Search results for: Spatial Data Analyses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28640

Search results for: Spatial Data Analyses

25550 Location Privacy Preservation of Vehicle Data In Internet of Vehicles

Authors: Ying Ying Liu, Austin Cooke, Parimala Thulasiraman

Abstract:

Internet of Things (IoT) has attracted a recent spark in research on Internet of Vehicles (IoV). In this paper, we focus on one research area in IoV: preserving location privacy of vehicle data. We discuss existing location privacy preserving techniques and provide a scheme for evaluating these techniques under IoV traffic condition. We propose a different strategy in applying Differential Privacy using k-d tree data structure to preserve location privacy and experiment on real world Gowalla data set. We show that our strategy produces differentially private data, good preservation of utility by achieving similar regression accuracy to the original dataset on an LSTM (Long Term Short Term Memory) neural network traffic predictor.

Keywords: differential privacy, internet of things, internet of vehicles, location privacy, privacy preservation scheme

Procedia PDF Downloads 179
25549 Analysis of Eco-Efficiency and the Determinants of Family Agriculture in Southeast Spain

Authors: Emilio Galdeano-Gómez, Ángeles Godoy-Durán, Juan C. Pérez-Mesa, Laura Piedra-Muñoz

Abstract:

Eco-efficiency is receiving ever-increasing interest as an indicator of sustainability, as it links environmental and economic performances in productive activities. In agriculture, these indicators and their determinants prove relevant due to the close relationships in this activity between the use of natural resources, which is generally limited, and the provision of basic goods to society. In this context, various analyses have focused on eco-efficiency by considering individual family farms as the basic production unit. However, not only must the measure of efficiency be taken into account, but also the existence of a series of factors which constitute socio-economic, political-institutional, and environmental determinants. Said factors have been studied to a lesser extent in the literature. The present work analyzes eco-efficiency at a micro level, focusing on small-scale family farms as the main decision-making units in horticulture in southeast Spain, a sector which represents about 30% of the fresh vegetables produced in the country and about 20% of those consumed in Europe. The objectives of this study are a) to obtain a series of eco-efficiency indicators by estimating several pressure ratios and economic value added in farming, b) to analyze the influence of specific social, economic and environmental variables on the aforementioned eco-efficiency indicators. The present work applies the method of Data Envelopment Analysis (DEA), which calculates different combinations of environmental pressures (water usage, phytosanitary contamination, waste management, etc.) and aggregate economic value. In a second stage, an analysis is conducted on the influence of the socio-economic and environmental characteristics of family farms on the eco-efficiency indicators, as endogeneous variables, through the use of truncated regression and bootstrapping techniques, following Simar-Wilson methodology. The results reveal considerable inefficiency in aspects such as waste management, while there is relatively little inefficiency in water usage and nitrogen balance. On the other hand, characteristics, such as product specialization, the adoption of quality certifications and belonging to a cooperative do have a positive impact on eco-efficiency. These results are deemed to be of interest to agri-food systems structured on small-scale producers, and they may prove useful to policy-makers as regards managing public environmental programs in agriculture.

Keywords: data envelopment analysis, eco-efficiency, family farms, horticulture, socioeconomic features

Procedia PDF Downloads 193
25548 Television, Internet, and Internet Social Media Direct-To-Consumer Prescription Medication Advertisements: Intention and Behavior to Seek Additional Prescription Medication Information

Authors: Joshua Fogel, Rivka Herzog

Abstract:

Although direct-to-consumer prescription medication advertisements (DTCA) are viewed or heard in many venues, there does not appear to be any research for internet social media DTCA. We study the association of traditional media DTCA and digital media DTCA including internet social media of YouTube, Facebook, and Twitter with three different outcomes. There was one intentions outcome and two different behavior outcomes. The intentions outcome was the agreement level for seeking additional information about a prescription medication after seeing a DTCA. One behavior outcome was the agreement level for obtaining additional information about a prescription medication after seeing a DTCA. The other behavior outcome was the frequency level for obtaining additional information about a prescription medication after seeing a DTCA. Surveys were completed by 635 college students. Predictors included demographic variables, theory of planned behavior variables, health variables, and advertisements seen or heard. Also, in the behavior analyses, additional predictors of intentions and sources for seeking additional prescription drug information were included. Multivariate linear regression analyses were conducted. We found that increased age was associated with increased behavior, women were associated with increased intentions, and Hispanic race/ethnicity was associated with decreased behavior. For the theory of planned behavior variables, increased attitudes were associated with increased intentions, increased social norms were associated with increased intentions and behavior, and increased intentions were associated with increased behavior. Very good perceived health was associated with increased intentions. Advertisements seen in spam mail were associated with decreased intentions. Advertisements seen on traditional or cable television were associated with decreased behavior. Advertisements seen on television watched on the internet were associated with increased behavior. The source of seeking additional information of reading internet print content was associated with increased behavior. No internet social media advertisements were associated with either intentions or behavior. In conclusion, pharmaceutical brand managers and marketers should consider these findings when tailoring their DTCA advertising campaigns and directing their DTCA advertising budget towards young adults such as college students. They need to reconsider the current approach for traditional television DTCA and also consider dedicating a larger advertising budget toward internet television DTCA. Although internet social media is a popular place to advertise, the financial expenditures do not appear worthwhile for DTCA when targeting young adults such as college students.

Keywords: brand managers, direct-to-consumer advertising, internet, social media

Procedia PDF Downloads 265
25547 Critical Factors Influencing Effective Communication Among Stakeholders on Construction Project Delivery in Jigawa State, Nigeria

Authors: Shazali Abdulahi

Abstract:

Project planning is the first phase in project life cycle which relates to the use of schedules such as Gantt charts to plan and subsequently report the project progress within the project environment. Likewise, project execution is the third phase in project lifecycle, is the phase where the work of the project must get done correctly and it’s the longest phase in the project lifecycle therefore, they must be effectively communicated, now today Communication has become the crucial element of every organization. During construction project delivery, information needs to be accurately and timely communicating among project stakeholders in order to realize the project objective. Effective communication among stakeholders during construction project delivery is one of the major factors that impact construction project delivery. Therefore, the aim of the research work is to examine the critical factors influencing effective communication among stakeholders on construction project delivery from the perspective of construction professionals (Architects, Builders, Quantity surveyors, and Civil engineers). A quantitative approach was adopted. This entailed the used of structured questionnaire to one (108) construction professionals in public and private organization within dutse metropolis. Frequency, mean, ranking and multiple linear regression using SPSS vision 25 software were used to analyses the data. The results show that Leadership, Trust, Communication tools, Communication skills, Stakeholders involvement, Cultural differences, and Communication technology were the most critical factors influencing effective communication among stakeholders on construction project delivery. The hypothesis revealed that, effective communication among stakeholders has significant effects on construction project delivery. This research work will profit the construction stakeholders in construction industry, by providing adequate knowledge regarding the factors influencing effective communication among stakeholders, so that necessary steps to be taken to improve project performance. Also, it will provide knowledge about the appropriate strategies to employ in order to improve communication among stakeholders.

Keywords: effetive communication, ineffective communication, stakeholders, project delivery

Procedia PDF Downloads 52
25546 Bag of Words Representation Based on Weighting Useful Visual Words

Authors: Fatma Abdedayem

Abstract:

The most effective and efficient methods in image categorization are almost based on bag-of-words (BOW) which presents image by a histogram of occurrence of visual words. In this paper, we propose a novel extension to this method. Firstly, we extract features in multi-scales by applying a color local descriptor named opponent-SIFT. Secondly, in order to represent image we use Spatial Pyramid Representation (SPR) and an extension to the BOW method which based on weighting visual words. Typically, the visual words are weighted during histogram assignment by computing the ratio of their occurrences in the image to the occurrences in the background. Finally, according to classical BOW retrieval framework, only a few words of the vocabulary is useful for image representation. Therefore, we select the useful weighted visual words that respect the threshold value. Experimentally, the algorithm is tested by using different image classes of PASCAL VOC 2007 and is compared against the classical bag-of-visual-words algorithm.

Keywords: BOW, useful visual words, weighted visual words, bag of visual words

Procedia PDF Downloads 436
25545 Magnetic Cellulase/Halloysite Nanotubes as Biocatalytic System for Converting Agro-Waste into Value-Added Product

Authors: Devendra Sillu, Shekhar Agnihotri

Abstract:

The 'nano-biocatalyst' utilizes an ordered assembling of enzyme on to nanomaterial carriers to catalyze desirable biochemical kinetics and substrate selectivity. The current study describes an inter-disciplinary approach for converting agriculture waste, sugarcane bagasse into D-glucose exploiting halloysite nanotubes (HNTs) decorated cellulase enzyme as nano-biocatalytic system. Cellulase was successfully immobilized on HNTs employing polydopamine as an eco-friendly crosslinker while iron oxide nanoparticles were attached to facilitate magnetic recovery of material. The characterization studies (UV-Vis, TEM, SEM, and XRD) displayed the characteristic features of both cellulase and magnetic HNTs in the resulting nanocomposite. Various factors (i.e., working pH, temp., crosslinker conc., enzyme conc.) which may influence the activity of biocatalytic system were investigated. The experimental design was performed using Response Surface Methodology (RSM) for process optimization. Analyses data demonstrated that the nanobiocatalysts retained 80.30% activity even at elevated temperature (55°C) and excellent storage stabilities after 10 days. The repeated usage of system revealed a remarkable consistent relative activity over several cycles. The immobilized cellulase was employed to decompose agro-waste and the maximum decomposition rate of 67.2 % was achieved. Conclusively, magnetic HNTs can serve as a potential support for enzyme immobilization with long term usage, good efficacy, reusability and easy recovery from solution.

Keywords: halloysite nanotubes, enzyme immobilization, cellulase, response surface methodology, magnetic recovery

Procedia PDF Downloads 133
25544 Investigating Data Normalization Techniques in Swarm Intelligence Forecasting for Energy Commodity Spot Price

Authors: Yuhanis Yusof, Zuriani Mustaffa, Siti Sakira Kamaruddin

Abstract:

Data mining is a fundamental technique in identifying patterns from large data sets. The extracted facts and patterns contribute in various domains such as marketing, forecasting, and medical. Prior to that, data are consolidated so that the resulting mining process may be more efficient. This study investigates the effect of different data normalization techniques, which are Min-max, Z-score, and decimal scaling, on Swarm-based forecasting models. Recent swarm intelligence algorithms employed includes the Grey Wolf Optimizer (GWO) and Artificial Bee Colony (ABC). Forecasting models are later developed to predict the daily spot price of crude oil and gasoline. Results showed that GWO works better with Z-score normalization technique while ABC produces better accuracy with the Min-Max. Nevertheless, the GWO is more superior that ABC as its model generates the highest accuracy for both crude oil and gasoline price. Such a result indicates that GWO is a promising competitor in the family of swarm intelligence algorithms.

Keywords: artificial bee colony, data normalization, forecasting, Grey Wolf optimizer

Procedia PDF Downloads 476
25543 Collision Theory Based Sentiment Detection Using Discourse Analysis in Hadoop

Authors: Anuta Mukherjee, Saswati Mukherjee

Abstract:

Data is growing everyday. Social networking sites such as Twitter are becoming an integral part of our daily lives, contributing a large increase in the growth of data. It is a rich source especially for sentiment detection or mining since people often express honest opinion through tweets. However, although sentiment analysis is a well-researched topic in text, this analysis using Twitter data poses additional challenges since these are unstructured data with abbreviations and without a strict grammatical correctness. We have employed collision theory to achieve sentiment analysis in Twitter data. We have also incorporated discourse analysis in the collision theory based model to detect accurate sentiment from tweets. We have also used the retweet field to assign weights to certain tweets and obtained the overall weightage of a topic provided in the form of a query. Hadoop has been exploited for speed. Our experiments show effective results.

Keywords: sentiment analysis, twitter, collision theory, discourse analysis

Procedia PDF Downloads 535
25542 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.

Keywords: mathematical sciences, data analytics, advances, unveiling

Procedia PDF Downloads 93
25541 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics

Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel

Abstract:

Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.

Keywords: educational data visualization, high-level petri nets, instructional design, learning analytics

Procedia PDF Downloads 243
25540 Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining

Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong

Abstract:

This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.

Keywords: behavior, data mining technique, a priori algorithm, knowledge discovery

Procedia PDF Downloads 404
25539 Exploration of RFID in Healthcare: A Data Mining Approach

Authors: Shilpa Balan

Abstract:

Radio Frequency Identification, also popularly known as RFID is used to automatically identify and track tags attached to items. This study focuses on the application of RFID in healthcare. The adoption of RFID in healthcare is a crucial technology to patient safety and inventory management. Data from RFID tags are used to identify the locations of patients and inventory in real time. Medical errors are thought to be a prominent cause of loss of life and injury. The major advantage of RFID application in healthcare industry is the reduction of medical errors. The healthcare industry has generated huge amounts of data. By discovering patterns and trends within the data, big data analytics can help improve patient care and lower healthcare costs. The number of increasing research publications leading to innovations in RFID applications shows the importance of this technology. This study explores the current state of research of RFID in healthcare using a text mining approach. No study has been performed yet on examining the current state of RFID research in healthcare using a data mining approach. In this study, related articles were collected on RFID from healthcare journal and news articles. Articles collected were from the year 2000 to 2015. Significant keywords on the topic of focus are identified and analyzed using open source data analytics software such as Rapid Miner. These analytical tools help extract pertinent information from massive volumes of data. It is seen that the main benefits of adopting RFID technology in healthcare include tracking medicines and equipment, upholding patient safety, and security improvement. The real-time tracking features of RFID allows for enhanced supply chain management. By productively using big data, healthcare organizations can gain significant benefits. Big data analytics in healthcare enables improved decisions by extracting insights from large volumes of data.

Keywords: RFID, data mining, data analysis, healthcare

Procedia PDF Downloads 233
25538 The Importance of Knowledge Innovation for External Audit on Anti-Corruption

Authors: Adel M. Qatawneh

Abstract:

This paper aimed to determine the importance of knowledge innovation for external audit on anti-corruption in the entire Jordanian bank companies are listed in Amman Stock Exchange (ASE). The study importance arises from the need to recognize the Knowledge innovation for external audit and anti-corruption as the development in the world of business, the variables that will be affected by external audit innovation are: reliability of financial data, relevantly of financial data, consistency of the financial data, Full disclosure of financial data and protecting the rights of investors to achieve the objectives of the study a questionnaire was designed and distributed to the society of the Jordanian bank are listed in Amman Stock Exchange. The data analysis found out that the banks in Jordan have a positive importance of Knowledge innovation for external audit on anti-corruption. They agree on the benefit of Knowledge innovation for external audit on anti-corruption. The statistical analysis showed that Knowledge innovation for external audit had a positive impact on the anti-corruption and that external audit has a significantly statistical relationship with anti-corruption, reliability of financial data, consistency of the financial data, a full disclosure of financial data and protecting the rights of investors.

Keywords: knowledge innovation, external audit, anti-corruption, Amman Stock Exchange

Procedia PDF Downloads 465
25537 Automated End-to-End Pipeline Processing Solution for Autonomous Driving

Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi

Abstract:

Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.

Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing

Procedia PDF Downloads 123
25536 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues

Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid

Abstract:

New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.

Keywords: information visualization, visual analytics, text mining, visual text analytics tools, big data visualization

Procedia PDF Downloads 399
25535 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks

Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz

Abstract:

Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.

Keywords: customer relationship management, churn prediction, telecom industry, deep learning, artificial neural networks

Procedia PDF Downloads 146
25534 The Face Sync-Smart Attendance

Authors: Bekkem Chakradhar Reddy, Y. Soni Priya, Mathivanan G., L. K. Joshila Grace, N. Srinivasan, Asha P.

Abstract:

Currently, there are a lot of problems related to marking attendance in schools, offices, or other places. Organizations tasked with collecting daily attendance data have numerous concerns. There are different ways to mark attendance. The most commonly used method is collecting data manually by calling each student. It is a longer process and problematic. Now, there are a lot of new technologies that help to mark attendance automatically. It reduces work and records the data. We have proposed to implement attendance marking using the latest technologies. We have implemented a system based on face identification and analyzing faces. The project is developed by gathering faces and analyzing data, using deep learning algorithms to recognize faces effectively. The data is recorded and forwarded to the host through mail. The project was implemented in Python and Python libraries used are CV2, Face Recognition, and Smtplib.

Keywords: python, deep learning, face recognition, CV2, smtplib, Dlib.

Procedia PDF Downloads 58
25533 Modeling and Simulation of Secondary Breakup and Its Influence on Fuel Spray in High Torque Low Speed Diesel Engine

Authors: Mohsin Raza, Rizwan Latif, Syed Adnan Qasim, Imran Shafi

Abstract:

High torque low-speed diesel engine has a wide range of industrial and commercial applications. In literature, it’s found that lot of work has been done for the high-speed diesel engine and research on High Torque low-speed is rare. The fuel injection plays a key role in the efficiency of engine and reduction in exhaust emission. The fuel breakup plays a critical role in air-fuel mixture and spray combustion. The current study explains numerically an important phenomenon in spray combustion which is deformation and breakup of liquid drops in compression ignition internal combustion engine. The secondary breakup and its influence on spray and characteristics of compressed gas in-cylinder have been calculated by using simulation software in the backdrop of high torque low-speed diesel like conditions. The secondary spray breakup is modeled with KH - RT instabilities. The continuous field is described by turbulence model and dynamics of the dispersed droplet is modeled by Lagrangian tracking scheme. The results by using KH - RT model are compared against other default methods in OpenFOAM and published experimental data from research and implemented in CFD (Computational Fluid Dynamics). These numerical simulation, done in OpenFoam and Matlab, results are analyzed for the complete 720- degree 4 stroke engine cycle at a low engine speed, for favorable agreement to be achieved. Results thus obtained will be analyzed for better evaporation in near nozzle region. The proposed analyses will further help in better engine efficiency, low emission and improved fuel economy.

Keywords: diesel fuel, KH-RT, Lagrangian , Open FOAM, secondary breakup

Procedia PDF Downloads 265
25532 Geographical Data Visualization Using Video Games Technologies

Authors: Nizar Karim Uribe-Orihuela, Fernando Brambila-Paz, Ivette Caldelas, Rodrigo Montufar-Chaveznava

Abstract:

In this paper, we present the advances corresponding to the implementation of a strategy to visualize geographical data using a Software Development Kit (SDK) for video games. We use multispectral images from Landsat 7 platform and Laser Imaging Detection and Ranging (LIDAR) data from The National Institute of Geography and Statistics of Mexican (INEGI). We select a place of interest to visualize from Landsat platform and make some processing to the image (rotations, atmospheric correction and enhancement). The resulting image will be our gray scale color-map to fusion with the LIDAR data, which was selected using the same coordinates than in Landsat. The LIDAR data is translated to 8-bit raw data. Both images are fused in a software developed using Unity (an SDK employed for video games). The resulting image is then displayed and can be explored moving around. The idea is the software could be used for students of geology and geophysics at the Engineering School of the National University of Mexico. They will download the software and images corresponding to a geological place of interest to a smartphone and could virtually visit and explore the site with a virtual reality visor such as Google cardboard.

Keywords: virtual reality, interactive technologies, geographical data visualization, video games technologies, educational material

Procedia PDF Downloads 246
25531 Mapping Early Buddhist History Through Architecture before Sui Era

Authors: Yin Ruoxi

Abstract:

Buddhism, originating in ancient India, saw its most profound development in China. Similarly, Buddhist architecture, though derived from Indian prototypes, evolved distinctively as the religion reached new regions. The interaction with local traditions led to architectural forms that mirrored the unique cultural and ethnic identities of each area. Before the Sui and Tang dynasties, three prominent styles could be observed: Indian, Central Asian, and those of the northern Central Plains. This paper aims to analyze the spatial distribution of temples and the evolution of temple layouts, which means the general layout and floor plans in architecture study, with the innovation of the Pagoda in China. Through examining these transformations and their underlying causes, this paper seeks to unravel the early stages of Buddhism's adaptation to Chinese cultural contexts before the Sui dynasty.

Keywords: Buddhist architecture, early Buddhism in China, change in Buddhism with developing in architecture, temple, pagoda

Procedia PDF Downloads 1
25530 Mechanisms Underlying Comprehension of Visualized Personal Health Information: An Eye Tracking Study

Authors: Da Tao, Mingfu Qin, Wenkai Li, Tieyan Wang

Abstract:

While the use of electronic personal health portals has gained increasing popularity in the healthcare industry, users usually experience difficulty in comprehending and correctly responding to personal health information, partly due to inappropriate or poor presentation of the information. The way personal health information is visualized may affect how users perceive and assess their personal health information. This study was conducted to examine the effects of information visualization format and visualization mode on the comprehension and perceptions of personal health information among personal health information users with eye tracking techniques. A two-factor within-subjects experimental design was employed, where participants were instructed to complete a series of personal health information comprehension tasks under varied types of visualization mode (i.e., whether the information visualization is static or dynamic) and three visualization formats (i.e., bar graph, instrument-like graph, and text-only format). Data on a set of measures, including comprehension performance, perceptions, and eye movement indicators, were collected during the task completion in the experiment. Repeated measure analysis of variance analyses (RM-ANOVAs) was used for data analysis. The results showed that while the visualization format yielded no effects on comprehension performance, it significantly affected users’ perceptions (such as perceived ease of use and satisfaction). The two graphic visualizations yielded significantly higher favorable scores on subjective evaluations than that of the text format. While visualization mode showed no effects on users’ perception measures, it significantly affected users' comprehension performance in that dynamic visualization significantly reduced users' information search time. Both visualization format and visualization mode had significant main effects on eye movement behaviors, and their interaction effects were also significant. While the bar graph format and text format had similar time to first fixation across dynamic and static visualizations, instrument-like graph format had a larger time to first fixation for dynamic visualization than for static visualization. The two graphic visualization formats yielded shorter total fixation duration compared with the text-only format, indicating their ability to improve information comprehension efficiency. The results suggest that dynamic visualization can improve efficiency in comprehending important health information, and graphic visualization formats were favored more by users. The findings are helpful in the underlying comprehension mechanism of visualized personal health information and provide important implications for optimal design and visualization of personal health information.

Keywords: eye tracking, information comprehension, personal health information, visualization

Procedia PDF Downloads 109
25529 Adsorption of Heavy Metals Using Chemically-Modified Tea Leaves

Authors: Phillip Ahn, Bryan Kim

Abstract:

Copper is perhaps the most prevalent heavy metal used in the manufacturing industries, from food additives to metal-mechanic factories. Common methodologies to remove copper are expensive and produce undesired by-products. A good decontaminating candidate should be environment-friendly, inexpensive, and capable of eliminating low concentrations of the metal. This work suggests chemically modified spent tea leaves of chamomile, peppermint and green tea in their thiolated, sulfonated and carboxylated forms as candidates for the removal of copper from solutions. Batch experiments were conducted to maximize the adsorption of copper (II) ions. Effects such as acidity, salinity, adsorbent dose, metal concentration, and presence of surfactant were explored. Experimental data show that maximum adsorption is reached at neutral pH. The results indicate that Cu(II) can be removed up to 53%, 22% and 19% with the thiolated, carboxylated and sulfonated adsorbents, respectively. Maximum adsorption of copper on TPM (53%) is achieved with 150 mg and decreases with the presence of salts and surfactants. Conversely, sulfonated and carboxylated adsorbents show better adsorption in the presence of surfactants. Time-dependent experiments show that adsorption is reached in less than 25 min for TCM and 5 min for SCM. Instrumental analyses determined the presence of active functional groups, thermal resistance, and scanning electron microscopy, indicating that both adsorbents are promising materials for the selective recovery and treatment of metal ions from wastewaters. Finally, columns were prepared with these adsorbents to explore their application in scaled-up processes, with very positive results. A long-term goal involves the recycling of the exhausted adsorbent and/or their use in the preparation of biofuels due to changes in materials’ structures.

Keywords: heavy metal removal, adsorption, wastewaters, water remediation

Procedia PDF Downloads 290
25528 Nonparametric Sieve Estimation with Dependent Data: Application to Deep Neural Networks

Authors: Chad Brown

Abstract:

This paper establishes general conditions for the convergence rates of nonparametric sieve estimators with dependent data. We present two key results: one for nonstationary data and another for stationary mixing data. Previous theoretical results often lack practical applicability to deep neural networks (DNNs). Using these conditions, we derive convergence rates for DNN sieve estimators in nonparametric regression settings with both nonstationary and stationary mixing data. The DNN architectures considered adhere to current industry standards, featuring fully connected feedforward networks with rectified linear unit activation functions, unbounded weights, and a width and depth that grows with sample size.

Keywords: sieve extremum estimates, nonparametric estimation, deep learning, neural networks, rectified linear unit, nonstationary processes

Procedia PDF Downloads 41
25527 An Evaluation of Neuropsychiatric Manifestations in Systemic Lupus Erythematosus Patients in Saudi Arabia and Their Associated Factors

Authors: Yousef M. Alammari, Mahmoud A. Gaddoury, Reem A. Almohaini, Sara A. Alharbi, Lena S. Alsaleem, Lujain H. Allowaihiq, Maha H. Alrashid, Abdullah H. Alghamdi, Abdullah A. Alaryni

Abstract:

Objective: The goal of this study was to establish the prevalence of neuropsychiatric symptoms in systemic lupus erythematosus (NPSLE) patients in Saudi Arabia and the variables that are linked to it. Methods: During June 2021, this cross-sectional study was carried out among SLE patients in Saudi Arabia. The Saudi Rheumatism Association exploited social media platforms to provide a self-administered online questionnaire to SLE patients. All data analyses were performed using the Statistical Packages for Social Sciences (SPSS) version 26. Results: Two hundred and five SLE patients participated in the study (females 91.3 % vs. males 8.7 %). In addition, 13.5 % of patients had a family history of SLE, and 26% had SLE for one to three years. Alteration or loss of sensation (53.4%), Fear (52.4%), and headache (48.1%) were the most prevalent signs of neuropsychiatric symptoms in systemic lupus erythematosus (NPSLE) patients. The prevalence of patients with NPSLE was 40%. In a multivariate regression model, fear, altered sensations, cerebrovascular illness, sleep disruption, and diminished interest in routine activities were identified as independent risk variables for NPSLE. Conclusion: Nearly half of SLE patients demonstrated NP manifestations, with significant symptoms including fear, alteration of sensation, cerebrovascular disease, sleep disturbance, and reduced interest in normal activities. To detect the pathophysiology of NPSLE, it is necessary to understand the relationship between neuropsychiatric morbidity and other relevant rheumatic disorders in the SLE population.

Keywords: neuropsychiatric, systemic lupus erythematosus, NPSLE, prevalence, SLE patients

Procedia PDF Downloads 75
25526 Development of Risk Management System for Urban Railroad Underground Structures and Surrounding Ground

Authors: Y. K. Park, B. K. Kim, J. W. Lee, S. J. Lee

Abstract:

To assess the risk of the underground structures and surrounding ground, we collect basic data by the engineering method of measurement, exploration and surveys and, derive the risk through proper analysis and each assessment for urban railroad underground structures and surrounding ground including station inflow. Basic data are obtained by the fiber-optic sensors, MEMS sensors, water quantity/quality sensors, tunnel scanner, ground penetrating radar, light weight deflectometer, and are evaluated if they are more than the proper value or not. Based on these data, we analyze the risk level of urban railroad underground structures and surrounding ground. And we develop the risk management system to manage efficiently these data and to support a convenient interface environment at input/output of data.

Keywords: urban railroad, underground structures, ground subsidence, station inflow, risk

Procedia PDF Downloads 336
25525 Evaluation of the Physico-Chemical and Microbial Properties of the Compost Leachate (CL) to Assess Its Role in the Bioremediation of Polyaromatic Hydrocarbons (PAHs)

Authors: Omaima A. Sharaf, Tarek A. Moussa, Said M. Badr El-Din, H. Moawad

Abstract:

Background: Polycyclic aromatic hydrocarbons (PAHs) pose great environmental and human health concerns for their widespread occurrence, persistence, and carcinogenic properties. PAHs releases due to anthropogenic activities to the wider environment have led to higher concentrations of these contaminants than would be expected from natural processes alone. This may result in a wide range of environmental problems that can accumulate in agricultural ecosystems, which threatened to become a negative impact on sustainable agricultural development. Thus, this study aimed to evaluate the physico-chemical, and microbial properties of the compost leachate (CL) to assess its role as nutrient and microbial source (biostimulation/bioaugmentation) for developing a cost-effective bioremediation technology for PAHs contaminated sites. Material and Methods: PAHs-degrading bacteria were isolated from CL that was collected from a composting site located in central Scotland, UK. Isolation was carried out by enrichment using phenanthrene (PHR), pyrene (PYR) and benzo(a)pyrene (BaP) as the sole source of carbon and energy. The isolates were characterized using a variety of phenotypic and molecular properties. Six different isolates were identified based on the difference in morphological and biochemical tests. The efficiency of these isolates in PAHs utilization was assessed. Further analysis was performed to define taxonomical status and phylogenic relation between the most potent PAHs-utilizing bacterial strains and other standard strains, using molecular approach by partial 16S rDNA gene sequence analysis. Results indicated that the 16S rDNA sequence analysis confirmed the results of biochemical identification, as both of biochemical and molecular identification of the isolates assigned them to Bacillus licheniformis, Pseudomonas aeruginosa, Alcaligenes faecalis, Serratia marcescens, Enterobacter cloacae and Providenicia which were identified as the prominent PAHs-utilizers isolated from CL. Conclusion: This study indicates that the CL samples contain a diverse population of PAHs-degrading bacteria and the use of CL may have a potential for bioremediation of PAHs contaminated sites.

Keywords: polycyclic aromatic hydrocarbons, physico-chemical analyses, compost leachate, microbial and biochemical analyses, phylogenic relations, 16S rDNA sequence analysis

Procedia PDF Downloads 263
25524 The Influence of Service Quality on Customer Satisfaction and Customer Loyalty at a Telecommunication Company in Malaysia

Authors: Noor Azlina Mohamed Yunus, Baharom Abd Rahman, Abdul Kadir Othman, Narehan Hassan, Rohana Mat Som, Ibhrahim Zakaria

Abstract:

Customer satisfaction and customer loyalty are the most important outcomes of marketing in which both elements serve various stages of consumer buying behavior. Excellent service quality has become a major corporate goal as more companies gradually struggle for quality for their products and services. Therefore, the main purpose of this study is to investigate the influence of service quality on customer satisfaction and customer loyalty at one telecommunication company in Malaysia which is Telekom Malaysia. The scope of this research is to evaluate satisfaction on the products or services at TMpoint Bukit Raja, Malaysia. The data are gathered through the distribution of questionnaires to a total of 306 respondents who visited and used the products or services. By using correlation and multiple regression analyses, the result revealed that there was a positive and significant relationship between service quality and customer satisfaction. The most influential factor on customer satisfaction was empathy followed by reliability, assurance and tangibles. However, there was no significant influence between responsiveness and customer satisfaction. The result also showed there was a positive and significant relationship between service quality and customer loyalty. The most influential factor on customer loyalty was assurance followed by reliability and tangibles. TMpoint Bukit Raja is recommended to device excellent strategies to satisfy customers’ needs and to adopt action-oriented approach by focusing on what the customers wanted. It is also recommended that similar study can be carried out in other industries using different methodologies such as longitudinal method, enlarge the sample size and use a qualitative approach.

Keywords: customer satisfaction, customer loyalty, service quality, telecommunication company

Procedia PDF Downloads 453
25523 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: big data, machine learning, smart city, social cost, transportation network

Procedia PDF Downloads 260
25522 The Role of the University Campus in Shaping the Built Environment of Its Local Communities

Authors: Lawrence Babatunde Ogunsanya

Abstract:

The university has been in existence, in one form or another, for over a thousand years and has contributed in multiple ways to modern society. It is considered a center of culture, aesthetic direction, and moral forces shaping the civilized society. Universities also contribute in important ways to the economic health and physical landscape of neighborhoods and cities, serving as permanent fixtures of the urban economy and the built environment. Due to the size and location of university campuses, they put demands on the urban character, systems, and infrastructure of the neighboring communities. These demands or impacts have substantial implications for the built environment. It is important to understand the impacts university campuses have on their surrounding communities and urban environments because the destiny of the university is inextricably linked to the destiny of the adjacent neighborhoods. This paper identifies the diverse factors generated by universities in shaping the built environments of their local communities within different spatial contexts such as urban, rural, and township regions situated in South Africa.By applying a mixed methods approach in four university campuses within the province of KwaZulu-Natal in South Africa. Several data collection instruments were used, such as in-depth interviews, a survey, remote sensing, and onsite observations. The thematic findings revealed numerous factors which influence the morphology of neighbourhood built environments and the myriad of relationships the university has with its local community. This paper also reveals that the university campus is more than a precinct which accommodates buildings and academic endeavours, the role of the university in this century has changed dramatically from its traditional roots of being an elite enclave of academics to a more inclusive and engaged entity that is concerned about providing relevant holistic solutions to society’s current challenges in the built environment.

Keywords: university campus, built environment, architecture, neighborhood planning

Procedia PDF Downloads 124
25521 Integrated Model for Enhancing Data Security Performance in Cloud Computing

Authors: Amani A. Saad, Ahmed A. El-Farag, El-Sayed A. Helali

Abstract:

Cloud computing is an important and promising field in the recent decade. Cloud computing allows sharing resources, services and information among the people of the whole world. Although the advantages of using clouds are great, but there are many risks in a cloud. The data security is the most important and critical problem of cloud computing. In this research a new security model for cloud computing is proposed for ensuring secure communication system, hiding information from other users and saving the user's times. In this proposed model Blowfish encryption algorithm is used for exchanging information or data, and SHA-2 cryptographic hash algorithm is used for data integrity. For user authentication process a user-name and password is used, the password uses SHA-2 for one way encryption. The proposed system shows an improvement of the processing time of uploading and downloading files on the cloud in secure form.

Keywords: cloud Ccomputing, data security, SAAS, PAAS, IAAS, Blowfish

Procedia PDF Downloads 477