Search results for: learning and teaching environment
12967 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning
Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah
Abstract:
Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning
Procedia PDF Downloads 3212966 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests
Authors: Julius Onyancha, Valentina Plekhanova
Abstract:
One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.Keywords: web log data, web user profile, user interest, noise web data learning, machine learning
Procedia PDF Downloads 26512965 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks
Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos
Abstract:
This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.Keywords: metaphor detection, deep learning, representation learning, embeddings
Procedia PDF Downloads 15312964 Face Tracking and Recognition Using Deep Learning Approach
Authors: Degale Desta, Cheng Jian
Abstract:
The most important factor in identifying a person is their face. Even identical twins have their own distinct faces. As a result, identification and face recognition are needed to tell one person from another. A face recognition system is a verification tool used to establish a person's identity using biometrics. Nowadays, face recognition is a common technique used in a variety of applications, including home security systems, criminal identification, and phone unlock systems. This system is more secure because it only requires a facial image instead of other dependencies like a key or card. Face detection and face identification are the two phases that typically make up a human recognition system.The idea behind designing and creating a face recognition system using deep learning with Azure ML Python's OpenCV is explained in this paper. Face recognition is a task that can be accomplished using deep learning, and given the accuracy of this method, it appears to be a suitable approach. To show how accurate the suggested face recognition system is, experimental results are given in 98.46% accuracy using Fast-RCNN Performance of algorithms under different training conditions.Keywords: deep learning, face recognition, identification, fast-RCNN
Procedia PDF Downloads 14012963 Virtual Player for Learning by Observation to Assist Karate Training
Authors: Kazumoto Tanaka
Abstract:
It is well known that sport skill learning is facilitated by video observation of players’ actions in sports. The optimal viewpoint for the observation of actions depends on sport scenes. On the other hand, it is impossible to change viewpoint for the observation in general, because most videos are filmed from fixed points. The study has tackled the problem and focused on karate match as a first step. The study developed a method for observing karate player’s actions from any point of view by using 3D-CG model (i.e. virtual player) obtained from video images, and verified the effectiveness of the method on karate match.Keywords: computer graphics, karate training, learning by observation, motion capture, virtual player
Procedia PDF Downloads 27512962 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic
Authors: Budoor Al Abid
Abstract:
Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.Keywords: machine learning, adaptive, fuzzy logic, data mining
Procedia PDF Downloads 19612961 Virtual Reference Service as a Space for Communication and Interaction: Providing Infrastructure for Learning in Times of Crisis at Uppsala University
Authors: Nadja Ylvestedt
Abstract:
Uppsala University Library is a geographically dispersed research library consisting of nine subject libraries located in different campus areas throughout the city of Uppsala. Despite the geographical dispersion, it is the library's ambition to be perceived as a cohesive library with consistently high service and quality. A key factor to being one cohesive library is the library's online services, especially the virtual reference service. E-mail, chat and phone are answered by a team of specially trained staff under the supervision of a team leader. When covid-19 hit, well-established routines and processes to provide an infrastructure for students and researchers at the university changed radically. The strong connection between services provided at the library locations as well as at the VRS has been one of the key components of the library’s success in providing patrons with the help they need. With radically minimized availability at the physical locations, the infrastructure was at risk of collapsing. Objectives:- The objective of this project has been to evaluate the consequences of the sudden change in the organization of the library. The focus of this evaluation is the library’s VRS as an important space for learning, interaction and communication between the library and the community when other traditional spaces were not available. The goal of this evaluation is to capture the lessons learned from providing infrastructure for learning and research in times of crisis both on a practical, user-centered level but also to stress the importance of leadership in ever-changing environments that supports and creates agile, flexible services and teams instead of rigid processes adhering to obsolete goals. Results:- Reduced availability at the physical library locations was one of the strategies to prevent the spread of the covid-19 virus. The library staff was encouraged to work from home, so student workers staffed the library’s physical locations during that time, leaving the VRS to be the only place where patrons could get expert help. The VRS had an increase of 65% of questions asked between spring term 2019 and spring term 2020. The VRS team had to navigate often complicated and fast-changing new routines depending on national guidelines. The VRS team has a strong emphasis on agility in their approach to the challenges and opportunities, with methods to evaluate decisions regularly with user experience in mind. Fast decision-making, collecting feedback, an open-minded approach to reviewing rules and processes with both a short-term and a long-term focus and providing a healthy work environment have been key factors in managing this crisis and learn from it. This was resting on a strong sense of ownership regarding the VRS, well-working communication tools and agile and active communication between team members, as well as between the team and the rest of the organization who served as a second-line support system to aid the VRS team. Moving forward, the VRS has become an important space for communication, interaction and provider of infrastructure, implementing new routines and more extensive availability due to the lessons learned during crisis. The evaluation shows that the virtual environment has become an important addition to the physical spaces, existing in its own right but always in connection with and in relationship with the library structure as a whole. Thereby showing that the basis of human interaction stays the same while its form morphs and adapts to changes, thus leaving the virtual environment as a space of communication and infrastructure with unique opportunities for outreach and the potential to become a staple in patron’s education and learning.Keywords: virtual reference service, leadership, digital infrastructure, research library
Procedia PDF Downloads 17112960 Post-Processing Method for Performance Improvement of Aerial Image Parcel Segmentation
Authors: Donghee Noh, Seonhyeong Kim, Junhwan Choi, Heegon Kim, Sooho Jung, Keunho Park
Abstract:
In this paper, we describe an image post-processing method to enhance the performance of the parcel segmentation method using deep learning-based aerial images conducted in previous studies. The study results were evaluated using a confusion matrix, IoU, Precision, Recall, and F1-Score. In the case of the confusion matrix, it was observed that the false positive value, which is the result of misclassification, was greatly reduced as a result of image post-processing. The average IoU was 0.9688 in the image post-processing, which is higher than the deep learning result of 0.8362, and the F1-Score was also 0.9822 in the image post-processing, which was higher than the deep learning result of 0.8850. As a result of the experiment, it was found that the proposed technique positively complements the deep learning results in segmenting the parcel of interest.Keywords: aerial image, image process, machine vision, open field smart farm, segmentation
Procedia PDF Downloads 8112959 An Interactive Online Academic Writing Resource for Research Students in Engineering
Authors: Eleanor K. P. Kwan
Abstract:
English academic writing, it has been argued, is an acquired language even for English speakers. For research students whose English is not their first language, however, the acquisition process is often more challenging. Instead of hoping that students would acquire the conventions themselves through extensive reading, there is a need for the explicit teaching of linguistic conventions in academic writing, as explicit teaching could help students to be more aware of the different generic conventions in different disciplines in science. This paper presents an interuniversity effort to develop an online academic writing resource for research students in five subdisciplines in engineering, upon the completion of the needs analysis which indicates that students and faculty members are more concerned about students’ ability to organize an extended text than about grammatical accuracy per se. In particular, this paper focuses on the materials developed for thesis writing (also called dissertation writing in some tertiary institutions), as theses form an essential graduation requirement for all research students and this genre is also expected to demonstrate the writer’s competence in research and contributions to the research community. Drawing on Swalesian move analysis of research articles, this online resource includes authentic materials written by students and faculty members from the participating institutes. Highlight will be given to several aspects and challenges of developing this online resource. First, as the online resource aims at moving beyond providing instructions on academic writing, a range of interactive activities need to be designed to engage the users, which is one feature which differentiates this online resource from other equally informative websites on academic writing. Second, it will also include discussion on divergent textual practices in different subdisciplines, which help to illustrate different practices among these subdisciplines. Third, since theses, probably one of the most extended texts a research student will complete, require effective use of signposting devices to facility readers’ understanding, this online resource will also provide both explanation and activities on different components that contribute to text coherence. Finally results from piloting will also be included to shed light on the effectiveness of the materials, which could be useful for future development.Keywords: academic writing, English for academic purposes, online language learning materials, scientific writing
Procedia PDF Downloads 26912958 Revisited: Financial Literacy and How University Students Fare
Authors: Zaiton Osman, Phang Ing, Azaze Azizi Abd Adis, Izyanti Awg Razli, Mohd Rizwan Abd Majid, Rosle Mohidin
Abstract:
This study is conducted to investigate the level of financial literacy among students taking Financial Management and Banking in Universiti Malaysia Sabah, Malaysia. Students are asked to answer basic financial literacy questions in their first class before study commence and the similar questions were given in their final week of study (after 14 weeks of study duration). The comparison on their level of financial literacy will be examined. This study is expected to yields the following findings; firstly, comparison of the level of financial literacy 'before and after' courses in finance being introduced can be revealed. Secondly, it will provide suggestion on improving the standard of teaching and learning in financial management and banking courses and lastly it will help in identifying financial courses that are important in improving the level of financial literacy among students in Malaysia.Keywords: financial literacy, university students, personal financial planning, business and management engineering
Procedia PDF Downloads 72412957 Project Management at University: Towards an Evaluation Process around Cooperative Learning
Authors: J. L. Andrade-Pineda, J.M. León-Blanco, M. Calle, P. L. González-R
Abstract:
The enrollment in current Master's degree programs usually pursues gaining the expertise required in real-life workplaces. The experience we present here concerns the learning process of "Project Management Methodology (PMM)", around a cooperative/collaborative mechanism aimed at affording students measurable learning goals and providing the teacher with the ability of focusing on the weaknesses detected. We have designed a mixed summative/formative evaluation, which assures curriculum engage while enriches the comprehension of PMM key concepts. In this experience we converted the students into active actors in the evaluation process itself and we endowed ourselves as teachers with a flexible process in which along with qualifications (score), other attitudinal feedback arises. Despite the high level of self-affirmation on their discussion within the interactive assessment sessions, they ultimately have exhibited a great ability to review and correct the wrong reasoning when that was the case.Keywords: cooperative-collaborative learning, educational management, formative-summative assessment, leadership training
Procedia PDF Downloads 16912956 Addressing the Exorbitant Cost of Labeling Medical Images with Active Learning
Authors: Saba Rahimi, Ozan Oktay, Javier Alvarez-Valle, Sujeeth Bharadwaj
Abstract:
Successful application of deep learning in medical image analysis necessitates unprecedented amounts of labeled training data. Unlike conventional 2D applications, radiological images can be three-dimensional (e.g., CT, MRI), consisting of many instances within each image. The problem is exacerbated when expert annotations are required for effective pixel-wise labeling, which incurs exorbitant labeling effort and cost. Active learning is an established research domain that aims to reduce labeling workload by prioritizing a subset of informative unlabeled examples to annotate. Our contribution is a cost-effective approach for U-Net 3D models that uses Monte Carlo sampling to analyze pixel-wise uncertainty. Experiments on the AAPM 2017 lung CT segmentation challenge dataset show that our proposed framework can achieve promising segmentation results by using only 42% of the training data.Keywords: image segmentation, active learning, convolutional neural network, 3D U-Net
Procedia PDF Downloads 15512955 Impact of COVID-19 on Radiology Training in Australia and New Zealand
Authors: Preet Gill, Danus Ravindran
Abstract:
These The COVID-19 pandemic resulted in widespread implications for medical specialist training programs worldwide, including radiology. The objective of this study was to investigate the impact of COVID-19 on the Australian and New Zealand radiology trainee experience and well-being, as well as to compare the Australasian experience with that reported by other countries. An anonymised electronic online questionnaire was disseminated to all training members of the Royal Australian and New Zealand College of Radiologists who were radiology trainees during the 2020 – 2022 clinical years. Trainees were questioned about their experience from the beginning of the COVID-19 pandemic in Australasia (March 2020) to the time of survey completion. Participation was voluntary. Questions assessed the impact of the pandemic across multiple domains, including workload (inpatient/outpatient & individual modality volume), teaching, supervision, external learning opportunities, redeployment and trainee wellbeing. Survey responses were collated and compared with other peer reviewed publications. Answer options were primarily in categorical format (nominal and ordinal subtypes, as appropriate). An opportunity to provide free text answers to a minority of questions was provided. While our results mirror that of other countries, which demonstrated reduced case exposure and increased remote teaching and supervision, responses showed variation in the methods utilised by training sites during the height of the pandemic. A significant number of trainees were affected by examination cancellations/postponements and had subspecialty training rotations postponed. The majority of trainees felt that the pandemic had a negative effect on their training. In conclusion, the COVID-19 pandemic has had a significant impact on radiology trainees across Australia and New Zealand. The present study has highlighted the extent of these effects, with most aspects of training impacted. Opportunities exist to utilise this information to create robust workplace strategies to mitigate these negative effects should the need arise in the future.Keywords: COVID-19, radiology, training, pandemic
Procedia PDF Downloads 6612954 The Role of Human Beings as Caliphs in Preserving Nature
Authors: Firdaus Khairi Abdul Kadir, Nazihah Rusli, Noor Aisyah Abdul Aziz
Abstract:
Islam is a comprehensive religion encompassing all aspects of society’s life such as social, economic, political, cultural and environmental. The environment is part of the manifestation of God’s greatness which has pearls of wisdom, bestowed upon human beings to make them realize that everything is in the hands of God (Allah SWT). However, the equilibrium of nature could be disturbed from the excessive exploitation by humans’ hands. As a caliph on this earth, it is the responsibility of human beings to look after the environment proactively. Besides, Islam calls for the execution of accountable development and respecting the principles of sustainability. Therefore, this study focuses on the role of human beings as caliphs on this earth who are responsible for nature and their acts in conserving and preserving the environment based on the approach of religious education. This study also used the research method of the survey library.Keywords: environment, human beings, caliph, tauhid, Allah SWT
Procedia PDF Downloads 12912953 The Effects of Rumah Panggung Environment, Social Culture, and Behavior on Malaria Incidence in Kori Village, Indonesia
Authors: Sri Ratna Rahayu, Oktia Woro Kasmini Handayani, Lourensiana Y. S. Ngaga, Imade Sudana, Irwan Budiono
Abstract:
Malaria is an infectious disease that still cannot be solved in Kori village, West Nusa Tenggara, Indonesia, where the most of people live in rumah panggung (Stilts House). The purpose of this study was to know whether there were the effects of rumah panggung environment, social culture, and behavior on malaria incidence in the Kori village. A cross-sectional study was performed to explore the effects of rumah panggung environment, social culture and behavior on malaria incidence. This study recruited 280 respondents, who live in the rumah panggung, permanent residents in Kori village, were age above 17 years old, and suffered from malaria in the past year. The collected data were analyzed with path analysis. The results of this study showed that the environment of rumah panggung and behavior have a direct effect on the incidence of malaria (p < 0.05). It could be concluded that improvement of environmental conditions of rumah panggung, sociocultural, and behavioral changes to maintain a healthy environment are needed to reduce the malaria incidence.Keywords: Rumah panggung, socio-cultural, behavior, Malaria
Procedia PDF Downloads 22912952 Measuring Student Teachers' Attitude and Intention toward Cell-Phone Use for Learning in Nigeria
Authors: Shittu Ahmed Tajudeen
Abstract:
This study examines student-teachers’ attitude and intention towards cell-phone use for learning. The study involves one hundred and ninety (190) trainee teachers in one of the Institutes of Education in Nigeria. The data of the study was collected through a questionnaire on a rating of seven point likert-type Scale. The data collected was used to test the hypothesized model of the study using Structural Equation Modeling approach. The finding of the study revealed that Perceived Usefulness (PU), Perceived Ease of Use (PEU), Subjective Norm (SN) and Attitude significantly influence students’ intention towards adoption of cell-phone for learning. The study showed that perceived ease of use stands to be the strongest predictor of cell-phone use. The model of the study exhibits a good-fit with the data and provides an explanation on student- teachers’ attitude and intention towards cell-phone for learning.Keywords: cell-phone, adoption, structural equation modeling, technology acceptance model
Procedia PDF Downloads 45312951 Timbuktu Pattern of Islamic Education: A Role Model for the Establishment of Islamic Educational System in Sokoto Caliphate
Authors: A. M. Gada, H. U. Malami
Abstract:
Timbuktu is one of the eight regions in the present day the Republic of Mali. It flourished as one of the earliest centres of Islamic learning in West Africa in the eleventh century CE. The famous Islamic centre in Timbuktu is situated in the Sankore mosque, which is known to be one of the earliest established Islamic University. This centre produced scholars who were zealous in disseminating Islamic education to different parts of West Africa and beyond. As a result, most of these centres adopted the Timbuktu pattern of learning. Some of the beneficiaries of this noble activity are Muslim scholars which are responsible for the establishment of the Sokoto Caliphate in the early nineteenth century. This paper intends to reflect on the pattern of Islamic education of the Timbuktu scholars and see how it impacted on the Islamic centres of learning established by these Jihad-scholars who were successful in the establishment of an Islamic state known as the Sokoto Caliphate.Keywords: Timbuktu, Sankore, Islamic educational system, Sokoto Caliphate, centres of Islamic learning
Procedia PDF Downloads 41712950 Comparative Analysis of Teachers’ Performance in Private and Public Primary Schools in Oyo State, Nigeria
Authors: Oyetunji John Adenuga
Abstract:
This study on the comparative analysis of the performance of teachers in private and public schools was carried out in Ibadan North West Local Government Area of Oyo State. This study examined the justification for the claim that there is difference in the performance of teachers in private and public primary schools and at the same time identified factors responsible for the difference in the performance of these teachers. A descriptive survey research design was used for the study. Data generated were analysed using t-test and regression analysis. The findings of the study revealed that there is significant difference in the performance of teachers in private and private primary schools in Ibadan North West Local Government Area of Oyo State (t=64.09; df=459; p,.05). The findings also revealed that the method of teaching in private primary schools is significantly different from the method of teaching in public primary schools in Ibadan North West Local Government Area of Oyo State (t=73.08; df=459; p,.05). Findings revealed that school leadership and management have significant contribution on the performance of private and public primary school teachers in Ibadan North West Local Area of Oyo State. Based on the finding, the following recommendations were made: Primary school teachers need to be motivated and rewarded for excellent performance. Primary schools should be properly equipped with teaching-aid facilities, laboratories and libraries. Government should use the findings of this study to improve on teaching materials provided to the primary school teachers in Nigeria. Public primary schools should be designed by education planners, administrators and government. Headmasters, proprietors and teachers of primary schools should look inward and give a performance appraisal and evaluation of themselves form time to time based on subject they taught. Finally, school administrators should be conscious of the way they manage the teachers in schools not only in informal situations but also in formal settings.Keywords: private education, public education, school leadership, school management, teachers performance
Procedia PDF Downloads 34212949 Active Learning in Computer Exercises on Electronics
Authors: Zoja Raud, Valery Vodovozov
Abstract:
Modelling and simulation provide effective way to acquire engineering experience. An active approach to modelling and simulation proposed in the paper involves, beside the compulsory part directed by the traditional step-by-step instructions, the new optional part basing on the human’s habits to design thus stimulating the efforts towards success in active learning. Computer exercises as a part of engineering curriculum incorporate a set of effective activities. In addition to the knowledge acquired in theoretical training, the described educational arrangement helps to develop problem solutions, computation skills, and experimentation performance along with enhancement of practical experience and qualification.Keywords: modelling, simulation, engineering education, electronics, active learning
Procedia PDF Downloads 39112948 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker
Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation
Procedia PDF Downloads 2312947 Efficient Chiller Plant Control Using Modern Reinforcement Learning
Authors: Jingwei Du
Abstract:
The need of optimizing air conditioning systems for existing buildings calls for control methods designed with energy-efficiency as a primary goal. The majority of current control methods boil down to two categories: empirical and model-based. To be effective, the former heavily relies on engineering expertise and the latter requires extensive historical data. Reinforcement Learning (RL), on the other hand, is a model-free approach that explores the environment to obtain an optimal control strategy often referred to as “policy”. This research adopts Proximal Policy Optimization (PPO) to improve chiller plant control, and enable the RL agent to collaborate with experienced engineers. It exploits the fact that while the industry lacks historical data, abundant operational data is available and allows the agent to learn and evolve safely under human supervision. Thanks to the development of language models, renewed interest in RL has led to modern, online, policy-based RL algorithms such as the PPO. This research took inspiration from “alignment”, a process that utilizes human feedback to finetune the pretrained model in case of unsafe content. The methodology can be summarized into three steps. First, an initial policy model is generated based on minimal prior knowledge. Next, the prepared PPO agent is deployed so feedback from both critic model and human experts can be collected for future finetuning. Finally, the agent learns and adapts itself to the specific chiller plant, updates the policy model and is ready for the next iteration. Besides the proposed approach, this study also used traditional RL methods to optimize the same simulated chiller plants for comparison, and it turns out that the proposed method is safe and effective at the same time and needs less to no historical data to start up.Keywords: chiller plant, control methods, energy efficiency, proximal policy optimization, reinforcement learning
Procedia PDF Downloads 2912946 Expression-Based Learning as a Starting Point to Promote Students’ Creativity in K-12 Schools in China
Authors: Yanyue Yuan
Abstract:
In this paper, the author shares the findings of a pilot study that examines students’ creative expressions and their perceptions of creativity when engaged in project-based learning. The study is based on an elective course that the author co-designed and co-taught with a colleague to sixteen grade six and seven students over the spring semester in 2019. Using the Little Prince story as the main prompt, they facilitated students’ original creation of a storytelling concert that integrated script writing, music production, lyrics, songs, and visual design as a result of both individual and collaborative work. The author will share the specific challenges we met during the project, including learning cultures of the school, class management, teachers' and parents’ attitude, process-oriented versus product-oriented mindset, and facilities and logistical resources. The findings of this pilot study will inform the ongoing research initiative of exploring how we can foster creative learning in public schools in the Chinese context. While K-12 schools of China’s public education system are still dominated by exam-oriented and teacher-centered approaches, the author proposes that expression-based learning can be a starting point for promoting students’ creativity and can serve as experimental efforts to initiate incremental changes within the current education framework. The paper will also touch upon insights gained from collaborations between university and K-12 schools.Keywords: creativity, expression-based learning, K-12, incremental changes
Procedia PDF Downloads 10312945 Public-Private Partnership for Community Empowerment and Sustainability: Exploring Save the Children’s 'School Me' Project in West Africa
Authors: Gae Hee Song
Abstract:
This paper aims to address the evolution of public-private partnerships for mainstreaming an evaluation approach in the community-based education project. It examines the distinctive features of Save the Children’s School Me project in terms of empowerment evaluation principles introduced by David M. Fetterman, especially community ownership, capacity building, and organizational learning. School Me is a Save the Children Korea funded-project, having been implemented in Cote d’Ivoire and Sierra Leone since 2016. The objective of this project is to reduce gender-based disparities in school completion and learning outcomes by creating an empowering learning environment for girls and boys. Both quasi-experimental and experimental methods for impact evaluation have been used to explore changes in learning outcomes, gender attitudes, and learning environments. To locate School Me in the public-private partnership framework for community empowerment and sustainability, the data have been collected from School Me progress/final reports, baseline, and endline reports, fieldwork observations, inter-rater reliability of baseline and endline data collected from a total of 75 schools in Cote d’Ivoire and Sierra Leone. The findings of this study show that School Me project has a significant evaluation component, including qualitative exploratory research, participatory monitoring, and impact evaluation. It strongly encourages key actors, girls, boys, parents, teachers, community leaders, and local education authorities, to participate in the collection and interpretation of data. For example, 45 community volunteers collected baseline data in Cote d’Ivoire; on the other hand, three local government officers and fourteen enumerators participated in the follow-up data collection of Sierra Leone. Not only does this public-private partnership improve local government and community members’ knowledge and skills of monitoring and evaluation, but the evaluative findings also help them find their own problems and solutions with a strong sense of community ownership. Such community empowerment enables Save the Children country offices and member offices to gain invaluable experiences and lessons learned. As a result, empowerment evaluation leads to community-oriented governance and the sustainability of the School Me project.Keywords: community empowerment, Cote d’Ivoire, empowerment evaluation, public-private partnership, save the children, school me, Sierra Leone, sustainability
Procedia PDF Downloads 12512944 Didacticization of Code Switching as a Tool for Bilingual Education in Mali
Authors: Kadidiatou Toure
Abstract:
Mali has started experimentation of teaching the national languages at school through the convergent pedagogy in 1987. Then, it is in 1994 that it will become widespread with eleven of the thirteen former national languages used at primary school. The aim was to improve the Malian educational system because the use of French as the only medium of instruction was considered a contributing factor to the significant number of student dropouts and the high rate of repetition. The Convergent pedagogy highlights the knowledge acquired by children at home, their vision of the world and especially the knowledge they have of their mother tongue. That pedagogy requires the use of a specific medium only during classroom practices and teachers have been trained in this sense. The specific medium depends on the learning content, which sometimes is French, other times, it is the national language. Research has shown that bilingual learners do not only use the required medium in their learning activities, but they code switch. It is part of their learning processes. Currently, many scholars agree on the importance of CS in bilingual classes, and teachers have been told about the necessity of integrating it into their classroom practices. One of the challenges of the Malian bilingual education curriculum is the question of ‘effective languages management’. Theoretically, depending on the classrooms, an average have been established for each of the involved language. Following that, teachers make use of CS differently, sometimes, it favors the learners, other times, it contributes to the development of some linguistic weaknesses. The present research tries to fill that gap through a tentative model of didactization of CS, which simply means the practical management of the languages involved in the bilingual classrooms. It is to know how to use CS for effective learning. Moreover, the didactization of CS tends to sensitize the teachers about the functional role of CS so that they may overcome their own weaknesses. The overall goal of this research is to make code switching a real tool for bilingual education. The specific objectives are: to identify the types of CS used during classroom activities to present the functional role of CS for the teachers as well as the pupils. to develop a tentative model of code-switching, which will help the teachers in transitional classes of bilingual schools to recognize the appropriate moment for making use of code switching in their classrooms. The methodology adopted is a qualitative one. The study is based on recorded videos of teachers of 3rd year of primary school during their classroom activities and interviews with the teachers in order to confirm the functional role of CS in bilingual classes. The theoretical framework adopted is the typology of CS proposed by Poplack (1980) to identify the types of CS used. The study reveals that teachers need to be trained on the types of CS and the different functions they assume and on the consequences of inappropriate use of language alternation.Keywords: bilingual curriculum, code switching, didactization, national languages
Procedia PDF Downloads 7112943 Engaging Students in Multimedia Constructivist Learning: Analysis of Students' Science Achievement
Authors: Maria Georgiou
Abstract:
This study examined whether there was a statistically significant difference between pretest and posttest achievement scores for students who received multimedia-based instructions in science. The paired samples t-test was used to address the research question and to establish whether there was a significant difference between pretest and posttest scores that may have occurred based on the students’ learning experience with multimedia technology. Findings indicated that there was a significant difference in students’ achievement scores before and after a multimedia-based instruction. Students’ achievement scores were increased by approximately two points, after students received multimedia-based instruction. On a paired samples t-test, a high level of significance was found, p = 0.000. Opportunities to learn with multimedia are more likely to result in sustained improvements in student achievement and a deeper understanding of science content. Multimedia can make learning more active and student-centered and activate student motivation.Keywords: constructivist learning, hyperstudio, multimedia, multimedia-based instruction
Procedia PDF Downloads 16212942 The Effectiveness of Gamified Learning on Student Learning in Computer Science Education: A Systematic Review (2010-2018)
Authors: Shurui Bai, Biyun Huang, Khe Foon Hew
Abstract:
Gamification is defined as the use of game design elements in non-game contexts. The primary purpose of using gamification in an educational context is to engage students in school activities such that their likelihood of completion is increased. But how actually effective is gamification in improving student learning? In order to answer this question, this paper provides a systematic review of prior research studies on gamification in K-12 and university contexts limited to computer science discipline. Unlike other published gamification review works, we specifically analyzed comparison-based studies in quasi-experiment, historical control, and randomization rather than studies with mere anecdotal or phenomenological results. The main purpose for this is to discuss possible causal effects of gamified practices on student performance, behavior change, and perceptual skills following an integrative model. Implications for practice are discussed, along with several suggestions for future research studies.Keywords: computer science, gamification, learning performance, systematic review
Procedia PDF Downloads 13112941 Facilitating Active Reading Strategies through Caps Chart to Foster Elementary EFL Learners’ Reading Skills and Reading Competency
Authors: Michelle Bulawan, Mei-Hua Chen
Abstract:
Reading comprehension is crucial for acquiring information, analyzing critically, and achieving academic proficiency. However, there is a lack of growth in reading comprehension skills beyond fourth grade. The developmental shift from "learning to read" to "reading to learn" occurs around this stage. Factual knowledge and diverse views in articles enhance reading comprehension abilities. Nevertheless, some face difficulties due to evolving textual requirements, such as expanding vocabulary and using longer, more complex terminology. Most research on reading strategies has been conducted at the tertiary and secondary levels, while few have focused on the elementary levels. Furthermore, the use of character, ask, problem, solution (CAPS) charts in teaching reading has also been hardly explored. Thus, the researcher decided to explore the facilitation of active reading strategies through the CAPS chart and address the following research questions: a) What differences existed in elementary EFL learners' reading competency among those who engaged in active reading strategies and those who did not? b) What are the learners’ metacognitive skills of those who engage in active reading strategies and those who do not, and what are their effects on their reading competency? c) For those participants who engage in active reading activities, what are their perceptions about incorporating active reading activities into their English classroom learning? Two groups of elementary EFL learners, each with 18 students of the same level of English proficiency, participated in this study. Group A served as the control group, while Group B served as the experimental group. Two teachers also participated in this research; one of them was the researcher who handled the experimental group. The treatment lasts for one whole semester or seventeen weeks. In addition to the CAPS chart, the researcher also used the metacognitive awareness of reading strategy inventory (MARSI) and a ten-item, five-point Likert scale survey.Keywords: active reading, EFL learners, metacognitive skills, reading competency, student’s perception
Procedia PDF Downloads 9112940 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data
Authors: Gayathri Nagarajan, L. D. Dhinesh Babu
Abstract:
Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform
Procedia PDF Downloads 24012939 A Study of Permission-Based Malware Detection Using Machine Learning
Authors: Ratun Rahman, Rafid Islam, Akin Ahmed, Kamrul Hasan, Hasan Mahmud
Abstract:
Malware is becoming more prevalent, and several threat categories have risen dramatically in recent years. This paper provides a bird's-eye view of the world of malware analysis. The efficiency of five different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and TensorFlow Decision Forest) combined with features picked from the retrieval of Android permissions to categorize applications as harmful or benign is investigated in this study. The test set consists of 1,168 samples (among these android applications, 602 are malware and 566 are benign applications), each consisting of 948 features (permissions). Using the permission-based dataset, the machine learning algorithms then produce accuracy rates above 80%, except the Naive Bayes Algorithm with 65% accuracy. Of the considered algorithms TensorFlow Decision Forest performed the best with an accuracy of 90%.Keywords: android malware detection, machine learning, malware, malware analysis
Procedia PDF Downloads 16712938 Measurement and Research of Green Office Building Operational Performance in China: A Case Study of a Green Office Building in Zhejiang Province
Authors: Xuechen Gui, Jian Ge, Senmiao Li
Abstract:
In recent years, green buildings in China have been developing rapidly and have developed into a wide variety of types, of which office building is a very important part. In many green office buildings, the energy consumption of building operation is high; the indoor environment quality needs to be improved, and the level of occupants’ satisfaction is low. This paper conducted a one-year measurement of operational performance of a green office building in Zhejiang Province. The measurement includes energy consumption of the building's one-year operation, the quality of the indoor environment and occupants’ satisfaction in different seasons. The energy consumption is collected from the power bureau. The quality of the indoor environment have been measured at different measuring points including offices, meeting rooms and reception for the whole year. The satisfaction of occupants are obtained from questionnaires. The results are compared with given standards and goals and the reasons why occupants are dissatisfied with the indoor environment are analyzed. Regarding energy consumption, the energy consumption of the building operational performance is much higher than the standard. Regarding the indoor environment, the temperature and humidity meet the standard for most of the time, but fine particulate matter (PM2.5) concentration is pretty high. Regarding occupants satisfaction, occupants have a higher expectation for indoor air quality even when the indoor air quality is well and occupants prefer a relatively humid environment. However the overall satisfaction is more than 80%, which indicates that occupants have a higher tolerability.Keywords: green office building, energy consumption, indoor environment quality, occupants satisfaction, operational performance
Procedia PDF Downloads 177