generalized mean-field theory. Numerical calculations for a typical wave-front in remote sensing using the synthetic aperture radar interferometry, phase diagram in hyper-parameter space clarifies that the present method succeeds in phase unwrapping perfectly under the constraint of surface- consistency condition, if the interferograms are not corrupted by any noises. Also, we find that prior is useful for extending a phase in which phase unwrapping under the constraint of the surface-consistency condition. These results are quantitatively confirmed by the Monte Carlo simulation.

Keywords: Bayesian inference, generalized mean-field theory, phase unwrapping, multiple interferograms, statistical mechanics

Procedia PDF Downloads 481
24910 Localisation of Fluorescently Labelled Drug-Free Phospholipid Vesicles to the Cartilage Surface of Rat Synovial Joints

Authors: Sam Yurdakul, Nick Baverstock, Jim Mills

Abstract:

TDT 064 (FLEXISEQ®) is a drug-free gel used to treat osteoarthritis (OA)-associated pain and joint stiffness. It contains ultra-deformable phospholipid Sequessome™ vesicles, which can pass through the skin barrier intact. In six randomized OA studies, topical TDT 064 was well tolerated and improved joint pain, physical function and stiffness. In the largest study, these TDT 064-mediated effects were statistically significantly greater than oral placebo and equivalent to celecoxib. To understand the therapeutic effects of TDT 064, we investigated the localisation of the drug-free vesicles within rat synovial joints. TDT 064 containing DiO-labelled Sequessome™ vesicles was applied to the knees of four 6-week-old CD® hairless rats (10 mg/kg/ joint), 2–3 times/day, for 3 days (representing the recommended clinical dose). Eighteen hours later, the animals and one untreated control were sacrificed, and the knee joints isolated, flash frozen and embedded in Acrytol Mounting Media™. Approximately 15 sections (10 µm) from each joint were analysed by fluorescence microscopy. To investigate whether the localisation of DiO fluorescence was associated with intact vesicles, an anti-PEG monoclonal antibody (mAb) was used to detect Tween, a constituent of Sequessome™ vesicles. Sections were visualized at 484 nm (DiO) and 647 nm (anti-PEG mAb) and analysed using inForm 1.4 (Perkin Elmer, Inc.). Significant fluorescence was observed at 484 nm in sections from TDT 064-treated animals. No non-specific fluorescence was observed in control sections. Fluorescence was detected as discrete vesicles on the cartilage surfaces, inside the cartilaginous matrix and within the synovial space. The number of DiO-labelled vesicles in multiple fields of view was consistent and >100 in sections from four different treated knees. DiO and anti-PEG mAb co-localised within the collagenous tissues in four different joint sections. Under higher magnification (40x), vesicles were seen in the intercellular spaces of the synovial joint tissue, but no fluorescence was seen inside cells. These data suggest that the phospholipid vesicles in TDT 064 localize at the surface of the joint cartilage; these vesicles may therefore be supplementing the phospholipid deficiency reported in OA and acting as a biolubricant within the synovial joint.

Keywords: joint pain, osteoarthritis, phospholipid vesicles, TDT 064

Procedia PDF Downloads 447
24909 Application of Satellite Remote Sensing in Support of Water Exploration in the Arab Region

Authors: Eman Ghoneim

Abstract:

The Arabian deserts include some of the driest areas on Earth. Yet, its landforms reserved a record of past wet climates. During humid phases, the desert was green and contained permanent rivers, inland deltas and lakes. Some of their water would have seeped and replenished the groundwater aquifers. When the wet periods came to an end, several thousand years ago, the entire region transformed into an extended band of desert and its original fluvial surface was totally covered by windblown sand. In this work, radar and thermal infrared images were used to reveal numerous hidden surface/subsurface features. Radar long wavelength has the unique ability to penetrate surface dry sands and uncover buried subsurface terrain. Thermal infrared also proven to be capable of spotting cooler moist areas particularly in hot dry surfaces. Integrating Radarsat images and GIS revealed several previously unknown paleoriver and lake basins in the region. One of these systems, known as the Kufrah, is the largest yet identified river basin in the Eastern Sahara. This river basin, which straddles the border between Egypt and Libya, flowed north parallel to the adjacent Nile River with an extensive drainage area of 235,500 km2 and massive valley width of 30 km in some parts. This river was most probably served as a spillway for an overflow from Megalake Chad to the Mediterranean Sea and, thus, may have acted as a natural water corridor used by human ancestors to migrate northward across the Sahara. The Gilf-Kebir is another large paleoriver system located just east of Kufrah and emanates from the Gilf Plateau in Egypt. Both river systems terminate with vast inland deltas at the southern margin of the Great Sand Sea. The trends of their distributary channels indicate that both rivers drained to a topographic depression that was periodically occupied by a massive lake. During dry climates, the lake dried up and roofed by sand deposits, which is today forming the Great Sand Sea. The enormity of the lake basin provides explanation as to why continuous extraction of groundwater in this area is possible. A similar lake basin, delimited by former shorelines, was detected by radar space data just across the border of Sudan. This lake, called the Northern Darfur Megalake, has a massive size of 30,750 km2. These former lakes and rivers could potentially hold vast reservoirs of groundwater, oil and natural gas at depth. Similar to radar data, thermal infrared images were proven to be useful in detecting potential locations of subsurface water accumulation in desert regions. Analysis of both Aster and daily MODIS thermal channels reveal several subsurface cool moist patches in the sandy desert of the Arabian Peninsula. Analysis indicated that such evaporative cooling anomalies were resulted from the subsurface transmission of the Monsoonal rainfall from the mountains to the adjacent plain. Drilling a number of wells in several locations proved the presence of productive water aquifers confirming the validity of the used data and the adopted approaches for water exploration in dry regions.

Keywords: radarsat, SRTM, MODIS, thermal infrared, near-surface water, ancient rivers, desert, Sahara, Arabian peninsula

Procedia PDF Downloads 248
24908 The Wear Recognition on Guide Surface Based on the Feature of Radar Graph

Authors: Youhang Zhou, Weimin Zeng, Qi Xie

Abstract:

Abstract: In order to solve the wear recognition problem of the machine tool guide surface, a new machine tool guide surface recognition method based on the radar-graph barycentre feature is presented in this paper. Firstly, the gray mean value, skewness, projection variance, flat degrees and kurtosis features of the guide surface image data are defined as primary characteristics. Secondly, data Visualization technology based on radar graph is used. The visual barycentre graphical feature is demonstrated based on the radar plot of multi-dimensional data. Thirdly, a classifier based on the support vector machine technology is used, the radar-graph barycentre feature and wear original feature are put into the classifier separately for classification and comparative analysis of classification and experiment results. The calculation and experimental results show that the method based on the radar-graph barycentre feature can detect the guide surface effectively.

Keywords: guide surface, wear defects, feature extraction, data visualization

Procedia PDF Downloads 522
24907 Modeling and Simulation of Underwater Flexible Manipulator as Raleigh Beam Using Bond Graph

Authors: Sumit Kumar, Sunil Kumar, Chandan Deep Singh

Abstract:

This paper presents modeling and simulation of flexible robot in an underwater environment. The underwater environment completely contrasts with ground or space environment. The robot in an underwater situation is subjected to various dynamic forces like buoyancy forces, hydrostatic and hydrodynamic forces. The underwater robot is modeled as Rayleigh beam. The developed model further allows estimating the deflection of tip in two directions. The complete dynamics of the underwater robot is analyzed, which is the main focus of this investigation. The control of robot trajectory is not discussed in this paper. Simulation is performed using Symbol Shakti software.

Keywords: bond graph modeling, dynamics. modeling, rayleigh beam, underwater robot

Procedia PDF Downloads 590
24906 Challenges and Constraints of Municipal Solid Waste Management in Kibuye, Makindye Division Kampala Uganda

Authors: Tumusiime Humble Abel, Twebaze Paul, Turyamureeba Joshua Eldard

Abstract:

The challenges of rapid urbanization have continued to threaten the governance of many urban centers, especially in developing countries. Poor solid waste management continues to not only constrain the delivery of services but also threatens the health and quality of life of people, especially urban dwellers. Addressing this challenge requires a comprehensive, coordinated approach informed by thorough investigation and research. While several studies have been carried out on solid waste management, most of these run short of comprehensive analysis to examine the challenges of solid waste management (SWM) in local and municipal governance settings. The study was carried out to assess the challenges and constraints of Municipal waste solid management, management mechanisms, and communities’ knowledge about the dangers of poor solid waste management. It was carried out in Kibuye 1 Parish- one of the 21 parishes that make up Makindye Division. The study employed a descriptive design and was mainly qualitative, although some quantitative data was collected. It employed semi-structured in-depth interviews. In-depth interviews were carried out with city solid waste managers, managers of private sector companies in Solid Waste Management (SWM), political leaders, especially local councilors and opinion leaders. These respondents were purposely sampled. The sample size study was calculated using the Kish and Leslie formula for a single proportion, with a precision of 10%, at a confidence interval of 95%, with a prevalence of 49% representing the proportion of solid waste collected and disposed of by KCC and private companies. The households were the study units; 100 respondents were also purposively selected based on the population size of the 5 zones. Twenty respondents were purposively selected from each of the 5 Zones. A total of 10 key informants were also interviewed, with 5 selected from Makindye Division and another 5 from Kampala Capital City Authority. Regarding the composition of waste generated, the study findings revealed that the biggest percentage of the waste generated in Kibuye 1 Parish was biodegradable waste and mixed fines (85%), plastic (6%), Animal Waste (3%), Sanitary waste (2%), paper and cardboard (2%), textile (1%). In comparison, others were also (1%). The field findings also indicated that Kibuye 1 Parish employed various practices to control and minimize the solid waste generated, which included disposal in Municipal skips (35%), burning (20), open space dumping (15%), recycling (10%), compositing (6%), and burying (5%), others. Study findings reported that the major challenges facing solid waste management include failure to collect the waste on time, insufficient capital, weather vagaries, nature and composition of the waste, limited space and inadequate containers for waste collection and segregation. It was recommended that Makindye Municipality works with private sector actors such as recycling industries and energy generation companies to support waste management at source points, including separating waste and building broad-based support for composting and recycling through the ‘garbage is money’ programs. It was also noted that Makindye municipality/division develops a deliberate policy that encourages the community and various stakeholders to play an active role in managing waste, carrying out environmental education amongst the communities and establishing strong partnerships with private sector companies to provide services to the people. It was also recommended that the Division works with Non-Governmental organizations (NGOs), development partners, recycling companies, energy generation companies and community groups to develop economic incentives for community members to develop sustainable waste management initiatives. The study also highlighted a need to strengthen the capacity (financial, institutional, technological and infrastructural) to drive environmentally solid waste management practices for sustainable solid waste management.

Keywords: refuse, municipal, management, waste

Procedia PDF Downloads 13
24905 A Method to Saturation Modeling of Synchronous Machines in d-q Axes

Authors: Mohamed Arbi Khlifi, Badr M. Alshammari

Abstract:

This paper discusses the general methods to saturation in the steady-state, two axis (d & q) frame models of synchronous machines. In particular, the important role of the magnetic coupling between the d-q axes (cross-magnetizing phenomenon), is demonstrated. For that purpose, distinct methods of saturation modeling of dumper synchronous machine with cross-saturation are identified, and detailed models synthesis in d-q axes. A number of models are given in the final developed form. The procedure and the novel models are verified by a critical application to prove the validity of the method and the equivalence between all developed models is reported. Advantages of some of the models over the existing ones and their applicability are discussed.

Keywords: cross-magnetizing, models synthesis, synchronous machine, saturated modeling, state-space vectors

Procedia PDF Downloads 457
24904 Aggregation Scheduling Algorithms in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.

Keywords: data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional

Procedia PDF Downloads 235
24903 Simulation of an Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform

Authors: Shield B. Lin, Sameer Abdali

Abstract:

Computer simulations were performed using MATLAB/Simulink for a vibration isolation system for astronaut’s exercise platform. Simulation parameters initially were based on an on-going experiment in a laboratory at NASA Johnson Space Center. The authors expanded later simulations to include other parameters. A discrete proportional-integral-derivative controller with a low-pass filter commanding a linear actuator served as the active control unit to push and pull a counterweight in balancing the disturbance forces. A spring-damper device is used as an optional passive control unit. Simulation results indicated such design could achieve near complete vibration isolation with small displacements of the exercise platform.

Keywords: control, counterweight, isolation, vibration

Procedia PDF Downloads 152
24902 Reliable and Energy-Aware Data Forwarding under Sink-Hole Attack in Wireless Sensor Networks

Authors: Ebrahim Alrashed

Abstract:

Wireless sensor networks are vulnerable to attacks from adversaries attempting to disrupt their operations. Sink-hole attacks are a type of attack where an adversary node drops data forwarded through it and hence affecting the reliability and accuracy of the network. Since sensor nodes have limited battery power, it is essential that any solution to the sinkhole attack problem be very energy-aware. In this paper, we present a reliable and energy efficient scheme to forward data from source nodes to the base station while under sink-hole attack. The scheme also detects sink-hole attack nodes and avoid paths that includes them.

Keywords: energy-aware routing, reliability, sink-hole attack, WSN

Procedia PDF Downloads 400
24901 Estimating Precipitable Water Vapour Using the Global Positioning System and Radio Occultation over Ethiopian Regions

Authors: Asmamaw Yehun, Tsegaye Gogie, Martin Vermeer, Addisu Hunegnaw

Abstract:

The Global Positioning System (GPS) is a space-based radio positioning system, which is capable of providing continuous position, velocity, and time information to users anywhere on or near the surface of the Earth. The main objective of this work was to estimate the integrated precipitable water vapour (IPWV) using ground GPS and Low Earth Orbit (LEO) Radio Occultation (RO) to study spatial-temporal variability. For LEO-GPS RO, we used Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) datasets. We estimated the daily and monthly mean of IPWV using six selected ground-based GPS stations over a period of range from 2012 to 2016 (i.e. five-years period). The main perspective for selecting the range period from 2012 to 2016 is that, continuous data were available during these periods at all Ethiopian GPS stations. We studied temporal, seasonal, diurnal, and vertical variations of precipitable water vapour using GPS observables extracted from the precise geodetic GAMIT-GLOBK software package. Finally, we determined the cross-correlation of our GPS-derived IPWV values with those of the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 Interim reanalysis and of the second generation National Oceanic and Atmospheric Administration (NOAA) model ensemble Forecast System Reforecast (GEFS/R) for validation and static comparison. There are higher values of the IPWV range from 30 to 37.5 millimetres (mm) in Gambela and Southern Regions of Ethiopia. Some parts of Tigray, Amhara, and Oromia regions had low IPWV ranges from 8.62 to 15.27 mm. The correlation coefficient between GPS-derived IPWV with ECMWF and GEFS/R exceeds 90%. We conclude that there are highly temporal, seasonal, diurnal, and vertical variations of precipitable water vapour in the study area.

Keywords: GNSS, radio occultation, atmosphere, precipitable water vapour

Procedia PDF Downloads 89
24900 Trust in Virtual Groups: An Exploratory Study Applied to University Students in Kuwait

Authors: Bashaiar Alsanaa

Abstract:

Emerging technologies present human interaction with new challenges. Individuals are required to interact and collaborate to achieve mutual gain. Accomplishing shared goals requires all parties involved to trust others’ commitment to fulfilling their specified obligations. Trust is harder to establish when groups work virtually and members transcend time, space, and culture. This paper identifies the importance of trust in virtual groups of students at Kuwait University by exposing them to electronic projects on which they collaborate. Students respond to a survey to assess their range of trust within their teams and how the outcome is affected. Gender differences and other demographic factors are analyzed to understand results and rates of trust. The paper concludes with summarizing factors influencing trust development and possible implications.

Keywords: groups, students, trust, virtual

Procedia PDF Downloads 298
24899 A Near-Optimal Domain Independent Approach for Detecting Approximate Duplicates

Authors: Abdelaziz Fellah, Allaoua Maamir

Abstract:

We propose a domain-independent merging-cluster filter approach complemented with a set of algorithms for identifying approximate duplicate entities efficiently and accurately within a single and across multiple data sources. The near-optimal merging-cluster filter (MCF) approach is based on the Monge-Elkan well-tuned algorithm and extended with an affine variant of the Smith-Waterman similarity measure. Then we present constant, variable, and function threshold algorithms that work conceptually in a divide-merge filtering fashion for detecting near duplicates as hierarchical clusters along with their corresponding representatives. The algorithms take recursive refinement approaches in the spirit of filtering, merging, and updating, cluster representatives to detect approximate duplicates at each level of the cluster tree. Experiments show a high effectiveness and accuracy of the MCF approach in detecting approximate duplicates by outperforming the seminal Monge-Elkan’s algorithm on several real-world benchmarks and generated datasets.

Keywords: data mining, data cleaning, approximate duplicates, near-duplicates detection, data mining applications and discovery

Procedia PDF Downloads 391
24898 Delivery Service and Online-and-Offline Purchasing for Collaborative Recommendations on Retail Cross-Channels

Authors: S. H. Liao, J. M. Huang

Abstract:

The delivery service business model is the final link in logistics for both online-and-offline businesses. The online-and-offline business model focuses on the entire customer purchasing process online and offline, placing greater emphasis on the importance of data to optimize overall retail operations. For the retail industry, it is an important task of information and management to strengthen the collection and investigation of consumers' online and offline purchasing data to better understand customers and then recommend products. This study implements two-stage data mining analytics for clustering and association rules analysis to investigate Taiwanese consumers' (n=2,209) preferences for delivery service. This process clarifies online-and-offline purchasing behaviors and preferences to find knowledge profiles/patterns/rules for cross-channel collaborative recommendations. Finally, theoretical and practical implications for methodology and enterprise are presented.

Keywords: delivery service, online-and-offline purchasing, retail cross-channel, collaborative recommendations, data mining analytics

Procedia PDF Downloads 39
24897 A Survey in Techniques for Imbalanced Intrusion Detection System Datasets

Authors: Najmeh Abedzadeh, Matthew Jacobs

Abstract:

An intrusion detection system (IDS) is a software application that monitors malicious activities and generates alerts if any are detected. However, most network activities in IDS datasets are normal, and the relatively few numbers of attacks make the available data imbalanced. Consequently, cyber-attacks can hide inside a large number of normal activities, and machine learning algorithms have difficulty learning and classifying the data correctly. In this paper, a comprehensive literature review is conducted on different types of algorithms for both implementing the IDS and methods in correcting the imbalanced IDS dataset. The most famous algorithms are machine learning (ML), deep learning (DL), synthetic minority over-sampling technique (SMOTE), and reinforcement learning (RL). Most of the research use the CSE-CIC-IDS2017, CSE-CIC-IDS2018, and NSL-KDD datasets for evaluating their algorithms.

Keywords: IDS, imbalanced datasets, sampling algorithms, big data

Procedia PDF Downloads 335
24896 Research on the Application of Blockchain Technology in the Quality and Safety of Green Organic Agricultural and Livestock Products: A Case Study of Yak Products in Qinghai Province

Authors: Xiwu Hu

Abstract:

Product quality and safety serve as the foundation and guarantee for Qinghai Province to establish itself as a hub for green organic agricultural and livestock products. Although an internet-based system platform has been established to enable quality traceability queries for yak products, issues such as information silos, data distortion, and excessive centralization persist in quality and safety supervision. These challenges undermine data reliability and hinder the full functionality of the platform's traceability features. This study aims to construct a quality and safety supervision system for green organic agricultural and livestock products in Qinghai Province, ensuring data security throughout the breeding, slaughtering, and distribution stages of yak production. This study leverages the Fabric technology platform to integrate blockchain technology into the existing regulatory framework, constructing a quality supervision system comprising five stakeholders: regulators, yak farms, slaughter and processing enterprises, logistics and transportation enterprises, and sales enterprises. Through a six-tier structure for data collection and processing, the system standardizes the data-on-chain process and ensures rapid interaction across all stages. An ERP sandbox simulation demonstrates that the system improves the overall compliance rate of yak product supervision and inspection by nearly 10% compared to the previous year, increases the compliance rate of market sample inspections by 48%, and enhances economic benefits by 46%. This study develops a transparent and secure quality safety application system that ensures the quality of yak products, enhances their market competitiveness, and serves as a valuable reference for the quality and safety supervision of other organic agricultural and livestock products. It aims to promote the sustainable development of green agriculture on the Qinghai-Tibet Plateau.

Keywords: Qinghai Tibet plateau, green organic agricultural and livestock products, blockchain technology, yak products, quality and safety

Procedia PDF Downloads 3
24895 Joint Path and Push Planning among Moveable Obstacles

Authors: Victor Emeli, Akansel Cosgun

Abstract:

This paper explores the navigation among movable obstacles (NAMO) problem and proposes joint path and push planning: which path to take and in what direction the obstacles should be pushed at, given a start and goal position. We present a planning algorithm for selecting a path and the obstacles to be pushed, where a rapidly-exploring random tree (RRT)-based heuristic is employed to calculate a minimal collision path. When it is necessary to apply a pushing force to slide an obstacle out of the way, the planners leverage means-end analysis through a dynamic physics simulation to determine the sequence of linear pushes to clear the necessary space. Simulation experiments show that our approach finds solutions in higher clutter percentages (up to 49%) compared to the straight-line push planner (37%) and RRT without pushing (18%).

Keywords: motion planning, path planning, push planning, robot navigation

Procedia PDF Downloads 169
24894 LLM-Powered User-Centric Knowledge Graphs for Unified Enterprise Intelligence

Authors: Rajeev Kumar, Harishankar Kumar

Abstract:

Fragmented data silos within enterprises impede the extraction of meaningful insights and hinder efficiency in tasks such as product development, client understanding, and meeting preparation. To address this, we propose a system-agnostic framework that leverages large language models (LLMs) to unify diverse data sources into a cohesive, user-centered knowledge graph. By automating entity extraction, relationship inference, and semantic enrichment, the framework maps interactions, behaviors, and data around the user, enabling intelligent querying and reasoning across various data types, including emails, calendars, chats, documents, and logs. Its domain adaptability supports applications in contextual search, task prioritization, expertise identification, and personalized recommendations, all rooted in user-centric insights. Experimental results demonstrate its effectiveness in generating actionable insights, enhancing workflows such as trip planning, meeting preparation, and daily task management. This work advances the integration of knowledge graphs and LLMs, bridging the gap between fragmented data systems and intelligent, unified enterprise solutions focused on user interactions.

Keywords: knowledge graph, entity extraction, relation extraction, LLM, activity graph, enterprise intelligence

Procedia PDF Downloads 14
24893 A Nonlocal Means Algorithm for Poisson Denoising Based on Information Geometry

Authors: Dongxu Chen, Yipeng Li

Abstract:

This paper presents an information geometry NonlocalMeans(NLM) algorithm for Poisson denoising. NLM estimates a noise-free pixel as a weighted average of image pixels, where each pixel is weighted according to the similarity between image patches in Euclidean space. In this work, every pixel is a Poisson distribution locally estimated by Maximum Likelihood (ML), all distributions consist of a statistical manifold. A NLM denoising algorithm is conducted on the statistical manifold where Fisher information matrix can be used for computing distribution geodesics referenced as the similarity between patches. This approach was demonstrated to be competitive with related state-of-the-art methods.

Keywords: image denoising, Poisson noise, information geometry, nonlocal-means

Procedia PDF Downloads 289