Search results for: blood parameters
7659 The Use of Image Analysis Techniques to Describe a Cluster Cracks in the Cement Paste with the Addition of Metakaolinite
Authors: Maciej Szeląg, Stanisław Fic
Abstract:
The impact of elevated temperatures on the construction materials manifests in change of their physical and mechanical characteristics. Stresses and thermal deformations that occur inside the volume of the material cause its progressive degradation as temperature increase. Finally, the reactions and transformations of multiphase structure of cementitious composite cause its complete destruction. A particularly dangerous phenomenon is the impact of thermal shock – a sudden high temperature load. The thermal shock leads to a high value of the temperature gradient between the outer surface and the interior of the element in a relatively short time. The result of mentioned above process is the formation of the cracks and scratches on the material’s surface and inside the material. The article describes the use of computer image analysis techniques to identify and assess the structure of the cluster cracks on the surfaces of modified cement pastes, caused by thermal shock. Four series of specimens were tested. Two Portland cements were used (CEM I 42.5R and CEM I 52,5R). In addition, two of the series contained metakaolinite as a replacement for 10% of the cement content. Samples in each series were made in combination of three w/b (water/binder) indicators of respectively 0.4; 0.5; 0.6. Surface cracks of the samples were created by a sudden temperature load at 200°C for 4 hours. Images of the cracked surfaces were obtained via scanning at 1200 DPI; digital processing and measurements were performed using ImageJ v. 1.46r software. In order to examine the cracked surface of the cement paste as a system of closed clusters – the dispersal systems theory was used to describe the structure of cement paste. Water is used as the dispersing phase, and the binder is used as the dispersed phase – which is the initial stage of cement paste structure creation. A cluster itself is considered to be the area on the specimen surface that is limited by cracks (created by sudden temperature loading) or by the edge of the sample. To describe the structure of cracks two stereological parameters were proposed: A ̅ – the cluster average area, L ̅ – the cluster average perimeter. The goal of this study was to compare the investigated stereological parameters with the mechanical properties of the tested specimens. Compressive and tensile strength testes were carried out according to EN standards. The method used in the study allowed the quantitative determination of defects occurring in the examined modified cement pastes surfaces. Based on the results, it was found that the nature of the cracks depends mainly on the physical parameters of the cement and the intermolecular interactions on the dispersal environment. Additionally, it was noted that the A ̅/L ̅ relation of created clusters can be described as one function for all tested samples. This fact testifies about the constant geometry of the thermal cracks regardless of the presence of metakaolinite, the type of cement and the w/b ratio.Keywords: cement paste, cluster cracks, elevated temperature, image analysis, metakaolinite, stereological parameters
Procedia PDF Downloads 3887658 Optimization of Catalyst Parameters to Get Chlorine Free Bimetallic Catalysts
Authors: Noreen Sajjad Ghulam Hussain
Abstract:
Catalysts are prepared by simple physical mixing and thermal treatment of support and metal acetate precursors.The effect of metal ratio and metal loading to produce highly active catalyst for the oxidation of benzyl alcohol are studied.Keywords: catalyst, acetates, benzyl alcohols
Procedia PDF Downloads 4377657 Neuro-Fuzzy Approach to Improve Reliability in Auxiliary Power Supply System for Nuclear Power Plant
Authors: John K. Avor, Choong-Koo Chang
Abstract:
The transfer of electrical loads at power generation stations from Standby Auxiliary Transformer (SAT) to Unit Auxiliary Transformer (UAT) and vice versa is through a fast bus transfer scheme. Fast bus transfer is a time-critical application where the transfer process depends on various parameters, thus transfer schemes apply advance algorithms to ensure power supply reliability and continuity. In a nuclear power generation station, supply continuity is essential, especially for critical class 1E electrical loads. Bus transfers must, therefore, be executed accurately within 4 to 10 cycles in order to achieve safety system requirements. However, the main problem is that there are instances where transfer schemes scrambled due to inaccurate interpretation of key parameters; and consequently, have failed to transfer several critical loads from UAT to the SAT during main generator trip event. Although several techniques have been adopted to develop robust transfer schemes, a combination of Artificial Neural Network and Fuzzy Systems (Neuro-Fuzzy) has not been extensively used. In this paper, we apply the concept of Neuro-Fuzzy to determine plant operating mode and dynamic prediction of the appropriate bus transfer algorithm to be selected based on the first cycle of voltage information. The performance of Sequential Fast Transfer and Residual Bus Transfer schemes was evaluated through simulation and integration of the Neuro-Fuzzy system. The objective for adopting Neuro-Fuzzy approach in the bus transfer scheme is to utilize the signal validation capabilities of artificial neural network, specifically the back-propagation algorithm which is very accurate in learning completely new systems. This research presents a combined effect of artificial neural network and fuzzy systems to accurately interpret key bus transfer parameters such as magnitude of the residual voltage, decay time, and the associated phase angle of the residual voltage in order to determine the possibility of high speed bus transfer for a particular bus and the corresponding transfer algorithm. This demonstrates potential for general applicability to improve reliability of the auxiliary power distribution system. The performance of the scheme is implemented on APR1400 nuclear power plant auxiliary system.Keywords: auxiliary power system, bus transfer scheme, fuzzy logic, neural networks, reliability
Procedia PDF Downloads 1717656 Model Based Improvement of Ultrasound Assisted Transport of Cohesive Dry Powders
Authors: Paul Dunst, Ing. Tobias Hemsel, Ing. Habil. Walter Sextro
Abstract:
The use of fine powders with high cohesive and adhesive properties leads to challenges during transport, mixing and dosing in industrial processes, which have not been satisfactorily solved so far. Due to the increased contact forces at the transporting parts (e. g. pipe-wall and transport screws), conventional transport systems and also vibratory conveyors reach their limits. Often, flowability increasing additives that need to be removed again in later process steps are the only option to achieve wanted transport results. A rather new ultrasound-assisted powder transport system showed to overcome some of the issues by manipulating the effective friction between powder and transport pipe. Within this contribution, the transport mechanism will be introduced shortly, together with preliminary transport results. As the tangential force of the transport pipe and the powder is the main influencing factor within the transport process, a test stand for measuring tangential forces of a powder-wall contact in the presence of an ultrasonic vibration orthogonal to the contact plane was built. Measurements for a sample powder show that the effective tangential force can already be significantly reduced at very low ultrasonic amplitude. As a result of the measurements, an empirical model for the relationship of tangential force, contact parameters and ultrasonic excitation is presented. This model was used to adjust the driving parameters of the powder transport system, resulting in better performance.Keywords: powder transport, ultrasound, friction, friction manipulation, vibratory conveyor
Procedia PDF Downloads 1527655 Temporal Estimation of Hydrodynamic Parameter Variability in Constructed Wetlands
Authors: Mohammad Moezzibadi, Isabelle Charpentier, Adrien Wanko, Robert Mosé
Abstract:
The calibration of hydrodynamic parameters for subsurface constructed wetlands (CWs) is a sensitive process since highly non-linear equations are involved in unsaturated flow modeling. CW systems are engineered systems designed to favour natural treatment processes involving wetland vegetation, soil, and their microbial flora. Their significant efficiency at reducing the ecological impact of urban runoff has been recently proved in the field. Numerical flow modeling in a vertical variably saturated CW is here carried out by implementing the Richards model by means of a mixed hybrid finite element method (MHFEM), particularly well adapted to the simulation of heterogeneous media, and the van Genuchten-Mualem parametrization. For validation purposes, MHFEM results were compared to those of HYDRUS (a software based on a finite element discretization). As van Genuchten-Mualem soil hydrodynamic parameters depend on water content, their estimation is subject to considerable experimental and numerical studies. In particular, the sensitivity analysis performed with respect to the van Genuchten-Mualem parameters reveals a predominant influence of the shape parameters α, n and the saturated conductivity of the filter on the piezometric heads, during saturation and desaturation. Modeling issues arise when the soil reaches oven-dry conditions. A particular attention should also be brought to boundary condition modeling (surface ponding or evaporation) to be able to tackle different sequences of rainfall-runoff events. For proper parameter identification, large field datasets would be needed. As these are usually not available, notably due to the randomness of the storm events, we thus propose a simple, robust and low-cost numerical method for the inverse modeling of the soil hydrodynamic properties. Among the methods, the variational data assimilation technique introduced by Le Dimet and Talagrand is applied. To that end, a variational data assimilation technique is implemented by applying automatic differentiation (AD) to augment computer codes with derivative computations. Note that very little effort is needed to obtain the differentiated code using the on-line Tapenade AD engine. Field data are collected for a three-layered CW located in Strasbourg (Alsace, France) at the water edge of the urban water stream Ostwaldergraben, during several months. Identification experiments are conducted by comparing measured and computed piezometric head by means of the least square objective function. The temporal variability of hydrodynamic parameter is then assessed and analyzed.Keywords: automatic differentiation, constructed wetland, inverse method, mixed hybrid FEM, sensitivity analysis
Procedia PDF Downloads 1647654 Performance Evaluation of On-Site Sewage Treatment System (Johkasou)
Authors: Aashutosh Garg, Ankur Rajpal, A. A. Kazmi
Abstract:
The efficiency of an on-site wastewater treatment system named Johkasou was evaluated based on its pollutant removal efficiency over 10 months. This system was installed at IIT Roorkee and had a capacity of treating 7 m3/d of sewage water, sufficient for a group of 30-50 people. This system was fed with actual wastewater through an equalization tank to eliminate the fluctuations throughout the day. Methanol and ammonium chloride was added into this equalization tank to increase the Chemical Oxygen Demand (COD) and ammonia content of the influent. The outlet from Johkasou is sent to a tertiary unit consisting of a Pressure Sand Filter and an Activated Carbon Filter for further treatment. Samples were collected on alternate days from Monday to Friday and the following parameters were evaluated: Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solids (TSS), and Total Nitrogen (TN). The Average removal efficiency for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solids (TSS), and Total Nitrogen (TN) was observed as 89.6, 97.7, 96, and 80% respectively. The cost of treating the wastewater comes out to be Rs 23/m3 which includes electricity, cleaning and maintenance, chemical, and desludging costs. Tests for the coliforms were also performed and it was observed that the removal efficiency for total and fecal coliforms was 100%. The sludge generation rate is approximately 20% of the BOD removal and it needed to be removed twice a year. It also showed a very good response against the hydraulic shock load. We performed vacation stress analysis on the system to evaluate the performance of the system when there is no influent for 8 consecutive days. From the result of stress analysis, we concluded that system needs a recovery time of about 48 hours to stabilize. After about 2 days, the system returns again to original conditions and all the parameters in the effluent become within the limits of National Green Tribunal (NGT) standards. We also performed another stress analysis to save the electricity in which we turned the main aeration blower off for 2 to 12 hrs a day and the results showed that we can turn the blower off for about 4-6 hrs a day and this will help in reducing the electricity costs by about 25%. It was concluded that the Johkasou system can remove a sufficient amount of all the physiochemical parameters tested to satisfy the prescribed limit set as per Indian Standard.Keywords: on-site treatment, domestic wastewater, Johkasou, nutrient removal, pathogens removal
Procedia PDF Downloads 1157653 Role of Amount of Glass Fibers in PAEK Composites to Control Mechanical and Tribological Properties
Authors: Jitendra Narayan Panda, Jayashree Bijwe, Raj K. Pandey
Abstract:
PAEK (Polyaryl ether ketone) being a high-performance polymer, is currently being explored for its tribo-potential by incorporating various fibers, solid lubricants. In this work, influence of amount (30 and 40 %) of short glass fibers (GF) in two composites containing PAEK (60 and 50 %) and synthetic graphite (10 %) on mechanical and tribological behaviour was studied. The composites were developed by injection molding and evaluated in adhesive wear mode (pin on disc configuration) against mild steel disc. The load and speed were selected as variable input parameters while coefficient of friction (µ), specific wear rate (K0) and PVlimit (pressure × velocity) values were selected as output parameters for performance evaluation. Although higher amount of GF lead to better mechanical properties, tribological properties were not in tune to this. Overall, µ and K0 for both composites were in the range 0.04-0.08 and 3-8x 10-16 m3/Nm respectively and decreased with increase in applied PV values till failure was observed. PVlimit was indicated by 112 and 100 MPa m/s. Such high PVlimit values are not reported for any polymer composites running in dry conditions in the literature. The mechanical properties of the C40 composite (40 % GF) proved superior to C30 composite (30 % GF). However, all tribological properties of C40 were inferior to C30. It exhibited higher µ, higher K0 and slightly lower PVlimit value. The higher % fibers proved detrimental for tribo-performance and worn surface analysis by SEM & EDAX was done on the discs & pins to understand wear mechanisms.Keywords: PAEK composites, pin-on-disk, PV limit, friction
Procedia PDF Downloads 2017652 Effect of Different Concentrations of Polluted Water on Growth and Physiological Parameters of Two Green Algae Scenedesmus obliquus and Cosmarium leave
Authors: Yahia Mosleh
Abstract:
Both Scenedesmus obliquus and Cosmarium leave were subjected to different concentrations (5, 10, 20, 50, and 80 %) of highly polluted water collected from Haddows drainage, which receives high amount of domestic sewage, and also the increasing agriculture run off and industrial effluent, then disbursed it in El-Salam fresh water canal. The water in that canal dramatically used as drinking water alongside using in irrigation. A total of 25 physicochemical parameters were determined within the drainage polluted water and also up-stream of El-Salam fresh water canal's water. The effect of five concentrations of the tested polluted water were determined on growth density, dry algal biomass, net photosynthetic oxygen production, catalase activity and ascorbic acid content on the two algae "Scenedesmus obliquus and Cosmarium leave". The result reveal that, low concentration support the growth and the physiological activities of both algae. However, the situation is different in the case of high concentrations, where it encourage the growth of Scenedesmus obliquus , meanwhile the same concentration were inhibited the growth and physiological activities of Cosmarium leave. Which indicated that, Scenedesmus obliquus tolerated high pollution better than Cosmarium leave. Finally it can be concluded that, different organisms, however, have different sensitivities to the same pollutants and the same organisms may be more or less damaged by different pollutant. Also, the inhibitory and stimulatory effects of different species varied with concentrations.Keywords: catalase activity, ascorbic acid content, Scenedesmus, Cosmarium, pollution, biomass
Procedia PDF Downloads 2907651 Empirical Roughness Progression Models of Heavy Duty Rural Pavements
Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed
Abstract:
Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.Keywords: roughness progression, empirical model, pavement performance, heavy duty pavement
Procedia PDF Downloads 1687650 Simultaneous Electrochemical Detection of Chromium(III), Arsenic(III), and Mercury (II) In Water Using Anodic Stripping Voltammetry
Authors: V. Sai Geethika, Sai Snehitha Yadavalli, Swati Ghosh Acharyya
Abstract:
This study involves a single element and simultaneous electrochemical detection of heavy metal ions through square wave anodic stripping voltammetry. A glassy carbon electrode was used to detect and quantify heavy metals such as As(III), Hg(II), Cr(VI) ions in water. Under optimized conditions, peak separation was obtained by varying concentrations, scan rates, and temperatures. As (III), Hg (II), Cr (III) were simultaneously detected with GCE. Several analytical methods, such as inductively coupled plasma mass spectroscopy (ICP-MS), atomic absorption spectroscopy (AAS), were used previously to detect heavy metal ions, which are authentic but are not good enough for online monitoring due to the bulkiness of the equipment. The study provides a good alternative that is simple, more efficient, and low-cost, involving a portable potentiostat. Heavy metals having different oxidation states can be detected by anodic stripping voltammetry. This method can be easily integrated with electronics. Square wave Anodic stripping voltammetry is used with a potential range of -2.5 V – 2.5 V for single ion detection by a three-electrode cell consisting of silver/silver chloride(Ag/AgCl) as reference and platinum (Pt) counter and glassy carbon (GCE) working electrodes. All three ions are optimized by varying the parameters like concentration, scan rate, pH, temperature, and all these optimized parameters were used for studying the effects of simultaneous detection. The procedure involves preparing an electrolyte using deionized water, cleaning the surface of GCE, depositing the ions by applying the redox potentials obtained from cyclic voltammetry (CV), and then detecting by applying oxidizing potential, i.e., stripping voltage. So this includes ASV techniques such as open-circuit voltage (OCV), chronoamperometry (CA), and square wave voltammetry (SWV). Firstly, the concentration of the ions varied from 50 ppb to 5000 ppb, and an optimum concentration was determined where the three ions were detected. A concentration of 400 ppb was used while varying the temperatures in the range of 25°C – 45°C. Optimum peak intensity was obtained at a temperature of 30°C with a low scan rate of 0.005 V-s⁻¹. All the parameters were optimized, and several effects have been noticed while three ions As(II), Cr(III), Hg(II) were detected alone and simultaneously.Keywords: Arsenic(III), Chromium(III), glassy carbon electrode, Mercury (II), square wave anodic stripping voltammetry
Procedia PDF Downloads 857649 Experimental Parameters’ Effects on the Electrical Discharge Machining Performances
Authors: Asmae Tafraouti, Yasmina Layouni, Pascal Kleimann
Abstract:
The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, such as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, and the initial gap, has been studied. This analysis helps to improve the machining performances, such as the workpiece surface condition and the lateral crater's gap.Keywords: craters, electrical discharges, micro-electrical discharge machining, microsystems
Procedia PDF Downloads 747648 The Effect of Endurance Training on Serum VCAM-1 in Overweight Women
Authors: Soheily Shahram, Banaeifar Abdolali, Yadegari Elham
Abstract:
Vascular adhesion molecules-1 (VCAM-1) is one of the factors associating obesity and inflammatory lesions like atherosclerosis. The purpose of the present study was to investigate the effects of endurance training on serum concentration of VCAM-1 in overweight women. Thirty female overweight (BMI ≥ 25) voluntarily participated in our study. Subjects were randomly assigned to one of two groups: Endurance training or control group. Training group exercised for 12 weeks, three sessions a week with definite intensity and distance. Pre and post 12 weeks of endurance training blood samples were taken (5cc) in fasting state from all subjects. Data was analyzed via independent t test (p≤0.05). The results showed that endurance training had significant effect on VCAM, body weight, fat percentage, BMI and maximum oxygen consumption (p ≤ 0.05). This study demonstrates that endurance training caused a decrease in the adhesion molecules level and decreasing inflammation, endurance training may perhaps play an effective role in atherosclerosis.Keywords: endurance training, vascular cell adhesion molecules, overweight women, serum concentration
Procedia PDF Downloads 4137647 Mutations in MTHFR Gene Associated with Mental Retardation and Cerebral Palsy Combined with Mental Retardation in Erbil City
Authors: Hazha Hidayat, Shayma Ibrahim
Abstract:
Folate metabolism plays a crucial role in the normal development of the neonatal central nervous system. It is regulated by MTHFR gene polymorphism. Any factors, which will affect this metabolism either by hereditary or gene mutation will lead to many mental disorders. The purpose of this study was to investigate whether MTHFR gene mutation contributes to the development of mental retardation and CP combined with mental retardation in Erbil city. DNA was isolated from the peripheral blood samples of 40 cases suffering from mental retardation (MR) and CP combined with MR were recruited, sequence the 4, 6, 7, 8 exons of the MTHFR gene were done to identify the variants. Exons were amplified by PCR technique and then sequenced according to Sanger method to show the differences with MTHFR reference sequences. We observed (14) mutations in 4, 6, 7, 8 exons in the MTHFR gene associated with Cerebral Palsy combined with mental retardation included deletion, insertion, Substitution. The current study provides additional evidence that multiple variations in the MTHFR gene are associated with mental retardation and Cerebral Palsy.Keywords: methylenetetrahydrofolate reductase (MTHFR) gene, SNPs, homocysteine, sequencing
Procedia PDF Downloads 3097646 Estimation of the Road Traffic Emissions and Dispersion in the Developing Countries Conditions
Authors: Hicham Gourgue, Ahmed Aharoune, Ahmed Ihlal
Abstract:
We present in this work our model of road traffic emissions (line sources) and dispersion of these emissions, named DISPOLSPEM (Dispersion of Poly Sources and Pollutants Emission Model). In its emission part, this model was designed to keep the consistent bottom-up and top-down approaches. It also allows to generate emission inventories from reduced input parameters being adapted to existing conditions in Morocco and in the other developing countries. While several simplifications are made, all the performance of the model results are kept. A further important advantage of the model is that it allows the uncertainty calculation and emission rate uncertainty according to each of the input parameters. In the dispersion part of the model, an improved line source model has been developed, implemented and tested against a reference solution. It provides improvement in accuracy over previous formulas of line source Gaussian plume model, without being too demanding in terms of computational resources. In the case study presented here, the biggest errors were associated with the ends of line source sections; these errors will be canceled by adjacent sections of line sources during the simulation of a road network. In cases where the wind is parallel to the source line, the use of the combination discretized source and analytical line source formulas minimizes remarkably the error. Because this combination is applied only for a small number of wind directions, it should not excessively increase the calculation time.Keywords: air pollution, dispersion, emissions, line sources, road traffic, urban transport
Procedia PDF Downloads 4427645 Heat Transfer Process Parameter Optimization in SI/Ge Using TAGUCHI Method
Authors: Evln Ranga Charyulu, S. P. Venu Madhavarao, S. Udaya kumar, S. V. S. S. N. V. G. Krishna Murthy
Abstract:
With the advent of new nanometer process technologies, it is possible to integrate billion transistors on a single substrate. When more and more functionality included there is the possibility of multi-million transistors switching simultaneously consuming more power and dissipating more power along with more leakage of current into the substrate of porous silicon or germanium material. These results in substrate heating and thermal noise generation coupled to signals of interest. The heating process is represented by coupled nonlinear partial differential equations in porous silicon and germanium. By identifying heat sources and heat fluxes may results in designing of ultra-low power circuits. The PDEs are solved by finite difference scheme assuming that boundary layer equations in porous silicon and germanium. Local heat fluxes along the vertical isothermal surface immersed in porous SI/Ge are considered. The parameters considered for optimization are thermal diffusivity, thermal expansion coefficient, thermal diffusion ratio, permeability, specific heat at constant temperatures, Rayleigh number, amplitude of wavy surface, mass expansion coefficient. The diffusion of heat was caused by the concentration gradient. Thermal physical properties are homogeneous and isotropic. By using L8, TAGUCHI method the parameters are optimized.Keywords: heat transfer, pde, taguchi optimization, SI/Ge
Procedia PDF Downloads 3397644 Clinical Presentation and Immune Response to Intramammary Infection of Holstein-Friesian Heifers with Isolates from Two Staphylococcus aureus Lineages
Authors: Dagmara A. Niedziela, Mark P. Murphy, Orla M. Keane, Finola C. Leonard
Abstract:
Staphylococcus aureus is the most frequent cause of clinical and subclinical bovine mastitis in Ireland. Mastitis caused by S. aureus is often chronic and tends to recur after antibiotic treatment. This may be due to several virulence factors, including attributes that enable the bacterium to internalize into bovine mammary epithelial cells, where it may evade antibiotic treatment, or evade the host immune response. Four bovine-adapted lineages (CC71, CC97, CC151 and ST136) were identified among a collection of Irish S. aureus mastitis isolates. Genotypic variation of mastitis-causing strains may contribute to different presentations of the disease, including differences in milk somatic cell count (SCC), the main method of mastitis detection. The objective of this study was to investigate the influence of bacterial strain and lineage on host immune response, by employing cell culture methods in vitro as well as an in vivo infection model. Twelve bovine adapted S. aureus strains were examined for internalization into bovine mammary epithelial cells (bMEC) and their ability to induce an immune response from bMEC (using qPCR and ELISA). In vitro studies found differences in a variety of virulence traits between the lineages. Strains from lineages CC97 and CC71 internalized more efficiently into bovine mammary epithelial cells (bMEC) than CC151 and ST136. CC97 strains also induced immune genes in bMEC more strongly than strains from the other 3 lineages. One strain each of CC151 and CC97 that differed in their ability to cause an immune response in bMEC were selected on the basis of the above in vitro experiments. Fourteen first-lactation Holstein-Friesian cows were purchased from 2 farms on the basis of low SCC (less than 50 000 cells/ml) and infection free status. Seven cows were infected with 1.73 x 102 c.f.u. of the CC97 strain (Group 1) and another seven with 5.83 x 102 c.f.u. of the CC151 strain (Group 2). The contralateral quarter of each cow was inoculated with PBS (vehicle). Clinical signs of infection (temperature, milk and udder appearance, milk yield) were monitored for 30 days. Blood and milk samples were taken to determine bacterial counts in milk, SCC, white blood cell populations and cytokines. Differences in disease presentation in vivo between groups were observed, with two animals from Group 2 developing clinical mastitis and requiring antibiotic treatment, while one animal from Group 1 did not develop an infection for the duration of the study. Fever (temperature > 39.5⁰C) was observed in 3 animals from Group 2 and in none from Group 1. Significant differences in SCC and bacterial load between groups were observed in the initial stages of infection (week 1). Data is also being collected on cytokines and chemokines secreted during the course of infection. The results of this study suggest that a strain from lineage CC151 may cause more severe clinical mastitis, while a strain from lineage CC97 may cause mild, subclinical mastitis. Diversity between strains of S. aureus may therefore influence the clinical presentation of mastitis, which in turn may influence disease detection and treatment needs.Keywords: Bovine mastitis, host immune response, host-pathogen interactions, Staphylococcus aureus
Procedia PDF Downloads 1577643 Simulation of Laser Structuring by Three Dimensional Heat Transfer Model
Authors: Bassim Shaheen Bachy, Jörg Franke
Abstract:
In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multi-functional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power.Keywords: laser structuring, simulation, finite element analysis, thermal modeling
Procedia PDF Downloads 3497642 Effects of Lower and Upper Body Plyometric Training on Electrocardiogram Parameters of University Athletes
Authors: T. N. Uzor, C. O. Akosile, G. O. Emeahara
Abstract:
Plyometric training is a form of specialised strength training that uses fast muscular contractions to improve power and speed in sports conditioning by coaches and athletes. Despite its useful role in sports conditioning programme, the information about plyometric training on the athletes cardiovascular health especially Electrocardiogram (ECG) has not been established in the literature. The purpose of the study was to determine the effects of lower and upper body plyometric training on ECG of athletes. The study was guided by three null hypotheses. Quasi–experimental research design was adopted for the study. Seventy-two university male athletes constituted the population of the study. Thirty male athletes aged 18 to 24 years volunteered to participate in the study, but only twenty-three completed the study. The volunteered athletes were apparently healthy, physically active and free of any lower and upper extremity bone injuries for past one year and they had no medical or orthopedic injuries that may affect their participation in the study. Ten subjects were purposively assigned to one of the three groups: lower body plyometric training (LBPT), upper body plyometric training (UBPT), and control (C). Training consisted of six plyometric exercises: lower (ankle hops, squat jumps, tuck jumps) and upper body plyometric training (push-ups, medicine ball-chest throws and side throws) with moderate intensity. The general data were collated and analysed using Statistical Package for Social Science (SPSS version 22.0). The research questions were answered using mean and standard deviation, while paired samples t-test was also used to test for the hypotheses. The results revealed that athletes who were trained using LBPT had reduced ECG parameters better than those in the control group. The results also revealed that athletes who were trained using both LBPT and UBPT indicated lack of significant differences following ten weeks plyometric training than those in the control group in the ECG parameters except in Q wave, R wave and S wave (QRS) complex. Based on the findings of the study, it was recommended among others that coaches should include both LBPT and UBPT as part of athletes’ overall training programme from primary to tertiary institution to optimise performance as well as reduce the risk of cardiovascular diseases and promotes good healthy lifestyle.Keywords: concentric, eccentric, electrocardiogram, plyometric
Procedia PDF Downloads 1437641 Epidemiological Patterns of Pediatric Fever of Unknown Origin
Authors: Arup Dutta, Badrul Alam, Sayed M. Wazed, Taslima Newaz, Srobonti Dutta
Abstract:
Background: In today's world, with modern science and contemporary technology, a lot of diseases may be quickly identified and ruled out, but children's fever of unknown origin (FUO) still presents diagnostic difficulties in clinical settings. Any fever that reaches 38 °C and lasts for more than seven days without a known cause is now classified as a fever of unknown origin (FUO). Despite tremendous progress in the medical sector, fever of unknown origin, or FOU, persists as a major health issue and a major contributor to morbidity and mortality, particularly in children, and its spectrum is sometimes unpredictable. The etiology is influenced by geographic location, age, socioeconomic level, frequency of antibiotic resistance, and genetic vulnerability. Since there are currently no known diagnostic algorithms, doctors are forced to evaluate each patient one at a time with extreme caution. A persistent fever poses difficulties for both the patient and the doctor. This prospective observational study was carried out in a Bangladeshi tertiary care hospital from June 2018 to May 2019 with the goal of identifying the epidemiological patterns of fever of unknown origin in pediatric patients. Methods: It was a hospital-based prospective observational study carried out on 106 children (between 2 months and 12 years) with prolonged fever of >38.0 °C lasting for more than 7 days without a clear source. Children with additional chronic diseases or known immunodeficiency problems were not allowed. Clinical practices that helped determine the definitive etiology were assessed. Initial testing included a complete blood count, a routine urine examination, PBF, a chest X-ray, CRP measurement, blood cultures, serology, and additional pertinent investigations. The analysis focused mostly on the etiological results. The standard program SPSS 21 was used to analyze all of the study data. Findings: A total of 106 patients identified as having FUO were assessed, with over half (57.5%) being female and the majority (40.6%) falling within the 1 to 3-year age range. The study categorized the etiological outcomes into five groups: infections, malignancies, connective tissue conditions, miscellaneous, and undiagnosed. In the group that was being studied, infections were found to be the main cause in 44.3% of cases. Undiagnosed cases came in at 31.1%, cancers at 10.4%, other causes at 8.5%, and connective tissue disorders at 4.7%. Hepato-splenomegaly was seen in people with enteric fever, malaria, acute lymphoid leukemia, lymphoma, and hepatic abscesses, either by itself or in combination with other conditions. About 53% of people who were not diagnosed also had hepato-splenomegaly at the same time. Conclusion: Infections are the primary cause of PUO (pyrexia of unknown origin) in children, with undiagnosed cases being the second most common cause. An incremental approach is beneficial in the process of diagnosing a condition. Non-invasive examinations are used to diagnose infections and connective tissue disorders, while invasive investigations are used to diagnose cancer and other ailments. According to this study, the prevalence of undiagnosed diseases is still remarkable, so extensive historical analysis and physical examinations are necessary in order to provide a precise diagnosis.Keywords: children, diagnostic challenges, fever of unknown origin, pediatric fever, undiagnosed diseases
Procedia PDF Downloads 277640 Computationally Efficient Stacking Sequence Blending for Composite Structures with a Large Number of Design Regions Using Cellular Automata
Authors: Ellen Van Den Oord, Julien Marie Jan Ferdinand Van Campen
Abstract:
This article introduces a computationally efficient method for stacking sequence blending of composite structures. The computational efficiency makes the presented method especially interesting for composite structures with a large number of design regions. Optimization of composite structures with an unequal load distribution may lead to locally optimized thicknesses and ply orientations that are incompatible with one another. Blending constraints can be enforced to achieve structural continuity. In literature, many methods can be found to implement structural continuity by means of stacking sequence blending in one way or another. The complexity of the problem makes the blending of a structure with a large number of adjacent design regions, and thus stacking sequences, prohibitive. In this work the local stacking sequence optimization is preconditioned using a method found in the literature that couples the mechanical behavior of the laminate, in the form of lamination parameters, to blending constraints, yielding near-optimal easy-to-blend designs. The preconditioned design is then fed to the scheme using cellular automata that have been developed by the authors. The method is applied to the benchmark 18-panel horseshoe blending problem to demonstrate its performance. The computational efficiency of the proposed method makes it especially suited for composite structures with a large number of design regions.Keywords: composite, blending, optimization, lamination parameters
Procedia PDF Downloads 2287639 Development and Characterization of Re-Entrant Auxetic Fibrous Structures for Application in Ballistic Composites
Authors: Rui Magalhães, Sohel Rana, Raul Fangueiro, Clara Gonçalves, Pedro Nunes, Gustavo Dias
Abstract:
Auxetic fibrous structures and composites with negative Poisson’s ratio (NPR) have huge potential for application in ballistic protection due to their high energy absorption and excellent impact resistance. In the present research, re-entrant lozenge auxetic fibrous structures were produced through weft knitting technology using high performance polyamide and para-aramid fibres. Fabric structural parameters (e.g. loop length) and machine parameters (e.g. take down load) were varied in order to investigate their influence on the auxetic behaviours of the produced structures. These auxetic structures were then impregnated with two types of polymeric resins (epoxy and polyester) to produce composite materials, which were subsequently characterized for the auxetic behaviour. It was observed that the knitted fabrics produced using the polyamide yarns exhibited NPR over a wide deformation range, which was strongly dependant on the loop length and take down load. The polymeric composites produced from the auxetic fabrics also showed good auxetic property, which was superior in case of the polyester matrix. The experimental results suggested that these composites made from the auxetic fibrous structures can be properly designed to find potential use in the body amours for personal protection applications.Keywords: auxetic fabrics, high performance, composites, energy absorption, impact resistance
Procedia PDF Downloads 2547638 Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments
Authors: A. Kampker, K. Kreisköther, C. Reinders
Abstract:
Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production.Keywords: additive manufacturing, design of experiments, mold making, PolyJet, 3D-Printing
Procedia PDF Downloads 2557637 Numerical Evaluation of Lateral Bearing Capacity of Piles in Cement-Treated Soils
Authors: Reza Ziaie Moayed, Saeideh Mohammadi
Abstract:
Soft soil is used in many of civil engineering projects like coastal, marine and road projects. Because of low shear strength and stiffness of soft soils, large settlement and low bearing capacity will occur under superstructure loads. This will make the civil engineering activities more difficult and costlier. In the case of soft soils, improvement is a suitable method to increase the shear strength and stiffness for engineering purposes. In recent years, the artificial cementation of soil by cement and lime has been extensively used for soft soil improvement. Cement stabilization is a well-established technique for improving soft soils. Artificial cementation increases the shear strength and hardness of the natural soils. On the other hand, in soft soils, the use of piles to transfer loads to the depths of ground is usual. By using cement treated soil around the piles, high bearing capacity and low settlement in piles can be achieved. In the present study, lateral bearing capacity of short piles in cemented soils is investigated by numerical approach. For this purpose, three dimensional (3D) finite difference software, FLAC 3D is used. Cement treated soil has a strain hardening-softening behavior, because of breaking of bonds between cement agent and soil particle. To simulate such behavior, strain hardening-softening soil constitutive model is used for cement treated soft soil. Additionally, conventional elastic-plastic Mohr Coulomb constitutive model and linear elastic model are used for stress-strain behavior of natural soils and pile. To determine the parameters of constitutive models and also for verification of numerical model, the results of available triaxial laboratory tests on and insitu loading of piles in cement treated soft soil are used. Different parameters are considered in parametric study to determine the effective parameters on the bearing of the piles on cemented treated soils. In the present paper, the effect of various length and height of the artificial cemented area, different diameter and length of the pile and the properties of the materials are studied. Also, the effect of choosing a constitutive model for cemented treated soils in the bearing capacity of the pile is investigated.Keywords: bearing capacity, cement-treated soils, FLAC 3D, pile
Procedia PDF Downloads 1267636 Calibration of the Discrete Element Method Using a Large Shear Box
Authors: C. J. Coetzee, E. Horn
Abstract:
One of the main challenges in using the Discrete Element Method (DEM) is to specify the correct input parameter values. In general, the models are sensitive to the input parameter values and accurate results can only be achieved if the correct values are specified. For the linear contact model, micro-parameters such as the particle density, stiffness, coefficient of friction, as well as the particle size and shape distributions are required. There is a need for a procedure to accurately calibrate these parameters before any attempt can be made to accurately model a complete bulk materials handling system. Since DEM is often used to model applications in the mining and quarrying industries, a calibration procedure was developed for materials that consist of relatively large (up to 40 mm in size) particles. A coarse crushed aggregate was used as the test material. Using a specially designed large shear box with a diameter of 590 mm, the confined Young’s modulus (bulk stiffness) and internal friction angle of the material were measured by means of the confined compression test and the direct shear test respectively. DEM models of the experimental setup were developed and the input parameter values were varied iteratively until a close correlation between the experimental and numerical results was achieved. The calibration process was validated by modelling the pull-out of an anchor from a bed of material. The model results compared well with experimental measurement.Keywords: Discrete Element Method (DEM), calibration, shear box, anchor pull-out
Procedia PDF Downloads 2917635 Computational Fluid Dynamics Analysis of Convergent–Divergent Nozzle and Comparison against Theoretical and Experimental Results
Authors: Stewart A. Keir, Faik A. Hamad
Abstract:
This study aims to use both analytical and experimental methods of analysis to examine the accuracy of Computational Fluid Dynamics (CFD) models that can then be used for more complex analyses, accurately representing more elaborate flow phenomena such as internal shockwaves and boundary layers. The geometry used in the analytical study and CFD model is taken from the experimental rig. The analytical study is undertaken using isentropic and adiabatic relationships and the output of the analytical study, the 'shockwave location tool', is created. The results from the analytical study are then used to optimize the redesign an experimental rig for more favorable placement of pressure taps and gain a much better representation of the shockwaves occurring in the divergent section of the nozzle. The CFD model is then optimized through the selection of different parameters, e.g. turbulence models (Spalart-Almaras, Realizable k-epsilon & Standard k-omega) in order to develop an accurate, robust model. The results from the CFD model can then be directly compared to experimental and analytical results in order to gauge the accuracy of each method of analysis. The CFD model will be used to visualize the variation of various parameters such as velocity/Mach number, pressure and turbulence across the shock. The CFD results will be used to investigate the interaction between the shock wave and the boundary layer. The validated model can then be used to modify the nozzle designs which may offer better performance and ease of manufacture and may present feasible improvements to existing high-speed flow applications.Keywords: CFD, nozzle, fluent, gas dynamics, shock-wave
Procedia PDF Downloads 2337634 Effect of Oral Administration of “Gadagi” Tea on Superoxide Dismutase Activity in Humans
Authors: A. M. Gadanya, B. A. Ahmad, U. Maigatari
Abstract:
Effect of oral administration of Gadagi tea on superoxide dismutase activity was assessed on twenty (20) male subjects (aged 21-40years). Ten (10) male non Gadagi tea consumers (aged 20-26 years), were used as control. Blood samples were collected from the subjects and analysed for serum superoxide dismutase activity using R&D Enzyme Linked Immunosorbent Assay method (ELISA). The subjects were grouped into four based on age i.e group I (21-25 years), group II (26-30 years), and also based on duration of the tea consumption, i.e group A (5-9 years) , group B (10-14 years), group C (15-19 years) and group D (20-24 years). The subjects in group I (0.12 U mg-l +0.05), group II (0.11 U mg-l +0.01), group III (0.14 U mg-l +0.08) and group IV (0.17 U mg-l +0.11) showed increased activity of serum superoxide dismutase when compared with the control subjects (0.88 U mg-l +0.02) (P<0.05). There was no statistical significant difference in superoxide dismutase activity within the case groups (P<0.05), based on age and duration of consumption of the tea. Thus, Gadagi tea consumption could increase serum superoxide dismutase activity in humans.Keywords: “Gadagi” tea, Serum, Superoxide dismutase, Humans.
Procedia PDF Downloads 3807633 The Effect of Soil-Structure Interaction on the Post-Earthquake Fire Performance of Structures
Authors: A. T. Al-Isawi, P. E. F. Collins
Abstract:
The behaviour of structures exposed to fire after an earthquake is not a new area of engineering research, but there remain a number of areas where further work is required. Such areas relate to the way in which seismic excitation is applied to a structure, taking into account the effect of soil-structure interaction (SSI) and the method of analysis, in addition to identifying the excitation load properties. The selection of earthquake data input for use in nonlinear analysis and the method of analysis are still challenging issues. Thus, realistic artificial ground motion input data must be developed to certify that site properties parameters adequately describe the effects of the nonlinear inelastic behaviour of the system and that the characteristics of these parameters are coherent with the characteristics of the target parameters. Conversely, ignoring the significance of some attributes, such as frequency content, soil site properties and earthquake parameters may lead to misleading results, due to the misinterpretation of required input data and the incorrect synthesise of analysis hypothesis. This paper presents a study of the post-earthquake fire (PEF) performance of a multi-storey steel-framed building resting on soft clay, taking into account the effects of the nonlinear inelastic behaviour of the structure and soil, and the soil-structure interaction (SSI). Structures subjected to an earthquake may experience various levels of damage; the geometrical damage, which indicates the change in the initial structure’s geometry due to the residual deformation as a result of plastic behaviour, and the mechanical damage which identifies the degradation of the mechanical properties of the structural elements involved in the plastic range of deformation. Consequently, the structure presumably experiences partial structural damage but is then exposed to fire under its new residual material properties, which may result in building failure caused by a decrease in fire resistance. This scenario would be more complicated if SSI was also considered. Indeed, most earthquake design codes ignore the probability of PEF as well as the effect that SSI has on the behaviour of structures, in order to simplify the analysis procedure. Therefore, the design of structures based on existing codes which neglect the importance of PEF and SSI can create a significant risk of structural failure. In order to examine the criteria for the behaviour of a structure under PEF conditions, a two-dimensional nonlinear elasto-plastic model is developed using ABAQUS software; the effects of SSI are included. Both geometrical and mechanical damages have been taken into account after the earthquake analysis step. For comparison, an identical model is also created, which does not include the effects of soil-structure interaction. It is shown that damage to structural elements is underestimated if SSI is not included in the analysis, and the maximum percentage reduction in fire resistance is detected in the case when SSI is included in the scenario. The results are validated using the literature.Keywords: Abaqus Software, Finite Element Analysis, post-earthquake fire, seismic analysis, soil-structure interaction
Procedia PDF Downloads 1227632 Development and Efficacy Assessment of an Enteric Coated Porous Tablet Loaded with F4 Fimbriae for Oral Vaccination against Enterotoxigenic Escherichia coli Infections
Authors: Atul Srivastava, D. V. Gowda
Abstract:
Enterotoxigenic Escherichia coli (ETEC) infection is one of the major causes contributing to the development of diarrhoea in adults and children in developing countries. To date, no preventive/treatment strategy showed promising results, which could be due to the lack of potent vaccines, and/or due to the development of resistance of ETEC to antibiotics. Therefore, in the present investigation, a novel porous Sodium Alginate (SA) tablet formulation loaded with F4 fimbriae antigen was developed and tested for efficacy against ETEC infections in piglet models. Pre-compression parameters of the powder mixes and post compression parameters of tablets have been evaluated and results were found to be satisfactory. Loading of F4 fimbrial antigens in to the tablets was achieved by inducing pores in the tablets via the sublimation of camphor followed by incubation with purified F4 fimbriae. The loaded tablets have been coated with Eudragit L100 to protect the F4 fimbriae from (a) highly acidic gastric environment; (b) proteolytic cleavage by pepsin; and (c) to promote subsequent release in the intestine. Evaluation of developed F4 fimbrial tablets in a Pig model demonstrated induction of mucosal immunity, and a significant reduction of F4+ E. coli in faeces. Therefore, F4 fimbriae loaded porous tablets could be a novel oral vaccination candidate to induce mucosal and systemic immunity against ETEC infections.Keywords: porous tablets, sublimation, f4 fimbriae, eudragit l100, vaccination
Procedia PDF Downloads 3417631 Comparison of Psychological Well-Being, Hope, and Health Concern in Leukemia Patients before and After Receiving Stem Cells
Authors: Tahereh Yavari, Sara Norozi Far
Abstract:
The aim of this study was to compare psychological well-being, hope, and health concerns in leukemia patients before and after receiving stem cells. The statistical population of the present study was made up of leukemia patients in Tehran, and the research sample was among the patients referred to the Bone Marrow Transplant Center of Shariati Hospital in Tehran, and they were placed in two experimental and control groups (15 people in each group), which were selected by purposive sampling method. In order to collect the data for the research, three psychological well-being questionnaires were used by Riff (2002), Schneider's Hope Scale (SHS), and Schneider's Health Concern Questionnaire (HCQ). In order to analyze the data in this research, according to the "pre-test-post-test design with a control group," covariance analysis was used. Based on the research findings, it was concluded that receiving stem cells increases hope and psychological well-being in leukemia patients and significantly reduces health concerns.Keywords: psychological well-being, hope, health concerns, blood cancer, stem cells
Procedia PDF Downloads 897630 Effect of Barium Doping on Structural, Morphological, Optical and Photocatalytic Properties of Sprayed ZnO Thin Films
Authors: H. Djaaboube, I. Loucif, Y. Bouachiba, R. Aouati, A. Maameri, A. Taabouche, A. Bouabellou
Abstract:
Thin films of pure and barium-doped zinc oxide (ZnO) were prepared using a spray pyrolysis process. The films were deposited on glass substrates at 450°C. The different samples are characterized by X-ray diffraction (XRD) and UV-Vis spectroscopy. X-ray diffraction patterns reveal the formation of a single ZnO Wurtzite structure and the good crystallinity of the films. The substitution of Ba ions influences the texture of the layers and makes the (002) plane a preferential growth plane. At concentrations below 6% Ba, the hexagonal structure of ZnO undergoes compressive stresses due to barium ions which have a radius twice of the Zn ions. This result leads to the decrees of a and c parameters and, therefore, the volume of the unit cell. This result is confirmed by the decrease in the number of crystallites and the increase in the size of the crystallites. At concentrations above 6%, barium substitutes the zinc atom and modifies the structural parameters of the thin layers. The bandgap of ZnO films decreased with increasing doping; this decrease is probably due to the 4d orbitals of the Ba atom due to the sp-d spin-exchange interactions between the band electrons and the localized d-electrons of the substituted Ba ion. Although, the Urbache energy undergoes an increase which implies the creation of energy levels below the conduction band and decreases the band gap width. The photocatalytic activity of ZnO doped 9% Ba was evaluated by the photodegradation of methylene blue under UV irradiation.Keywords: barium, doping, photodegradation, spray pyrolysis, ZnO
Procedia PDF Downloads 83