Search results for: Leadership Structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8452

Search results for: Leadership Structure

5302 Synthesis and Evaluation of Anti-Cancer Activity on Human Breast Cancer Cell Line MFC7 of Some Novel Thiazolidino (3,2-b)-1, 2,4-Triazole-5(6H)-one Derivatives

Authors: Kamta P. Namdeo

Abstract:

Novel thiazolidino-(3,2-b)-1, 2,4-triazole-5(6H)-one derivatives were synthesized, and anticancer activity was studied on human breast cancer cell line MFC7. It showed a significant decrease in cell viability with reference to the standard. The findings suggest that nitro-substituted compound showed best anticancer activity and activity was due to the triazole and thiazolidinone hetero nucleus present in the structure.

Keywords: anti-cancer, adriamycine, thiazolidinone, 1, 2, 4-triazole, thiazolidino-triazolone

Procedia PDF Downloads 357
5301 Macroeconomic Determinants of Cyclical Variations in Value, Size, and Momentum Premium in the UK

Authors: G. Sarwar, C. Mateus, N. Todorovic

Abstract:

The paper examines the asymmetries in size, value and momentum premium over the economic cycles in the UK and their macroeconomic determinants. Using Markov switching approach we find clear evidence of cyclical variations of the three premiums, most noticeably variations in size premium. We associate Markov switching regime 1 with economic upturn and regime 2 with economic downturn as per OECD’s Composite Leading Indicator. The macroeconomic indicators prompting such cyclicality the most are interest rates, term structure and credit spread. The role of GDP growth, money supply and inflation is less pronounced in our sample.

Keywords: macroeconomic determinants, Markorv Switching, size, value

Procedia PDF Downloads 467
5300 Vegetation Assessment Under the Influence of Environmental Variables; A Case Study from the Yakhtangay Hill of Himalayan Range, Pakistan

Authors: Hameed Ullah, Shujaul Mulk Khan, Zahid Ullah, Zeeshan Ahmad Sadia Jahangir, Abdullah, Amin Ur Rahman, Muhammad Suliman, Dost Muhammad

Abstract:

The interrelationship between vegetation and abiotic variables inside an ecosystem is one of the main jobs of plant scientists. This study was designed to investigate the vegetation structure and species diversity along with the environmental variables in the Yakhtangay hill district Shangla of the Himalayan Mountain series Pakistan by using multivariate statistical analysis. Quadrat’s method was used and a total of 171 Quadrats were laid down 57 for Tree, Shrubs and Herbs, respectively, to analyze the phytosociological attributes of the vegetation. The vegetation of the selected area was classified into different Life and leaf-forms according to Raunkiaer classification, while PCORD software version 5 was used to classify the vegetation into different plants communities by Two-way indicator species Analysis (TWINSPAN). The CANOCCO version 4.5 was used for DCA and CCA analysis to find out variation directories of vegetation with different environmental variables. A total of 114 plants species belonging to 45 different families was investigated inside the area. The Rosaceae (12 species) was the dominant family followed by Poaceae (10 species) and then Asteraceae (7 species). Monocots were more dominant than Dicots and Angiosperms were more dominant than Gymnosperms. Among the life forms the Hemicryptophytes and Nanophanerophytes were dominant, followed by Therophytes, while among the leaf forms Microphylls were dominant, followed by Leptophylls. It is concluded that among the edaphic factors such as soil pH, the concentration of soil organic matter, Calcium Carbonates concentration in soil, soil EC, soil TDS, and physiographic factors such as Altitude and slope are affecting the structure of vegetation, species composition and species diversity at the significant level with p-value ≤0.05. The Vegetation of the selected area was classified into four major plants communities and the indicator species for each community was recorded. Classification of plants into 4 different communities based upon edaphic gradients favors the individualistic hypothesis. Indicator Species Analysis (ISA) shows the indicators of the study area are mostly indicators to the Himalayan or moist temperate ecosystem, furthermore, these indicators could be considered for micro-habitat conservation and respective ecosystem management plans.

Keywords: species richness, edaphic gradients, canonical correspondence analysis (CCA), TWCA

Procedia PDF Downloads 129
5299 Overcoming 4-to-1 Decryption Failure of the Rabin Cryptosystem

Authors: Muhammad Rezal Kamel Ariffin, Muhammad Asyraf Asbullah

Abstract:

The square root modulo problem is a known primitive in designing an asymmetric cryptosystem. It was first attempted by Rabin. Decryption failure of the Rabin cryptosystem caused by the 4-to-1 decryption output is overcome efficiently in this work. The proposed scheme to overcome the decryption failure issue (known as the AAβ-cryptosystem) is constructed using a simple mathematical structure, it has low computational requirements and would enable communication devices with low computing power to deploy secure communication procedures efficiently.

Keywords: Rabin cryptosystem, 4-to-1 decryption failure, square root modulo problem, integer factorization problem

Procedia PDF Downloads 444
5298 Electron Density Discrepancy Analysis of Energy Metabolism Coenzymes

Authors: Alan Luo, Hunter N. B. Moseley

Abstract:

Many macromolecular structure entries in the Protein Data Bank (PDB) have a range of regional (localized) quality issues, be it derived from x-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, or other experimental approaches. However, most PDB entries are judged by global quality metrics like R-factor, R-free, and resolution for x-ray crystallography or backbone phi-psi distribution statistics and average restraint violations for NMR. Regional quality is often ignored when PDB entries are re-used for a variety of structurally based analyses. The binding of ligands, especially ligands involved in energy metabolism, is of particular interest in many structurally focused protein studies. Using a regional quality metric that provides chemically interpretable information from electron density maps, a significant number of outliers in regional structural quality was detected across x-ray crystallographic PDB entries for proteins bound to biochemically critical ligands. In this study, a series of analyses was performed to evaluate both specific and general potential factors that could promote these outliers. In particular, these potential factors were the minimum distance to a metal ion, the minimum distance to a crystal contact, and the isotropic atomic b-factor. To evaluate these potential factors, Fisher’s exact tests were performed, using regional quality criteria of outlier (top 1%, 2.5%, 5%, or 10%) versus non-outlier compared to a potential factor metric above versus below a certain outlier cutoff. The results revealed a consistent general effect from region-specific normalized b-factors but no specific effect from metal ion contact distances and only a very weak effect from crystal contact distance as compared to the b-factor results. These findings indicate that no single specific potential factor explains a majority of the outlier ligand-bound regions, implying that human error is likely as important as these other factors. Thus, all factors, including human error, should be considered when regions of low structural quality are detected. Also, the downstream re-use of protein structures for studying ligand-bound conformations should screen the regional quality of the binding sites. Doing so prevents misinterpretation due to the presence of structural uncertainty or flaws in regions of interest.

Keywords: biomacromolecular structure, coenzyme, electron density discrepancy analysis, x-ray crystallography

Procedia PDF Downloads 110
5297 Technical Efficiency of Small-Scale Honey Producer in Ethiopia: A Stochastic Frontier Analysis

Authors: Kaleb Shiferaw, Berhanu Geberemedhin

Abstract:

Ethiopian farmers have a long tradition of beekeeping and the country has huge potential for honey production. However traditional mode of production still dominates the sub sector which negatively affect the total production and productivity. A number of studies have been conducted to better understand the working honey production, however, none of them systematically investigate the extent of technical efficiency of the sub-sector. This paper uses Stochastic Frontier production model to quantifying the extent of technical efficiency and identify exogenous determinant of inefficiency. The result showed that consistent with other studies traditional practice dominate small scale honey production in Ethiopia. The finding also revealed that use of purchased inputs such as bee forage and other supplement is very limited among honey producers indicating that natural bee forage is the primary source of bee forage. The immediate consequence of all these is low production and productivity. The number of hives the household owns, whether the household used improved apiculture technologies, availability of natural forest which is the primary sources of nectar for bees and amount of land owned by the households were found to have a significant influence on the amount of honey produced by beekeeper. Our result further showed that the mean technical efficiency of honey producers is 0.79 implying that, on average honey producer produce 80 percent of the maximum output. The implication is that 20 percent of the potential output is lost due to technical inefficiency. Number of hives owned by a honey produces, distance to district town-a proxy to market access, household wealth, and whether the household head has a leadership role in the PA affect the technical efficiency of honey producers. The finding suggest that policies that aim to expand the use of improved hives is expected to increase the honey production at household level. The result also suggest that investment on rural infrastructure would be instrumental in improving technical efficiency of honey producer.

Keywords: small-scale honey producer, Ethiopia, technical efficiency in apiculture, stochastic frontier analysis

Procedia PDF Downloads 214
5296 QSAR Study on Diverse Compounds for Effects on Thermal Stability of a Monoclonal Antibody

Authors: Olubukayo-Opeyemi Oyetayo, Oscar Mendez-Lucio, Andreas Bender, Hans Kiefer

Abstract:

The thermal melting curve of a protein provides information on its conformational stability and could provide cues on its aggregation behavior. Naturally-occurring osmolytes have been shown to improve the thermal stability of most proteins in a concentration-dependent manner. They are therefore commonly employed as additives in therapeutic protein purification and formulation. A number of intertwined and seemingly conflicting mechanisms have been put forward to explain the observed stabilizing effects, the most prominent being the preferential exclusion mechanism. We attempted to probe and summarize molecular mechanisms for thermal stabilization of a monoclonal antibody (mAb) by developing quantitative structure-activity relationships using a rationally-selected library of 120 osmolyte-like compounds in the polyhydric alcohols, amino acids and methylamines classes. Thermal stabilization potencies were experimentally determined by thermal shift assays based on differential scanning fluorimetry. The cross-validated QSAR model was developed by partial least squares regression using descriptors generated from Molecular Operating Environment software. Careful evaluation of the results with the use of variable importance in projection parameter (VIP) and regression coefficients guided the selection of the most relevant descriptors influencing mAb thermal stability. For the mAb studied and at pH 7, the thermal stabilization effects of tested compounds correlated positively with their fractional polar surface area and inversely with their fractional hydrophobic surface area. We cannot claim that the observed trends are universal for osmolyte-protein interactions because of protein-specific effects, however this approach should guide the quick selection of (de)stabilizing compounds for a protein from a chemical library. Further work with a large variety of proteins and at different pH values would help the derivation of a solid explanation as to the nature of favorable osmolyte-protein interactions for improved thermal stability. This approach may be beneficial in the design of novel protein stabilizers with optimal property values, especially when the influence of solution conditions like the pH and buffer species and the protein properties are factored in.

Keywords: thermal stability, monoclonal antibodies, quantitative structure-activity relationships, osmolytes

Procedia PDF Downloads 310
5295 Measuring Fluctuating Asymmetry in Human Faces Using High-Density 3D Surface Scans

Authors: O. Ekrami, P. Claes, S. Van Dongen

Abstract:

Fluctuating asymmetry (FA) has been studied for many years as an indicator of developmental stability or ‘genetic quality’ based on the assumption that perfect symmetry is ideally the expected outcome for a bilateral organism. Further studies have also investigated the possible link between FA and attractiveness or levels of masculinity or femininity. These hypotheses have been mostly examined using 2D images, and the structure of interest is usually presented using a limited number of landmarks. Such methods have the downside of simplifying and reducing the dimensionality of the structure, which will in return increase the error of the analysis. In an attempt to reach more conclusive and accurate results, in this study we have used high-resolution 3D scans of human faces and have developed an algorithm to measure and localize FA, taking a spatially-dense approach. A symmetric spatially dense anthropometric mask with paired vertices is non-rigidly mapped on target faces using an Iterative Closest Point (ICP) registration algorithm. A set of 19 manually indicated landmarks were used to examine the precision of our mapping step. The protocol’s accuracy in measurement and localizing FA is assessed using simulated faces with known amounts of asymmetry added to them. The results of validation of our approach show that the algorithm is perfectly capable of locating and measuring FA in 3D simulated faces. With the use of such algorithm, the additional captured information on asymmetry can be used to improve the studies of FA as an indicator of fitness or attractiveness. This algorithm can especially be of great benefit in studies of high number of subjects due to its automated and time-efficient nature. Additionally, taking a spatially dense approach provides us with information about the locality of FA, which is impossible to obtain using conventional methods. It also enables us to analyze the asymmetry of a morphological structures in a multivariate manner; This can be achieved by using methods such as Principal Components Analysis (PCA) or Factor Analysis, which can be a step towards understanding the underlying processes of asymmetry. This method can also be used in combination with genome wide association studies to help unravel the genetic bases of FA. To conclude, we introduced an algorithm to study and analyze asymmetry in human faces, with the possibility of extending the application to other morphological structures, in an automated, accurate and multi-variate framework.

Keywords: developmental stability, fluctuating asymmetry, morphometrics, 3D image processing

Procedia PDF Downloads 124
5294 Used MATLAB Code to Study the Vehicle Bridge Coupling Vibration Based On the Method of Newmark-β

Authors: Saidi Abdelkrim, Hamouine Abdelmadjid, Abdellatif Megnounif

Abstract:

The study of interaction between vehicles and bridge structures has become extremely important. Large deflections and vibration induced by heavy and high-speed vehicles affect significantly the safety and efficiency of bridge. The vibration of a bridge caused by passage of vehicles is one of the most imperative considerations in the design of a bridge as a common sort of transportation structure. A major goal of this study is to create a simplified model of a vehicle bridge system in MATLAB. The model will then be used to study the influence of parameters to vehicle-bridge vibrations.

Keywords: vehicle-bridge interaction, Newmark-β, MATLAB code

Procedia PDF Downloads 581
5293 Investigation and Perfection of Centrifugal Compressor Stages by CFD Methods

Authors: Y. Galerkin, L. Marenina

Abstract:

Stator elements «Vane diffuser + crossover + return channel» of stages with different specific speed were investigated by CFD calculations. The regime parameter was introduced to present efficiency and loss coefficient performance of all elements together. Flow structure demonstrated advantages and disadvantages of design. Flow separation in crossovers was eliminated by its shape modification. Efficiency increased visibly. Calculated CFD performances are in acceptable correlation with predicted ones by engineering design method. The information obtained is useful for design method better calibration.

Keywords: vane diffuser, return channel, crossover, efficiency, loss coefficient, inlet flow angle

Procedia PDF Downloads 412
5292 Adolescents’ Role in Family Buying Decision Making

Authors: Harleen Kaur, Deepika Jindal Singla

Abstract:

Buying decision making is a complicated process, in which consumer’s decision is under the impact of others. The buying decision making is directed in a way that they have to act as customers in the society. Media and family are key socialising agents for adolescents’. Moreover, changes in the socio-cultural environment in India necessitate that adolescents’ influence in family’s buying decision-making should be investigated. In comparison to Western society, Indian is quite different, when compared in terms of family composition and structure, behaviour, values and norms which effect adolescents’ buying decision-making.

Keywords: adolescents, buying behavior, Indian urban families, consumer socialization

Procedia PDF Downloads 452
5291 Preparation of MgO Nanoparticles by Green Methods

Authors: Maryam Sabbaghan, Pegah Sofalgar

Abstract:

Over the past few decades, a significant amount of research activities in the chemical community has been directed towards green synthesis. This area of chemistry has received extensive attention because of environmentally benign processes as well as economically viable. In this article, the MgO nanoparticles were prepared by different methods in the present of ionic liquids. A wide range of Magnesium oxide particle sizes within the nanometer scale is obtained by these methods. The structure of these MgO particles was studied by using X-ray diffraction (XRD), Infrared spectroscopy (IR), and scanning electron microscopy (SEM). It was found that the formation of nanoparticle could involve the role of performed 'nucleus' and used template to control the growth rate of nucleuses. The crystallite size of the MgO products was in a range from 31 to 77 nm.

Keywords: MgO, ionic liquid, nanoparticles, green chemistry

Procedia PDF Downloads 267
5290 Reverse Engineering of a Secondary Structure of a Helicopter: A Study Case

Authors: Jose Daniel Giraldo Arias, Camilo Rojas Gomez, David Villegas Delgado, Gullermo Idarraga Alarcon, Juan Meza Meza

Abstract:

The reverse engineering processes are widely used in the industry with the main goal to determine the materials and the manufacture used to produce a component. There are a lot of characterization techniques and computational tools that are used in order to get this information. A study case of a reverse engineering applied to a secondary sandwich- hybrid type structure used in a helicopter is presented. The methodology used consists of five main steps, which can be applied to any other similar component: Collect information about the service conditions of the part, disassembly and dimensional characterization, functional characterization, material properties characterization and manufacturing processes characterization, allowing to obtain all the supports of the traceability of the materials and processes of the aeronautical products that ensure their airworthiness. A detailed explanation of each step is covered. Criticality and comprehend the functionalities of each part, information of the state of the art and information obtained from interviews with the technical groups of the helicopter’s operators were analyzed,3D optical scanning technique, standard and advanced materials characterization techniques and finite element simulation allow to obtain all the characteristics of the materials used in the manufacture of the component. It was found that most of the materials are quite common in the aeronautical industry, including Kevlar, carbon, and glass fibers, aluminum honeycomb core, epoxy resin and epoxy adhesive. The stacking sequence and volumetric fiber fraction are a critical issue for the mechanical behavior; a digestion acid method was used for this purpose. This also helps in the determination of the manufacture technique which for this case was Vacuum Bagging. Samples of the material were manufactured and submitted to mechanical and environmental tests. These results were compared with those obtained during reverse engineering, which allows concluding that the materials and manufacture were correctly determined. Tooling for the manufacture was designed and manufactured according to the geometry and manufacture process requisites. The part was manufactured and the mechanical, and environmental tests required were also performed. Finally, a geometric characterization and non-destructive techniques allow verifying the quality of the part.

Keywords: reverse engineering, sandwich-structured composite parts, helicopter, mechanical properties, prototype

Procedia PDF Downloads 392
5289 Control Algorithm for Home Automation Systems

Authors: Marek Długosz, Paweł Skruch

Abstract:

One of purposes of home automation systems is to provide appropriate comfort to the users by suitable air temperature control and stabilization inside the rooms. The control of temperature level is not a simple task and the basic difficulty results from the fact that accurate parameters of the object of control, that is a building, remain unknown. Whereas the structure of the model is known, the identification of model parameters is a difficult task. In this paper, a control algorithm allowing the present temperature to be reached inside the building within the specified time without the need to know accurate parameters of the building itself is presented.

Keywords: control, home automation system, wireless networking, automation engineering

Procedia PDF Downloads 593
5288 An Investigation of the Structural and Microstructural Properties of Zn1-xCoxO Thin Films Applied as Gas Sensors

Authors: Ariadne C. Catto, Luis F. da Silva, Khalifa Aguir, Valmor Roberto Mastelaro

Abstract:

Zinc oxide (ZnO) pure or doped are one of the most promising metal oxide semiconductors for gas sensing applications due to the well-known high surface-to-volume area and surface conductivity. It was shown that ZnO is an excellent gas-sensing material for different gases such as CO, O2, NO2 and ethanol. In this context, pure and doped ZnO exhibiting different morphologies and a high surface/volume ratio can be a good option regarding the limitations of the current commercial sensors. Different studies showed that the sensitivity of metal-doped ZnO (e.g. Co, Fe, Mn,) enhanced its gas sensing properties. Motivated by these considerations, the aim of this study consisted on the investigation of the role of Co ions on structural, morphological and the gas sensing properties of nanostructured ZnO samples. ZnO and Zn1-xCoxO (0 < x < 5 wt%) thin films were obtained via the polymeric precursor method. The sensitivity, selectivity, response time and long-term stability gas sensing properties were investigated when the sample was exposed to a different concentration range of ozone (O3) at different working temperatures. The gas sensing property was probed by electrical resistance measurements. The long and short-range order structure around Zn and Co atoms were investigated by X-ray diffraction and X-ray absorption spectroscopy. X-ray photoelectron spectroscopy measurement was performed in order to identify the elements present on the film surface as well as to determine the sample composition. Microstructural characteristics of the films were analyzed by a field-emission scanning electron microscope (FE-SEM). Zn1-xCoxO XRD patterns were indexed to the wurtzite ZnO structure and any second phase was observed even at a higher cobalt content. Co-K edge XANES spectra revealed the predominance of Co2+ ions. XPS characterization revealed that Co-doped ZnO samples possessed a higher percentage of oxygen vacancies than the ZnO samples, which also contributed to their excellent gas sensing performance. Gas sensor measurements pointed out that ZnO and Co-doped ZnO samples exhibit a good gas sensing performance concerning the reproducibility and a fast response time (around 10 s). Furthermore, the Co addition contributed to reduce the working temperature for ozone detection and improve the selective sensing properties.

Keywords: cobalt-doped ZnO, nanostructured, ozone gas sensor, polymeric precursor method

Procedia PDF Downloads 226
5287 Quantum Chemical Investigation of Hydrogen Isotopes Adsorption on Metal Ion Functionalized Linde Type A and Faujasite Type Zeolites

Authors: Gayathri Devi V, Aravamudan Kannan, Amit Sircar

Abstract:

In the inner fuel cycle system of a nuclear fusion reactor, the Hydrogen Isotopes Removal System (HIRS) plays a pivoted role. It enables the effective extraction of the hydrogen isotopes from the breeder purge gas which helps to maintain the tritium breeding ratio and sustain the fusion reaction. One of the components of HIRS, Cryogenic Molecular Sieve Bed (CMSB) columns with zeolites adsorbents are considered for the physisorption of hydrogen isotopes at 1 bar and 77 K. Even though zeolites have good thermal stability and reduced activation properties making them ideal for use in nuclear reactor applications, their modest capacity for hydrogen isotopes adsorption is a cause of concern. In order to enhance the adsorbent capacity in an informed manner, it is helpful to understand the adsorption phenomena at the quantum electronic structure level. Physicochemical modifications of the adsorbent material enhances the adsorption capacity through the incorporation of active sites. This may be accomplished through the incorporation of suitable metal ions in the zeolite framework. In this work, molecular hydrogen isotopes adsorption on the active sites of functionalized zeolites are investigated in detail using Density Functional Theory (DFT) study. This involves the utilization of hybrid Generalized Gradient Approximation (GGA) with dispersion correction to account for the exchange and correlation functional of DFT. The electronic energies, adsorption enthalpy, adsorption free energy, Highest Occupied Molecular Orbital (HOMO), Lowest Unoccupied Molecular Orbital (LUMO) energies are computed on the stable 8T zeolite clusters as well as the periodic structure functionalized with different active sites. The characteristics of the dihydrogen bond with the active metal sites and the isotopic effects are also studied in detail. Validation studies with DFT will also be presented for adsorption of hydrogen on metal ion functionalized zeolites. The ab-inito screening analysis gave insights regarding the mechanism of hydrogen interaction with the zeolites under study and also the effect of the metal ion on adsorption. This detailed study provides guidelines for selection of the appropriate metal ions that may be incorporated in the zeolites framework for effective adsorption of hydrogen isotopes in the HIRS.

Keywords: adsorption enthalpy, functionalized zeolites, hydrogen isotopes, nuclear fusion, physisorption

Procedia PDF Downloads 163
5286 Study of Composite Beam under the Effect of Shear Deformation

Authors: Hamid Hamli Benzahar

Abstract:

The main goal of this research is to study the deflection of a composite beam CB taking into account the effect of shear deformation. The structure is made up of two beams of different sections, joined together by thin adhesive, subjected to end moments and a distributed load. The fundamental differential equation of CB can be obtained from the total energy equation while considering the shear deformation. The differential equation found will be compared with those found in CB, where the shear deformation is zero. The CB system is numerically modeled by the finite element method, where the numerical results of deflection will be compared with those found theoretically.

Keywords: composite beam, shear deformation, moments, finites elements

Procedia PDF Downloads 52
5285 Response Surface Methodology for Optimum Hardness of TiN on Steel Substrate

Authors: R. Joseph Raviselvan, K. Ramanathan, P. Perumal, M. R. Thansekhar

Abstract:

Hard coatings are widely used in cutting and forming tool industries. Titanium Nitride (TiN) possesses good hardness, strength and corrosion resistant. The coating properties are influenced by many process parameters. The coatings were deposited on steel substrate by changing the process parameters such as substrate temperature, nitrogen flow rate and target power in a D.C planer magnetron sputtering. The structure of coatings were analysed using XRD. The hardness of coatings was found using Micro hardness tester. From the experimental data, a regression model was developed and the optimum response was determined using Response Surface Methodology (RSM).

Keywords: hardness, RSM, sputtering, TiN XRD

Procedia PDF Downloads 298
5284 Calculating Quantity of Steel Bar Placed in Mesh Form in a Circular Slab or Dome

Authors: Karam Chand Gupta

Abstract:

When steel reinforcement is placed in mesh form in circular concrete slab at base or domes at top in case of over head service reservoir or any other structure, it is difficult to estimate/measure the total quantity of steel that would be needed or placed. For the purpose of calculating the total length of the steel bars, at present, the practice is – the length of each bar is measured and then added up. This is tiresome and time consuming process. I have derived a mathematics formula with the help of which we can calculate in one line the quantity of total steel that will be needed. This will not only make it easy and time saving but also avoids any error in making entries and calculations.

Keywords: dome, mesh, slab, steel

Procedia PDF Downloads 645
5283 Theoretical Reflections on Metaphor and Cohesion and the Coherence of Face-To-Face Interactions

Authors: Afef Badri

Abstract:

The role of metaphor in creating the coherence and the cohesion of discourse in online interactive talk has almost received no attention. This paper intends to provide some theoretical reflections on metaphorical coherence as a jointly constructed process that evolves in online, face-to-face interactions. It suggests that the presence of a global conceptual structure in a conversation makes it conceptually cohesive. Yet, coherence remains a process largely determined by other variables (shared goals, communicative intentions, and framework of understanding). Metaphorical coherence created by these variables can be useful in detecting bias in media reporting.

Keywords: coherence, cohesion, face-to-face interactions, metaphor

Procedia PDF Downloads 225
5282 The Creation of Calcium Phosphate Coating on Nitinol Substrate

Authors: Kirill M. Dubovikov, Ekaterina S. Marchenko, Gulsharat A. Baigonakova

Abstract:

NiTi alloys are widely used as implants in medicine due to their unique properties such as superelasticity, shape memory effect and biocompatibility. However, despite these properties, one of the major problems is the release of nickel after prolonged use in the human body under dynamic stress. This occurs due to oxidation and cracking of NiTi implants, which provokes nickel segregation from the matrix to the surface and release into living tissues. As we know, nickel is a toxic element and can cause cancer, allergies, etc. One of the most popular ways to solve this problem is to create a corrosion resistant coating on NiTi. There are many coatings of this type, but not all of them have good biocompatibility, which is very important for medical implants. Coatings based on calcium phosphate phases have excellent biocompatibility because Ca and P are the main constituents of the mineral part of human bone. This fact suggests that a Ca-P coating on NiTi can enhance osteogenesis and accelerate the healing process. Therefore, the aim of this study is to investigate the structure of Ca-P coating on NiTi substrate. Plasma assisted radio frequency (RF) sputtering was used to obtain this film. This method was chosen because it allows the crystallinity and morphology of the Ca-P coating to be controlled by the sputtering parameters. It allows us to obtain three different NiTi samples with Ca-P coating. XRD, AFM, SEM and EDS were used to study the composition, structure and morphology of the coating phase. Scratch tests were carried out to evaluate the adhesion of the coating to the substrate. Wettability tests were used to investigate the hydrophilicity of the different coatings and to suggest which of them had better biocompatibility. XRD showed that the coatings of all samples were hydroxyapatite, but the matrix was represented by TiNi intermetallic compounds such as B2, Ti2Ni and Ni3Ti. The SEM shows that the densest and defect-free coating has only one sample after three hours of sputtering. Wettability tests show that the sample with the densest coating has the lowest contact angle of 40.2° and the largest free surface area of 57.17 mJ/m2, which is mostly disperse. A scratch test was carried out to investigate the adhesion of the coating to the surface and it was shown that all coatings were removed by a cohesive mechanism. However, at a load of 30N, the indenter reached the substrate in two out of three samples, except for the sample with the densest coating. It was concluded that the most promising sputtering mode was the third, which consisted of three hours of deposition. This mode produced a defect-free Ca-P coating with good wettability and adhesion.

Keywords: biocompatibility, calcium phosphate coating, NiTi alloy, radio frequency sputtering.

Procedia PDF Downloads 56
5281 The Perspective of Waste Frying Oil in São Paulo and Its Dimensions in the Reverse Logistics of the Production of Biodiesel

Authors: Max Filipe Goncalves, Alessandra Concilio, Rodrigo Shimada

Abstract:

The waste frying oil is highly pollutant when disposed incorrectly in the environment. Is necessary search of the Reverse Logistics to identify how can be structure to return the waste like this to productive chain and to be used in the new process. In this context, the objective of this paper is to analyze the perspective of the waste frying oil in São Paulo, and its dimensions in the production of biodiesel. Subjacent factors such as the agents, motivators and legal aspects were analyzed to demonstrate it. Then, the SWOT matrix was built with the aspects observed and the forces, weaknesses, opportunities and threats of the reverse logistic chain in São Paulo.

Keywords: biodiesel, perspective, reverse logistic, WFO

Procedia PDF Downloads 186
5280 Catalytic Activity Study of Fe, Ti Loaded TUD-1

Authors: Supakorn Tantisriyanurak, Hussaya Maneesuwan, Thanyalak Chaisuwan, Sujitra Wongkasemjit

Abstract:

TUD-1 is a siliceous mesoporous material with a three-dimensional amorphous structure of random, interconnecting pores, large pore size, high surface area (400-1000 m2/g), hydrothermal stability, and tunable porosity. However, the significant disadvantage of the mesoporous silicates is few catalytic active sites. In this work, a series of bimetallic Fe and Ti incorporated into TUD-1 framework is successfully synthesized by sol–gel method. The synthesized Fe,Ti-TUD-1 is characterized by various techniques. To study the catalytic activity of Fe, Ti–TUD-1, phenol hydroxylation was selected as a model reaction. The amounts of residual phenol and oxidation products were determined by high performance liquid chromatography coupled with UV-detector (HPLC-UV).

Keywords: iron, phenol hydroxylation, titanium, TUD-1

Procedia PDF Downloads 241
5279 Fabrication of Carbon Nanoparticles and Graphene Using Pulsed Laser Ablation

Authors: Davoud Dorranian, Hajar Sadeghi, Elmira Solati

Abstract:

Carbon nanostructures in various forms were synthesized using pulsed laser ablation of a graphite target in different liquid environment. The beam of a Q-switched Nd:YAG laser of 1064-nm wavelength at 7-ns pulse width is employed to irradiate the solid target in water, acetone, alcohol, and cetyltrimethylammonium bromide (CTAB). Then the effect of the liquid environment on the characteristic of carbon nanostructures produced by laser ablation was investigated. The optical properties of the carbon nanostructures were examined at room temperature by UV–Vis-NIR spectrophotometer. The crystalline structure of the carbon nanostructures was analyzed by X-ray diffraction (XRD). The morphology of samples was investigated by field emission scanning electron microscope (FE-SEM). Transmission electron microscope (TEM) was employed to investigate the form of carbon nanostructures. Raman spectroscopy was used to determine the quality of carbon nanostructures. Results show that different carbon nanostructures such as nanoparticles and few-layer graphene were formed in various liquid environments. The UV-Vis-NIR absorption spectra of samples reveal that the intensity of absorption peak of nanoparticles in alcohol is higher than the other liquid environments due to the larger number of nanoparticles in this environment. The red shift of the absorption peak of the sample in acetone confirms that produced carbon nanoparticles in this liquid are averagely larger than the other medium. The difference in the intensity and shape of the absorption peak indicated the effect of the liquid environment in producing the nanoparticles. The XRD pattern of the sample in water indicates an amorphous structure due to existence the graphene sheets. X-ray diffraction pattern shows that the degree of crystallinity of sample produced in CTAB is higher than the other liquid environments. Transmission electron microscopy images reveal that the generated carbon materials in water are graphene sheet and in the other liquid environments are graphene sheet and spherical nanostructures. According to the TEM images, we have the larger amount of carbon nanoparticles in the alcohol environment. FE-SEM micrographs indicate that in this liquids sheet like structures are formed however in acetone, produced sheets are adhered and these layers overlap with each other. According to the FE-SEM micrographs, the surface morphology of the sample in CTAB was coarser than that without surfactant. From Raman spectra, it can be concluded the distinct shape, width, and position of the graphene peaks and corresponding graphite source.

Keywords: carbon nanostructures, graphene, pulsed laser ablation, graphite

Procedia PDF Downloads 295
5278 Simulation of Human Heart Activation Based on Diffusion Tensor Imaging

Authors: Ihab Elaff

Abstract:

Simulating the heart’s electrical stimulation is essential in modeling and evaluating the electrophysiology behavior of the heart. For achieving that, there are two structures in concern: the ventricles’ Myocardium, and the ventricles’ Conduction Network. Ventricles’ Myocardium has been modeled as anisotropic material from Diffusion Tensor Imaging (DTI) scan, and the Conduction Network has been extracted from DTI as a case-based structure based on the biological properties of the heart tissues and the working methodology of the Magnetic Resonance Imaging (MRI) scanner. Results of the produced activation were much similar to real measurements of the reference model that was presented in the literature.

Keywords: diffusion tensor, DTI, heart, conduction network, excitation propagation

Procedia PDF Downloads 234
5277 FLC with 3DSVM for 4LEG 4WIRE Shunt Active Power Filter

Authors: Abdelhalim Kessal, Ali Chebabhi

Abstract:

In this paper, a controller based on fuzzy logic control (FLC) associated to Three Dimensional Space Vector Modulation (3DSVM) is applied for shunt active filter in αβo axes domain. The main goals are to improve power quality under disturbed loads, minimize source currents harmonics and reduce neutral current magnitude in the four-wire structure. FLC is used to obtain the reference current and control the DC-bus voltage at the inverter output. The switching signals of the four-leg inverter are generating through a Three Dimensional Space Vector Modulation (3DSVM). Selected simulation results have been shown to validate the proposed system.

Keywords: flc, 3dsvm, sapf, harmonic, inverter

Procedia PDF Downloads 478
5276 Elaboration and Characterization of Tin Sulfide Thin Films Prepared by Spray Ultrasonic

Authors: A. Attaf, I. Bouhaf Kharkhachi

Abstract:

Hexagonal tin disulfide (SnS2) films were deposited by spray ultrasonic technique on glass substrates at different experimental conditions. The effect of deposition time (2, 4, 6, and 7 min) on different properties of SnS2 thin films was investigated by XRD and UV spectroscopy visible spectrum. X-ray diffraction study detected the preferential orientation growth of SnS2 compound having structure along (001) plane increased with the deposition time. The results of UV spectroscopy visible spectrum showed that films deposited at 4 min have high transmittance, up to 60%, in the visible region.

Keywords: structural and optical properties, tin sulfide, thin films, ultrasonic spray

Procedia PDF Downloads 455
5275 A Study of Families of Bistar and Corona Product of Graph: Reverse Topological Indices

Authors: Gowtham Kalkere Jayanna, Mohamad Nazri Husin

Abstract:

Graph theory, chemistry, and technology are all combined in cheminformatics. The structure and physiochemical properties of organic substances are linked using some useful graph invariants and the corresponding molecular graph. In this paper, we study specific reverse topological indices such as the reverse sum-connectivity index, the reverse Zagreb index, the reverse arithmetic-geometric, and the geometric-arithmetic, the reverse Sombor, the reverse Nirmala indices for the bistar graphs B (n: m) and the corona product Kₘ∘Kₙ', where Kₙ' Represent the complement of a complete graph Kₙ.

Keywords: reverse topological indices, bistar graph, the corona product, graph

Procedia PDF Downloads 76
5274 Ni-B Coating Production on Magnesium Alloy by Electroless Deposition

Authors: Ferhat Bülbül

Abstract:

The use of magnesium alloys is limited due to their susceptibility to corrosion although they have many attractive physical and mechanical properties. To increase mechanical and corrosion properties of these alloys, many deposition method and coating types are used. Electroless Ni–B coatings have received considerable interest recently due to its unique properties such as cost-effectiveness, thickness uniformity, good wear resistance, lubricity, good ductility and corrosion resistance, excellent solderability and electrical properties and antibacterial property. In this study, electroless Ni-B coating could been deposited on AZ91 magnesium alloy. The obtained coating exhibited an amorphous and rougher structure.

Keywords: magnesium, electroless Ni–B, X-ray diffraction, amorphous

Procedia PDF Downloads 317
5273 Critical Investigation on Performance of Polymeric Materials in Rehabilitation of Metallic Components

Authors: Parastou Kharazmi

Abstract:

Failure and leakage of metallic components because of corrosion in infrastructure structures is a considerably problematic and expensive issue and the traditional solution of replacing the component is costly and time-consuming. Rehabilitation techniques by using advanced polymeric materials are an alternative solution towards this problem. This paper provides a summary of analyses on relined rehabilitated metallic samples after exposure in practice and real condition to study the composite material performance when it is exposed to water, heat and chemicals in real condition. The study was carried out by using different test methods such as microscopy, thermal and chemical as well as mechanical analyses.

Keywords: composite, material, rehabilitation, structure

Procedia PDF Downloads 219