Search results for: hyperspectral image classification using tree search algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9615

Search results for: hyperspectral image classification using tree search algorithm

6495 Sociocultural Influences on Men of Color’s Body Image Concerns: A Structural Equation Modeling Study

Authors: Zikun Li, Regine Talleyrand

Abstract:

Negative body image is one of the most common causes of eating disorders, and it is not only happening to women. Regardless of the increasing attention that researchers and practitioners have been paying to the male population and their body image concerns, men of color have yet to be fully represented or studied. Given the consensus that the sociocultural experiences of people of color may play a significant role in their health and well-being, this study focused on assessing the mechanism through which sociocultural factors may influence men of color’s perceptions of body image. In particular, this study focused on untangling how interpersonal and media pressure, as well as ethnic-racial identities and perceptions, would impact body dissatisfaction in terms of muscularity, body fat, and height in men of color and how this mechanism is moderated across different ethnic-racial groups. The structural equation modeling approach was therefore applied to achieve the research goal. With the sample size of 181 self-identified Black, Indigenous, and People of Color male participants aged 20-50 (M=33.33, SD=6.9) through surveying on Amazon’s MTurk platform, the proposed model achieved a modestly acceptable model fit with the pooled sample, X2(836) = 1412.184, CFI = 0.900, RMSEA = 0.062 [0.056, 0.067]. And SRMR = 0.088, And it explained 89.5% of the variance in body dissatisfaction. The results showed that of all the direct effects on body dissatisfaction, interpersonal appearance pressure exhibited the strongest effect (β = 0.410***), followed by media appearance pressure (β = 0.272**) and self-hatred feeling (β = 0.245**). The ethnic-racial related factors (i.e., stereotype endorsement, ethnic-racial salience, and nationalistic assimilation) statistically influenced body dissatisfaction through the mediators of media appearance pressure and/or self-hatred feeling. Furthermore, the moderation analysis between Black/African American men and non-Black/African American men revealed the substantial differences in how ethnic/racial identity impacts one’s perception of body image, and the Black/African American men were found to be influenced by sociocultural factors at a higher level, compared with their counterparts. The impacts of demographic characteristics (i.e., SES, weight, height) on body dissatisfaction were also examined. Instead of considering interpersonal appearance pressure and media pressure as two subscales under one construct, this study considered them as two separate and distinct sociocultural factors. The good model fit to the data indicates this rationality and encourages scholars to reconsider the impacts of two sources of social pressures on body dissatisfaction. In addition, this study also provided empirical evidence of the moderation effect existing within the population of men of color, which reveals the heterogeneity existing across different ethnic-racial groups and implies the necessity to study individual ethnic-racial groups so as to better understand the mechanism of sociocultural influences on men of color’s body dissatisfaction. These findings strengthened the current understanding of the body image concerns exciting among men of color and meanwhile provided empirical evidence for practitioners to provide tailored health prevention and treatment options for this growing population in the United States.

Keywords: men of color, body image concerns, sociocultural factors, structural equation modeling

Procedia PDF Downloads 73
6494 Building an Ontology for Researchers: An Application of Topic Maps and Social Information

Authors: Yu Hung Chiang, Hei Chia Wang

Abstract:

In the academic area, it is important for research to find proper research domain. Many researchers may refer to conference issues to find their interesting or new topics. Furthermore, conferences issues can help researchers realize current research trends in their field and learn about cutting-edge developments in their specialty. However, online published conference information may widely be distributed; it is not easy to be concluded. Many researchers use search engine of journals or conference issues to filter information in order to get what they want. However, this search engine has its limitation. There will still be some issues should be considered; i.e. researchers cannot find the associated topics which may be useful information for them. Hence, use Knowledge Management (KM) could be a way to resolve these issues. In KM, ontology is widely adopted; but most existed ontology construction methods do not consider social information between target users. To effective in academic KM, this study proposes a method of constructing research Topic Maps using Open Directory Project (ODP) and Social Information Processing (SIP). Through catching of social information in conference website: i.e. the information of co-authorship or collaborator, research topics can be associated among related researchers. Finally, the experiments show Topic Maps successfully help researchers to find the information they need more easily and quickly as well as construct associations between research topics.

Keywords: knowledge management, topic map, social information processing, ontology extraction

Procedia PDF Downloads 294
6493 Laying Performance of Itik Pinas (Anas platyrynchos Linnaeus) as Affected by Garlic (Allium sativum) Powder in Drinking Water

Authors: Gianne Bianca P. Manalo, Ernesto A. Martin, Vanessa V. Velasco

Abstract:

The laying performance, egg quality, egg classification, and income over feed cost of Improved Philippine Mallard duck (Itik Pinas) were examined as influenced by garlic powder in drinking water. A total of 48 ducks (42 females and 6 males) were used in the study. The ducks were allocated into two treatments - with garlic powder (GP) and without garlic powder (control) in drinking water. Each treatment had three replicates with eight ducks (7 females and 1 male) per replication. The results showed that there was a significant (P = 0.03) difference in average egg weight where higher values were attained by ducks with GP (77.67 g ± 0.64) than the control (75.64 g ± 0.43). The supplementation of garlic powder in drinking water, however, did not affect the egg production, feed intake, FCR, egg mass, livability, egg quality and egg classification. The Itik Pinas with GP in drinking water had numerically higher income over feed cost than those without. GP in drinking water can be considered in raising Itik Pinas. Further studies on increasing level of GP and long feeding duration also merit consideration to substantiate the findings.

Keywords: phytogenic, garlic powder, Itik-Pinas, egg weight, egg production

Procedia PDF Downloads 92
6492 Refined Edge Detection Network

Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni

Abstract:

Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.

Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone

Procedia PDF Downloads 106
6491 Field Evaluation of Fusarium Head Blight in Durum Wheat Caused by Fusarium culmorum in Algeria

Authors: Salah Hadjout, Mohamed Zouidi

Abstract:

In Algeria, several works carried out in recent years have shown the importance of fusarium head blight in durum wheat. Indeed, this disease is caused by a complex of Fusarium genus pathogens. The research carried out reports that F. culmorum is the main species infecting cereals. These informations motivated our interest in the field evaluation of the behavior of some durum wheat genotypes (parental varieties and lines) with regard to fusarium head blight, mainly caused by four F. culmorum isolates. Our research work focused on following the evolution of symptom development throughout the grain filling, after artificial inoculation of ears by Fusarium isolates in order to establish a first image on the differences in genotype behavior to fusarium haed blight. Field disease assessment criteria are: disease assessment using a grading scale, thousand grain weight measurement and AUDPC. The results obtained revealed that the varieties and lines resulting from crosses had a quite different level of sensitivity to F. culmorum species and no genotype showed complete resistance in our culture conditions. Among the material tested, some lines showed higher resistance than their parents. The results also show a slight behavioral variability also linked to the aggressiveness of the Fusarium species studied in this work. Our results open very important research perspectives on fusarium head blight, in particular the search for toxins produced by Fusarium species.

Keywords: fusarium head blight, durum wheat, Fusarium culmorum, field disease assessment criteria, Algeria

Procedia PDF Downloads 106
6490 The Use of Artificial Intelligence in Digital Forensics and Incident Response in a Constrained Environment

Authors: Dipo Dunsin, Mohamed C. Ghanem, Karim Ouazzane

Abstract:

Digital investigators often have a hard time spotting evidence in digital information. It has become hard to determine which source of proof relates to a specific investigation. A growing concern is that the various processes, technology, and specific procedures used in the digital investigation are not keeping up with criminal developments. Therefore, criminals are taking advantage of these weaknesses to commit further crimes. In digital forensics investigations, artificial intelligence is invaluable in identifying crime. It has been observed that an algorithm based on artificial intelligence (AI) is highly effective in detecting risks, preventing criminal activity, and forecasting illegal activity. Providing objective data and conducting an assessment is the goal of digital forensics and digital investigation, which will assist in developing a plausible theory that can be presented as evidence in court. Researchers and other authorities have used the available data as evidence in court to convict a person. This research paper aims at developing a multiagent framework for digital investigations using specific intelligent software agents (ISA). The agents communicate to address particular tasks jointly and keep the same objectives in mind during each task. The rules and knowledge contained within each agent are dependent on the investigation type. A criminal investigation is classified quickly and efficiently using the case-based reasoning (CBR) technique. The MADIK is implemented using the Java Agent Development Framework and implemented using Eclipse, Postgres repository, and a rule engine for agent reasoning. The proposed framework was tested using the Lone Wolf image files and datasets. Experiments were conducted using various sets of ISA and VMs. There was a significant reduction in the time taken for the Hash Set Agent to execute. As a result of loading the agents, 5 percent of the time was lost, as the File Path Agent prescribed deleting 1,510, while the Timeline Agent found multiple executable files. In comparison, the integrity check carried out on the Lone Wolf image file using a digital forensic tool kit took approximately 48 minutes (2,880 ms), whereas the MADIK framework accomplished this in 16 minutes (960 ms). The framework is integrated with Python, allowing for further integration of other digital forensic tools, such as AccessData Forensic Toolkit (FTK), Wireshark, Volatility, and Scapy.

Keywords: artificial intelligence, computer science, criminal investigation, digital forensics

Procedia PDF Downloads 218
6489 Deep Learning in Chest Computed Tomography to Differentiate COVID-19 from Influenza

Authors: Hongmei Wang, Ziyun Xiang, Ying liu, Li Yu, Dongsheng Yue

Abstract:

Intro: The COVID-19 (Corona Virus Disease 2019) has greatly changed the global economic, political and financial ecology. The mutation of the coronavirus in the UK in December 2020 has brought new panic to the world. Deep learning was performed on Chest Computed tomography (CT) of COVID-19 and Influenza and describes their characteristics. The predominant features of COVID-19 pneumonia was ground-glass opacification, followed by consolidation. Lesion density: most lesions appear as ground-glass shadows, and some lesions coexist with solid lesions. Lesion distribution: the focus is mainly on the dorsal side of the periphery of the lung, with the lower lobe of the lungs as the focus, and it is often close to the pleura. Other features it has are grid-like shadows in ground glass lesions, thickening signs of diseased vessels, air bronchi signs and halo signs. The severe disease involves whole bilateral lungs, showing white lung signs, air bronchograms can be seen, and there can be a small amount of pleural effusion in the bilateral chest cavity. At the same time, this year's flu season could be near its peak after surging throughout the United States for months. Chest CT for Influenza infection is characterized by focal ground glass shadows in the lungs, with or without patchy consolidation, and bronchiole air bronchograms are visible in the concentration. There are patchy ground-glass shadows, consolidation, air bronchus signs, mosaic lung perfusion, etc. The lesions are mostly fused, which is prominent near the hilar and two lungs. Grid-like shadows and small patchy ground-glass shadows are visible. Deep neural networks have great potential in image analysis and diagnosis that traditional machine learning algorithms do not. Method: Aiming at the two major infectious diseases COVID-19 and influenza, which are currently circulating in the world, the chest CT of patients with two infectious diseases is classified and diagnosed using deep learning algorithms. The residual network is proposed to solve the problem of network degradation when there are too many hidden layers in a deep neural network (DNN). The proposed deep residual system (ResNet) is a milestone in the history of the Convolutional neural network (CNN) images, which solves the problem of difficult training of deep CNN models. Many visual tasks can get excellent results through fine-tuning ResNet. The pre-trained convolutional neural network ResNet is introduced as a feature extractor, eliminating the need to design complex models and time-consuming training. Fastai is based on Pytorch, packaging best practices for in-depth learning strategies, and finding the best way to handle diagnoses issues. Based on the one-cycle approach of the Fastai algorithm, the classification diagnosis of lung CT for two infectious diseases is realized, and a higher recognition rate is obtained. Results: A deep learning model was developed to efficiently identify the differences between COVID-19 and influenza using chest CT.

Keywords: COVID-19, Fastai, influenza, transfer network

Procedia PDF Downloads 147
6488 Efficient Broadcasting in Wireless Sensor Networks

Authors: Min Kyung An, Hyuk Cho

Abstract:

In this paper, we study the Minimum Latency Broadcast Scheduling (MLBS) problem in wireless sensor networks (WSNs). The main issue of the MLBS problem is to compute schedules with the minimum number of timeslots such that a base station can broadcast data to all other sensor nodes with no collisions. Unlike existing works that utilize the traditional omni-directional WSNs, we target the directional WSNs where nodes can collaboratively determine and orientate their antenna directions. We first develop a 7-approximation algorithm, adopting directional WSNs. Our ratio is currently the best, to the best of our knowledge. We then validate the performance of the proposed algorithm through simulation.

Keywords: broadcast, collision-free, directional antenna, approximation, wireless sensor networks

Procedia PDF Downloads 350
6487 Decision Support System for Solving Multi-Objective Routing Problem

Authors: Ismail El Gayar, Ossama Ismail, Yousri El Gamal

Abstract:

This paper presented a technique to solve one of the transportation problems that faces us in real life which is the Bus Scheduling Problem. Most of the countries using buses in schools, companies and traveling offices as an example to transfer multiple passengers from many places to specific place and vice versa. This transferring process can cost time and money, so we build a decision support system that can solve this problem. In this paper, a genetic algorithm with the shortest path technique is used to generate a competitive solution to other well-known techniques. It also presents a comparison between our solution and other solutions for this problem.

Keywords: bus scheduling problem, decision support system, genetic algorithm, shortest path

Procedia PDF Downloads 422
6486 A Simple Adaptive Atomic Decomposition Voice Activity Detector Implemented by Matching Pursuit

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

A simple adaptive voice activity detector (VAD) is implemented using Gabor and gammatone atomic decomposition of speech for high Gaussian noise environments. Matching pursuit is used for atomic decomposition, and is shown to achieve optimal speech detection capability at high data compression rates for low signal to noise ratios. The most active dictionary elements found by matching pursuit are used for the signal reconstruction so that the algorithm adapts to the individual speakers dominant time-frequency characteristics. Speech has a high peak to average ratio enabling matching pursuit greedy heuristic of highest inner products to isolate high energy speech components in high noise environments. Gabor and gammatone atoms are both investigated with identical logarithmically spaced center frequencies, and similar bandwidths. The algorithm performs equally well for both Gabor and gammatone atoms with no significant statistical differences. The algorithm achieves 70% accuracy at a 0 dB SNR, 90% accuracy at a 5 dB SNR and 98% accuracy at a 20dB SNR using 30dB SNR as a reference for voice activity.

Keywords: atomic decomposition, gabor, gammatone, matching pursuit, voice activity detection

Procedia PDF Downloads 296
6485 Improve Closed Loop Performance and Control Signal Using Evolutionary Algorithms Based PID Controller

Authors: Mehdi Shahbazian, Alireza Aarabi, Mohsen Hadiyan

Abstract:

Proportional-Integral-Derivative (PID) controllers are the most widely used controllers in industry because of its simplicity and robustness. Different values of PID parameters make different step response, so an increasing amount of literature is devoted to proper tuning of PID controllers. The problem merits further investigation as traditional tuning methods make large control signal that can damages the system but using evolutionary algorithms based tuning methods improve the control signal and closed loop performance. In this paper three tuning methods for PID controllers have been studied namely Ziegler and Nichols, which is traditional tuning method and evolutionary algorithms based tuning methods, that are, Genetic algorithm and particle swarm optimization. To examine the validity of PSO and GA tuning methods a comparative analysis of DC motor plant is studied. Simulation results reveal that evolutionary algorithms based tuning method have improved control signal amplitude and quality factors of the closed loop system such as rise time, integral absolute error (IAE) and maximum overshoot.

Keywords: evolutionary algorithm, genetic algorithm, particle swarm optimization, PID controller

Procedia PDF Downloads 486
6484 An Optimal Matching Design Method of Space-Based Optical Payload for Typical Aerial Target Detection

Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu

Abstract:

In order to effectively detect aerial targets over long distances, an optimal matching design method of space-based optical payload is proposed. Firstly, main factors affecting optical detectability of small targets under complex environment are analyzed based on the full link of a detection system, including band center, band width and spatial resolution. Then a performance characterization model representing the relationship between image signal-to-noise ratio (SCR) and the above influencing factors is established to describe a detection system. Finally, an optimal matching design example is demonstrated for a typical aerial target by simulating and analyzing its SCR under different scene clutter coupling with multi-scale characteristics, and the optimized detection band and spatial resolution are presented. The method can provide theoretical basis and scientific guidance for space-based detection system design, payload specification demonstration and information processing algorithm optimization.

Keywords: space-based detection, aerial targets, optical system design, detectability characterization

Procedia PDF Downloads 171
6483 Monitoring of Quantitative and Qualitative Changes in Combustible Material in the Białowieża Forest

Authors: Damian Czubak

Abstract:

The Białowieża Forest is a very valuable natural area, included in the World Natural Heritage at UNESCO, where, due to infestation by the bark beetle (Ips typographus), norway spruce (Picea abies) have deteriorated. This catastrophic scenario led to an increase in fire danger. This was due to the occurrence of large amounts of dead wood and grass cover, as light penetrated to the bottom of the stands. These factors in a dry state are materials that favour the possibility of fire and the rapid spread of fire. One of the objectives of the study was to monitor the quantitative and qualitative changes of combustible material on the permanent decay plots of spruce stands from 2012-2022. In addition, the size of the area with highly flammable vegetation was monitored and a classification of the stands of the Białowieża Forest by flammability classes was made. The key factor that determines the potential fire hazard of a forest is combustible material. Primarily its type, quantity, moisture content, size and spatial structure. Based on the inventory data on the areas of forest districts in the Białowieża Forest, the average fire load and its changes over the years were calculated. The analysis was carried out taking into account the changes in the health status of the stands and sanitary operations. The quantitative and qualitative assessment of fallen timber and fire load of ground cover used the results of the 2019 and 2021 inventories. Approximately 9,000 circular plots were used for the study. An assessment was made of the amount of potential fuel, understood as ground cover vegetation and dead wood debris. In addition, monitoring of areas with vegetation that poses a high fire risk was conducted using data from 2019 and 2021. All sub-areas were inventoried where vegetation posing a specific fire hazard represented at least 10% of the area with species characteristic of that cover. In addition to the size of the area with fire-prone vegetation, a very important element is the size of the fire load on the indicated plots. On representative plots, the biomass of the land cover was measured on an area of 10 m2 and then the amount of biomass of each component was determined. The resulting element of variability of ground covers in stands was their flammability classification. The classification developed made it possible to track changes in the flammability classes of stands over the period covered by the measurements.

Keywords: classification, combustible material, flammable vegetation, Norway spruce

Procedia PDF Downloads 95
6482 Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining

Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong

Abstract:

This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.

Keywords: behavior, data mining technique, a priori algorithm, knowledge discovery

Procedia PDF Downloads 410
6481 Possibility of Creating Polygon Layers from Raster Layers Obtained by using Classic Image Processing Software: Case of Geological Map of Rwanda

Authors: Louis Nahimana

Abstract:

Most maps are in a raster or pdf format and it is not easy to get vector layers of published maps. Faced to the production of geological simplified map of the northern Lake Tanganyika countries without geological information in vector format, I tried a method of obtaining vector layers from raster layers created from geological maps of Rwanda and DR Congo in pdf and jpg format. The procedure was as follows: The original raster maps were georeferenced using ArcGIS10.2. Under Adobe Photoshop, map areas with the same color corresponding to a lithostratigraphic unit were selected all over the map and saved in a specific raster layer. Using the same image processing software Adobe Photoshop, each RGB raster layer was converted in grayscale type and improved before importation in ArcGIS10. After georeferencing, each lithostratigraphic raster layer was transformed into a multitude of polygons with the tool "Raster to Polygon (Conversion)". Thereafter, tool "Aggregate Polygons (Cartography)" allowed obtaining a single polygon layer. Repeating the same steps for each color corresponding to a homogeneous rock unit, it was possible to reconstruct the simplified geological constitution of Rwanda and the Democratic Republic of Congo in vector format. By using the tool «Append (Management)», vector layers obtained were combined with those from Burundi to achieve vector layers of the geology of the « Northern Lake Tanganyika countries ».

Keywords: creating raster layer under image processing software, raster to polygon, aggregate polygons, adobe photoshop

Procedia PDF Downloads 448
6480 Automatic Reporting System for Transcriptome Indel Identification and Annotation Based on Snapshot of Next-Generation Sequencing Reads Alignment

Authors: Shuo Mu, Guangzhi Jiang, Jinsa Chen

Abstract:

The analysis of Indel for RNA sequencing of clinical samples is easily affected by sequencing experiment errors and software selection. In order to improve the efficiency and accuracy of analysis, we developed an automatic reporting system for Indel recognition and annotation based on image snapshot of transcriptome reads alignment. This system includes sequence local-assembly and realignment, target point snapshot, and image-based recognition processes. We integrated high-confidence Indel dataset from several known databases as a training set to improve the accuracy of image processing and added a bioinformatical processing module to annotate and filter Indel artifacts. Subsequently, the system will automatically generate data, including data quality levels and images results report. Sanger sequencing verification of the reference Indel mutation of cell line NA12878 showed that the process can achieve 83% sensitivity and 96% specificity. Analysis of the collected clinical samples showed that the interpretation accuracy of the process was equivalent to that of manual inspection, and the processing efficiency showed a significant improvement. This work shows the feasibility of accurate Indel analysis of clinical next-generation sequencing (NGS) transcriptome. This result may be useful for RNA study for clinical samples with microsatellite instability in immunotherapy in the future.

Keywords: automatic reporting, indel, next-generation sequencing, NGS, transcriptome

Procedia PDF Downloads 195
6479 A Scoping Review of the Relationship Between Oral Health and Wellbeing: The Myth and Reality

Authors: Heba Salama, Barry Gibson, Jennifer Burr

Abstract:

Introduction: It is often argued that better oral health leads to better wellbeing, and the goal of dental care is to improve wellbeing. Notwithstanding, to our best knowledge, there is a lack of evidence to support the relationship between oral health and wellbeing. Aim: The scoping review aims to examine current definitions of health and wellbeing as well as map the evidence to examine the relationship between oral health and wellbeing. Methods: The scoping review followed the Preferred Reporting Items for Systematic Reviews Extension for Scoping Review (PRISMA-ScR). A two-phase search strategy was followed because of the unmanageable number of hits returned. The first phase was to identify how well-being was conceptualised in oral health literacy, and the second phase was to search for extracted keywords. The extracted keywords were searched in four databases: PubMed, CINAHL, PsycINFO, and Web of Science. To limit the number of studies to a manageable amount, the search was limited to the open-access studies that have been published in the last five years (from 2018 to 2022). Results: Only eight studies (0.1%) of the 5455 results met the review inclusion criteria. Most of the included studies defined wellbeing based on the hedonic theory. And the Satisfaction with Life Scale is the most used. Although the research results are inconsistent, it has generally been shown that there is a weak or no association between oral health and wellbeing. Interpretation: The review revealed a very important point about how oral health literature uses loose definitions that have significant implications for empirical research. That results in misleading evidence-based conclusions. According to the review results, improving oral health is not a key factor in improving wellbeing. It appears that investing in oral health care to improve wellbeing is not a top priority to tell policymakers about. This does not imply that there should be no investment in oral health care to improve oral health. That could have an indirect link to wellbeing by eliminating the potential oral health-related barriers to quality of life that could represent the foundation of wellbeing. Limitation: Only the most recent five years (2018–2022), peer-reviewed English-language literature, and four electronic databases were included in the search. These restrictions were put in place to keep the volume of literature at a manageable level. This suggests that some significant studies might have been omitted. Furthermore, the study used a definition of wellbeing that is currently being evolved and might not everyone agrees with it. Conclusion: Whilst it is a ubiquitous argument that oral health is related to wellbeing, and this seems logical, there is little empirical evidence to support this claim. This question, therefore, requires much more detailed consideration. Funding: This project was funded by the Ministry of Higher Education and Scientific Research in Libya and Tripoli University.

Keywords: oral health, wellbeing, satisfaction, emotion, quality of life, oral health related quality of life

Procedia PDF Downloads 125
6478 Solving the Pseudo-Geometric Traveling Salesman Problem with the “Union Husk” Algorithm

Authors: Boris Melnikov, Ye Zhang, Dmitrii Chaikovskii

Abstract:

This study explores the pseudo-geometric version of the extensively researched Traveling Salesman Problem (TSP), proposing a novel generalization of existing algorithms which are traditionally confined to the geometric version. By adapting the "onion husk" method and introducing auxiliary algorithms, this research fills a notable gap in the existing literature. Through computational experiments using randomly generated data, several metrics were analyzed to validate the proposed approach's efficacy. Preliminary results align with expected outcomes, indicating a promising advancement in TSP solutions.

Keywords: optimization problems, traveling salesman problem, heuristic algorithms, “onion husk” algorithm, pseudo-geometric version

Procedia PDF Downloads 212
6477 Detection of Autistic Children's Voice Based on Artificial Neural Network

Authors: Royan Dawud Aldian, Endah Purwanti, Soegianto Soelistiono

Abstract:

In this research we have been developed an automatic investigation to classify normal children voice or autistic by using modern computation technology that is computation based on artificial neural network. The superiority of this computation technology is its capability on processing and saving data. In this research, digital voice features are gotten from the coefficient of linear-predictive coding with auto-correlation method and have been transformed in frequency domain using fast fourier transform, which used as input of artificial neural network in back-propagation method so that will make the difference between normal children and autistic automatically. The result of back-propagation method shows that successful classification capability for normal children voice experiment data is 100% whereas, for autistic children voice experiment data is 100%. The success rate using back-propagation classification system for the entire test data is 100%.

Keywords: autism, artificial neural network, backpropagation, linier predictive coding, fast fourier transform

Procedia PDF Downloads 464
6476 Optimum Dewatering Network Design Using Firefly Optimization Algorithm

Authors: S. M. Javad Davoodi, Mojtaba Shourian

Abstract:

Groundwater table close to the ground surface causes major problems in construction and mining operation. One of the methods to control groundwater in such cases is using pumping wells. These pumping wells remove excess water from the site project and lower the water table to a desirable value. Although the efficiency of this method is acceptable, it needs high expenses to apply. It means even small improvement in a design of pumping wells can lead to substantial cost savings. In order to minimize the total cost in the method of pumping wells, a simulation-optimization approach is applied. The proposed model integrates MODFLOW as the simulation model with Firefly as the optimization algorithm. In fact, MODFLOW computes the drawdown due to pumping in an aquifer and the Firefly algorithm defines the optimum value of design parameters which are numbers, pumping rates and layout of the designing wells. The developed Firefly-MODFLOW model is applied to minimize the cost of the dewatering project for the ancient mosque of Kerman city in Iran. Repetitive runs of the Firefly-MODFLOW model indicates that drilling two wells with the total rate of pumping 5503 m3/day is the result of the minimization problem. Results show that implementing the proposed solution leads to at least 1.5 m drawdown in the aquifer beneath mosque region. Also, the subsidence due to groundwater depletion is less than 80 mm. Sensitivity analyses indicate that desirable groundwater depletion has an enormous impact on total cost of the project. Besides, in a hypothetical aquifer decreasing the hydraulic conductivity contributes to decrease in total water extraction for dewatering.

Keywords: groundwater dewatering, pumping wells, simulation-optimization, MODFLOW, firefly algorithm

Procedia PDF Downloads 296
6475 Local Binary Patterns-Based Statistical Data Analysis for Accurate Soccer Match Prediction

Authors: Mohammad Ghahramani, Fahimeh Saei Manesh

Abstract:

Winning a soccer game is based on thorough and deep analysis of the ongoing match. On the other hand, giant gambling companies are in vital need of such analysis to reduce their loss against their customers. In this research work, we perform deep, real-time analysis on every soccer match around the world that distinguishes our work from others by focusing on particular seasons, teams and partial analytics. Our contributions are presented in the platform called “Analyst Masters.” First, we introduce various sources of information available for soccer analysis for teams around the world that helped us record live statistical data and information from more than 50,000 soccer matches a year. Our second and main contribution is to introduce our proposed in-play performance evaluation. The third contribution is developing new features from stable soccer matches. The statistics of soccer matches and their odds before and in-play are considered in the image format versus time including the halftime. Local Binary patterns, (LBP) is then employed to extract features from the image. Our analyses reveal incredibly interesting features and rules if a soccer match has reached enough stability. For example, our “8-minute rule” implies if 'Team A' scores a goal and can maintain the result for at least 8 minutes then the match would end in their favor in a stable match. We could also make accurate predictions before the match of scoring less/more than 2.5 goals. We benefit from the Gradient Boosting Trees, GBT, to extract highly related features. Once the features are selected from this pool of data, the Decision trees decide if the match is stable. A stable match is then passed to a post-processing stage to check its properties such as betters’ and punters’ behavior and its statistical data to issue the prediction. The proposed method was trained using 140,000 soccer matches and tested on more than 100,000 samples achieving 98% accuracy to select stable matches. Our database from 240,000 matches shows that one can get over 20% betting profit per month using Analyst Masters. Such consistent profit outperforms human experts and shows the inefficiency of the betting market. Top soccer tipsters achieve 50% accuracy and 8% monthly profit in average only on regional matches. Both our collected database of more than 240,000 soccer matches from 2012 and our algorithm would greatly benefit coaches and punters to get accurate analysis.

Keywords: soccer, analytics, machine learning, database

Procedia PDF Downloads 242
6474 Cost-Benefit Analysis for the Optimization of Noise Abatement Treatments at the Workplace

Authors: Paolo Lenzuni

Abstract:

Cost-effectiveness of noise abatement treatments at the workplace has not yet received adequate consideration. Furthermore, most of the published work is focused on productivity, despite the poor correlation of this quantity with noise levels. There is currently no tool to estimate the social benefit associated to a specific noise abatement treatment, and no comparison among different options is accordingly possible. In this paper, we present an algorithm which has been developed to predict the cost-effectiveness of any planned noise control treatment in a workplace. This algorithm is based the estimates of hearing threshold shifts included in ISO 1999, and on compensations that workers are entitled to once their work-related hearing impairments have been certified. The benefits of a noise abatement treatment are estimated by means of the lower compensation costs which are paid to the impaired workers. Although such benefits have no real meaning in strictly monetary terms, they allow a reliable comparison between different treatments, since actual social costs can be assumed to be proportional to compensation costs. The existing European legislation on occupational exposure to noise it mandates that the noise exposure level be reduced below the upper action limit (85 dBA). There is accordingly little or no motivation for employers to sustain the extra costs required to lower the noise exposure below the lower action limit (80 dBA). In order to make this goal more appealing for employers, the algorithm proposed in this work also includes an ad-hoc element that promotes actions which bring the noise exposure down below 80 dBA. The algorithm has a twofold potential: 1) it can be used as a quality index to promote cost-effective practices; 2) it can be added to the existing criteria used by workers’ compensation authorities to evaluate the cost-effectiveness of technical actions, and support dedicated employers.

Keywords: cost-effectiveness, noise, occupational exposure, treatment

Procedia PDF Downloads 326
6473 Classification of Factors Influencing Buyer-Supplier Relationship: A Case Study from the Cement Industry

Authors: Alberto Piatto, Zaza Nadja Lee Hansen, Peter Jacobsen

Abstract:

This paper examines the quantitative and qualitative factors influencing the buyer-supplier relationship. Understanding and acting on the right factors influencing supplier relationship management is crucial when a company outsource an important part of its business as it can be for engineering to order (ETO) company executing only the designing part in-house. Acting on these factors increase the quality of the relationship obtaining for both parties what they want and expect from an improved relationship. Best practices in supplier relationship management are considered and a case study of a large global company, called Cement A/S, operating in the cement business is carried out. One study is conducted including a large international company and hundreds of its suppliers. Data from the company is collected using semi-structured interviews and data from the suppliers is collected using a survey. Based on these inputs and an extensive literature review a classification of factors influencing the relationship buyer-supplier is presented and discussed. The results show that different managers among the company are assessing supplier from various perspectives, a standard approach to measure the performance of suppliers does not exist. The factors used nowadays in the company to measure performances of the suppliers are mostly related to time and cost. Quality is a key factor, but it has not been addressed properly since no data are available in the system. From a practical perspective, managers can learn from this paper which factors to consider when applying best practices of Supplier Relationship Management. Furthermore, from a theoretical perspective, this paper contributes with new knowledge in the area as limited research in collaboration with the company has been conducted. For this reason, a company, its suppliers and few studies for this type of industry have been conducted. For further research, it is suggested to define the correlation of factors to the profitability of the company and calculate its impact. When conducting this analysis it is important to focus on the efficient and effective use of factors that can be measurable and accepted from the supplier.

Keywords: buyer-supplier relationship, cement industry, classification of factors, ETO

Procedia PDF Downloads 290
6472 Diachronic Evolution and Multifaceted Interpretation of City-Mountain Landscape Culture: From Ritualistic Divinity to Poetic Aesthetics

Authors: Junjie Fu

Abstract:

This paper explores the cultural evolution of the "city-mountain" landscape in ancient Chinese cities, tracing its origins in the regional mountain and town division within the national system. It delves into the cultural archetype of "city-mountain" landscape divine imagery and its spatial characteristics, drawing from the spatial conception of mountain worship and divine order in the model of Kunlun and Penglai. Furthermore, it examines the shift from religious to daily life influences, leading to a poetic aesthetic turn in the "city-mountain" landscape. The paper also discusses the organizational structure of the "city-mountain" poetic landscape and its role as a space for enjoyment. By studying the cultural connotations, evolving relationships, and power mechanisms of the "city-mountain" landscape, this research provides theoretical insights for the construction and development of "city-mountain" landscapes and mountain cities.

Keywords: city-mountain landscape, cultural image, divinity, landscape image, poetry

Procedia PDF Downloads 92
6471 Optimal Operation of Bakhtiari and Roudbar Dam Using Differential Evolution Algorithms

Authors: Ramin Mansouri

Abstract:

Due to the contrast of rivers discharge regime with water demands, one of the best ways to use water resources is to regulate the natural flow of the rivers and supplying water needs to construct dams. Optimal utilization of reservoirs, consideration of multiple important goals together at the same is of very high importance. To study about analyzing this method, statistical data of Bakhtiari and Roudbar dam over 46 years (1955 until 2001) is used. Initially an appropriate objective function was specified and using DE algorithm, the rule curve was developed. In continue, operation policy using rule curves was compared to standard comparative operation policy. The proposed method distributed the lack to the whole year and lowest damage was inflicted to the system. The standard deviation of monthly shortfall of each year with the proposed algorithm was less deviated than the other two methods. The Results show that median values for the coefficients of F and Cr provide the optimum situation and cause DE algorithm not to be trapped in local optimum. The most optimal answer for coefficients are 0.6 and 0.5 for F and Cr coefficients, respectively. After finding the best combination of coefficients values F and CR, algorithms for solving the independent populations were examined. For this purpose, the population of 4, 25, 50, 100, 500 and 1000 members were studied in two generations (G=50 and 100). result indicates that the generation number 200 is suitable for optimizing. The increase in time per the number of population has almost a linear trend, which indicates the effect of population in the runtime algorithm. Hence specifying suitable population to obtain an optimal results is very important. Standard operation policy had better reversibility percentage, but inflicts severe vulnerability to the system. The results obtained in years of low rainfall had very good results compared to other comparative methods.

Keywords: reservoirs, differential evolution, dam, Optimal operation

Procedia PDF Downloads 81
6470 Security as Human Value: Issue of Human Rights in Indian Sub-Continental Operations

Authors: Pratyush Vatsala, Sanjay Ahuja

Abstract:

The national security and human rights are related terms as there is nothing like absolute security or absolute human right. If we are committed to security, human right is a problem and also a solution, and if we deliberate on human rights, security is a problem but also part of the solution. Ultimately, we have to maintain a balance between the two co-related terms. As more and more armed forces are being deployed by the government within the nation for maintaining peace and security, using force against its own citizen, the search for a judicious balance between intent and action needs to be emphasized. Notwithstanding that a nation state needs complete political independence; the search for security is a driving force behind unquestioned sovereignty. If security is a human value, it overlaps the value of freedom, order, and solidarity. Now, the question needs to be explored, to what extent human rights can be compromised in the name of security in Kashmir or Mizoram like places. The present study aims to explore the issue of maintaining a balance between the use of power and good governance as human rights, providing security as a human value. This paper has been prepared with an aim of strengthening the understanding of the complex and multifaceted relationship between human rights and security forces operating for conflict management and identifies some of the critical human rights issues raised in the context of security forces operations highlighting the relevant human rights principles and standards in which Security as human value be respected at all times and in particular in the context of security forces operations in India.

Keywords: Kashmir, Mizoram, security, value, human right

Procedia PDF Downloads 284
6469 Contrast Enhancement of Masses in Mammograms Using Multiscale Morphology

Authors: Amit Kamra, V. K. Jain, Pragya

Abstract:

Mammography is widely used technique for breast cancer screening. There are various other techniques for breast cancer screening but mammography is the most reliable and effective technique. The images obtained through mammography are of low contrast which causes problem for the radiologists to interpret. Hence, a high quality image is mandatory for the processing of the image for extracting any kind of information from it. Many contrast enhancement algorithms have been developed over the years. In the present work, an efficient morphology based technique is proposed for contrast enhancement of masses in mammographic images. The proposed method is based on Multiscale Morphology and it takes into consideration the scale of the structuring element. The proposed method is compared with other state-of-the-art techniques. The experimental results show that the proposed method is better both qualitatively and quantitatively than the other standard contrast enhancement techniques.

Keywords: enhancement, mammography, multi-scale, mathematical morphology

Procedia PDF Downloads 430
6468 Landscape Classification in North of Jordan by Integrated Approach of Remote Sensing and Geographic Information Systems

Authors: Taleb Odeh, Nizar Abu-Jaber, Nour Khries

Abstract:

The southern part of Wadi Al Yarmouk catchment area covers north of Jordan. It locates within latitudes 32° 20’ to 32° 45’N and longitudes 35° 42’ to 36° 23’ E and has an area of about 1426 km2. However, it has high relief topography where the elevation varies between 50 to 1100 meter above sea level. The variations in the topography causes different units of landforms, climatic zones, land covers and plant species. As a results of these different landscapes units exists in that region. Spatial planning is a major challenge in such a vital area for Jordan which could not be achieved without determining landscape units. However, an integrated approach of remote sensing and geographic information Systems (GIS) is an optimized tool to investigate and map landscape units of such a complicated area. Remote sensing has the capability to collect different land surface data, of large landscape areas, accurately and in different time periods. GIS has the ability of storage these land surface data, analyzing them spatially and present them in form of professional maps. We generated a geo-land surface data that include land cover, rock units, soil units, plant species and digital elevation model using ASTER image and Google Earth while analyzing geo-data spatially were done by ArcGIS 10.2 software. We found that there are twenty two different landscape units in the study area which they have to be considered for any spatial planning in order to avoid and environmental problems.

Keywords: landscape, spatial planning, GIS, spatial analysis, remote sensing

Procedia PDF Downloads 532
6467 Prevalence and Risk Factors of Low Back Disorder among Waste Collection Workers: A Systematic Review

Authors: Benedicta Asante, Catherine Trask, Brenna Bath

Abstract:

Background: Waste Collection Workers’ (WCWs) activities contribute greatly to the recycling sector and are an important component of the waste management industry. As the recycling sector evolves, there is the increase in reports of injuries, particularly for common and debilitating musculoskeletal disorders such as low back disorder (LBD). WCWs are likely exposed to diverse work-related hazards that could contribute to LBD. However, there is currently no summary of the state of knowledge on the prevalence and risk factors of LBD within this workforce. Method: A comprehensive search was conducted in Ovid Medline, EMBASE, and Global Health e-publications with search term categories ‘low back disorder’ and ‘waste collection workers’. Two reviewers screened articles at title, abstract, and full-text stages. Data were extracted on study design, sampling strategy, socio-demographics, geographical region, and exposure definition, the definition of LBD, response rate, statistical techniques, LBD prevalence and risk factors. The risk of bias was assessed with a standardized tool. Results: The search of three databases generated 79 studies. Thirty-two studies met the study inclusion criteria for both title and abstract; only thirteen full-text articles met the study criteria and underwent data extraction. The majority of articles reported a 12-month prevalence of LBD between 16-74%. Although none of the included studies quantified relationships between risk factors and LBD, the suggested risk factors for LBD among WCWs included: awkward posture; lifting; pulling; pushing; repetitive motions; work duration; and physical loads. Conclusion: LBD is a major occupational health issue among WCWs. In light of these risks and future growth in this industry, further research should focus on the investigation of risk factors, with more focus on ergonomic exposure assessment, and LBD prevention efforts.

Keywords: low back pain, scavenger, waste pickers, waste collection workers

Procedia PDF Downloads 258
6466 Comparison Of Data Mining Models To Predict Future Bridge Conditions

Authors: Pablo Martinez, Emad Mohamed, Osama Mohsen, Yasser Mohamed

Abstract:

Highway and bridge agencies, such as the Ministry of Transportation in Ontario, use the Bridge Condition Index (BCI) which is defined as the weighted condition of all bridge elements to determine the rehabilitation priorities for its bridges. Therefore, accurate forecasting of BCI is essential for bridge rehabilitation budgeting planning. The large amount of data available in regard to bridge conditions for several years dictate utilizing traditional mathematical models as infeasible analysis methods. This research study focuses on investigating different classification models that are developed to predict the bridge condition index in the province of Ontario, Canada based on the publicly available data for 2800 bridges over a period of more than 10 years. The data preparation is a key factor to develop acceptable classification models even with the simplest one, the k-NN model. All the models were tested, compared and statistically validated via cross validation and t-test. A simple k-NN model showed reasonable results (within 0.5% relative error) when predicting the bridge condition in an incoming year.

Keywords: asset management, bridge condition index, data mining, forecasting, infrastructure, knowledge discovery in databases, maintenance, predictive models

Procedia PDF Downloads 195