Search results for: shared parameter model
15819 Knowledge Sharing Model Based on Individual and Organizational Factors Related to Faculty Members of University
Authors: Mitra Sadoughi
Abstract:
This study presents the knowledge-sharing model based on individual and organizational factors related to faculty members. To achieve this goal, individual and organizational factors were presented through qualitative research in the form of open codes, axial, and selective observations; then, the final model was obtained using structural equation model. Participants included 1,719 faculty members of the Azad Universities, Mazandaran Province, Region 3. The samples related to the qualitative survey included 25 faculty members experienced at teaching and the samples related to the quantitative survey included 326 faculty members selected by multistage cluster sampling. A 72-item questionnaire was used to measure the quantitative variables. The reliability of the questionnaire was 0.93. Its content and face validity was determined with the help of faculty members, consultants, and other experts. For the analysis of quantitative data obtained from structural model and regression, SPSS and LISREL were used. The results showed that the status of knowledge sharing is moderate in the universities. Individual factors influencing knowledge sharing included the sharing of educational materials, perception, confidence and knowledge self-efficiency, and organizational factors influencing knowledge sharing included structural social capital, cognitive social capital, social capital relations, organizational communication, organizational structure, organizational culture, IT infrastructure and systems of rewards. Finally, it was found that the contribution of individual factors on knowledge sharing was more than organizational factors; therefore, a model was presented in which contribution of individual and organizational factors were determined.Keywords: knowledge sharing, social capital, organizational communication, knowledge self-efficiency, perception, trust, organizational culture
Procedia PDF Downloads 39215818 A Finite Element Model to Study the Behaviour of Corroded Reinforced Concrete Beams Repaired with near Surface Mounted Technique
Authors: B. Almassri, F. Almahmoud, R. Francois
Abstract:
Near surface mounted reinforcement (NSM) technique is one of the promising techniques used nowadays to strengthen reinforced concrete (RC) structures. In the NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. This paper studies the non-classical mode of failure ‘the separation of concrete cover’ according to experimental and numerical FE modelling results. Experimental results and numerical modelling results of a 3D finite element (FE) model using the commercial software Abaqus and 2D FE model FEMIX were obtained on two beams, one corroded (25 years of corrosion procedure) and one control (A1CL3-R and A1T-R) were each repaired in bending using NSM CFRP rod and were then tested up to failure. The results showed that the NSM technique increased the overall capacity of control and corroded beams despite a non-classical mode of failure with separation of the concrete cover occurring in the corroded beam due to damage induced by corrosion. Another FE model used external steel stirrups around the repaired corroded beam A1CL3-R which failed with the separation of concrete cover, this model showed a change in the mode of failure form a non-classical mode of failure by the separation of concrete cover to the same mode of failure of the repaired control beam by the crushing of compressed concrete.Keywords: corrosion, repair, Reinforced Concrete, FEM, CFRP, FEMIX
Procedia PDF Downloads 16515817 The Use of Facebook as a Social Media by Political Parties in the June 7 Election in Konya
Authors: Yasemin Gülşen Yılmaz, Süleyman Hakan Yılmaz, Muhammet Erbay
Abstract:
Social media is among the most important means of communication. Social media offers individuals and groups with an opportunity for participatory socialization over the internet, which is free of any time and place restrictions. Social media is a kind of interactive communication and bilateral social network. Various communication contents can be shared and put into mass circulation easily and quickly through social media. These sharings are not only limited to individuals but also happen to groups, institutions, and different constitutions. Their contents consist of any type of written message, audio and video files. We are living in the social media era now. It is not surprising that social media which has extensive communication facilities and massive prevalence is used in politics. Therefore, the use of social media (Facebook) by political parties during the Turkish general elections held on June 7, 2015, has been chosen as our research subject. Four parties namely, AKP, CHP, MHP and HDP who have the majority of votes in Turkey and participate in elections in Konya have been selected for our study. Their provincial centers’ and parliamentary candidates` use of social media (Facebook) on the last three days prior to the election have been examined and subjected to a qualitative analysis by means of content analysis.Keywords: social media, June 7 general elections, politics, Facebook
Procedia PDF Downloads 40415816 A Model of Applied Psychology Research Defining Community Participation and Collective Identity as a Major Asset for Strategic Planning and Political Decision: The Project SIA (Social Inclusion through Accessibility)
Authors: Rui Serôdio, Alexandra Serra, José Albino Lima, Luísa Catita, Paula Lopes
Abstract:
We will present the outline of the Project SIA (Social Inclusion through Accessibility) focusing in one of its core components: how our applied research model contributes to define community participation as a pillar for strategic and political agenda amongst local authorities. Project ISA, supported by EU regional funding, was design as part of a broader model developed by SIMLab–Social Inclusion Monitoring Laboratory, in which the relation University-Community is a core element. The project illustrates how University of Porto developed a large scale project of applied psychology research in a close partnership with 18 municipalities that cover almost all regions of Portugal, and with a private architecture enterprise, specialized in inclusive accessibility and “design for all”. Three fundamental goals were defined: (1) creation of a model that would promote the effective civic participation of local citizens; (2) the “voice” of such participation should be both individual and collective; (3) the scientific and technical framework should serve as one of the bases for political decision on inclusive accessibility local planning. The two main studies were run in a standardized model across all municipalities and the samples of the three modalities of community participation were the following: individual participation based on 543 semi-structured interviews and 6373 inquiries; collective participation based on group session with 302 local citizens. We present some of the broader findings of Project SIA and discuss how they relate to our applied research model.Keywords: applied psychology, collective identity, community participation, inclusive accessibility
Procedia PDF Downloads 44815815 Multi-Atlas Segmentation Based on Dynamic Energy Model: Application to Brain MR Images
Authors: Jie Huo, Jonathan Wu
Abstract:
Segmentation of anatomical structures in medical images is essential for scientific inquiry into the complex relationships between biological structure and clinical diagnosis, treatment and assessment. As a method of incorporating the prior knowledge and the anatomical structure similarity between a target image and atlases, multi-atlas segmentation has been successfully applied in segmenting a variety of medical images, including the brain, cardiac, and abdominal images. The basic idea of multi-atlas segmentation is to transfer the labels in atlases to the coordinate of the target image by matching the target patch to the atlas patch in the neighborhood. However, this technique is limited by the pairwise registration between target image and atlases. In this paper, a novel multi-atlas segmentation approach is proposed by introducing a dynamic energy model. First, the target is mapped to each atlas image by minimizing the dynamic energy function, then the segmentation of target image is generated by weighted fusion based on the energy. The method is tested on MICCAI 2012 Multi-Atlas Labeling Challenge dataset which includes 20 target images and 15 atlases images. The paper also analyzes the influence of different parameters of the dynamic energy model on the segmentation accuracy and measures the dice coefficient by using different feature terms with the energy model. The highest mean dice coefficient obtained with the proposed method is 0.861, which is competitive compared with the recently published method.Keywords: brain MRI segmentation, dynamic energy model, multi-atlas segmentation, energy minimization
Procedia PDF Downloads 33615814 IOT Based Process Model for Heart Monitoring Process
Authors: Dalyah Y. Al-Jamal, Maryam H. Eshtaiwi, Liyakathunisa Syed
Abstract:
Connecting health services with technology has a huge demand as people health situations are becoming worse day by day. In fact, engaging new technologies such as Internet of Things (IOT) into the medical services can enhance the patient care services. Specifically, patients suffering from chronic diseases such as cardiac patients need a special care and monitoring. In reality, some efforts were previously taken to automate and improve the patient monitoring systems. However, the previous efforts have some limitations and lack the real-time feature needed for chronic kind of diseases. In this paper, an improved process model for patient monitoring system specialized for cardiac patients is presented. A survey was distributed and interviews were conducted to gather the needed requirements to improve the cardiac patient monitoring system. Business Process Model and Notation (BPMN) language was used to model the proposed process. In fact, the proposed system uses the IOT Technology to assist doctors to remotely monitor and follow-up with their heart patients in real-time. In order to validate the effectiveness of the proposed solution, simulation analysis was performed using Bizagi Modeler tool. Analysis results show performance improvements in the heart monitoring process. For the future, authors suggest enhancing the proposed system to cover all the chronic diseases.Keywords: IoT, process model, remote patient monitoring system, smart watch
Procedia PDF Downloads 33315813 Constrained RGBD SLAM with a Prior Knowledge of the Environment
Authors: Kathia Melbouci, Sylvie Naudet Collette, Vincent Gay-Bellile, Omar Ait-Aider, Michel Dhome
Abstract:
In this paper, we handle the problem of real time localization and mapping in indoor environment assisted by a partial prior 3D model, using an RGBD sensor. The proposed solution relies on a feature-based RGBD SLAM algorithm to localize the camera and update the 3D map of the scene. To improve the accuracy and the robustness of the localization, we propose to combine in a local bundle adjustment process, geometric information provided by a prior coarse 3D model of the scene (e.g. generated from the 2D floor plan of the building) along with RGBD data from a Kinect camera. The proposed approach is evaluated on a public benchmark dataset as well as on real scene acquired by a Kinect sensor.Keywords: SLAM, global localization, 3D sensor, bundle adjustment, 3D model
Procedia PDF Downloads 41415812 The Influence of Demographic on Tea Consumption in China
Authors: Xiguan Jiangfan Yang
Abstract:
This study investigates the tea consumption based on the Double-Hurdle model. The results of a CHNS survey of 12,745 samples in China offer two preliminary insights: First, we can’t apply the conclusions we get by using all samples to the men or women subgroups. Second, men and women are impacted by different demographic not only on the intention to drink tea, but also on the quantities of tea consumed. These two findings suggest that appropriate and corresponding marketing strategies should be developed to targeting on the different groups of tea consumers.Keywords: Chinese, CHNS, Double-Hurdle model, tea consumption
Procedia PDF Downloads 41115811 Online Measurement of Fuel Stack Elongation
Authors: Sung Ho Ahn, Jintae Hong, Chang Young Joung, Tae Ho Yang, Sung Ho Heo, Seo Yun Jang
Abstract:
The performances of nuclear fuels and materials are qualified at an irradiation system in research reactors operating under the commercial nuclear power plant conditions. Fuel centerline temperature, coolant temperature, neutron flux, deformations of fuel stack and swelling are important parameters needed to analyze the nuclear fuel performances. The dimensional stability of nuclear fuels is a key parameter measuring the fuel densification and swelling. In this study, the fuel stack elongation is measured using a LVDT. A mockup LVDT instrumented fuel rod is developed. The performances of mockup LVDT instrumented fuel rod is evaluated by experiments.Keywords: axial deformation, elongation measurement, in-pile instrumentation, LVDT
Procedia PDF Downloads 53415810 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data
Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao
Abstract:
Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive
Procedia PDF Downloads 17415809 Dynamic Response and Damage Modeling of Glass Fiber Reinforced Epoxy Composite Pipes: Numerical Investigation
Authors: Ammar Maziz, Mostapha Tarfaoui, Said Rechak
Abstract:
The high mechanical performance of composite pipes can be adversely affected by their low resistance to impact loads. Loads in dynamic origin are dangerous and cause consequences on the operation of pipes because the damage is often not detected and can affect the structural integrity of composite pipes. In this work, an advanced 3-D finite element (FE) model, based on the use of intralaminar damage models was developed and used to predict damage under low-velocity impact. The performance of the numerical model is validated with the confrontation with the results of experimental tests. The results show that at low impact energy, the damage happens mainly by matrix cracking and delamination. The model capabilities to simulate the low-velocity impact events on the full-scale composite structures were proved.Keywords: composite materials, low velocity impact, FEA, dynamic behavior, progressive damage modeling
Procedia PDF Downloads 17215808 Adapted Intersection over Union: A Generalized Metric for Evaluating Unsupervised Classification Models
Authors: Prajwal Prakash Vasisht, Sharath Rajamurthy, Nishanth Dara
Abstract:
In a supervised machine learning approach, metrics such as precision, accuracy, and coverage can be calculated using ground truth labels to help in model tuning, evaluation, and selection. In an unsupervised setting, however, where the data has no ground truth, there are few interpretable metrics that can guide us to do the same. Our approach creates a framework to adapt the Intersection over Union metric, referred to as Adapted IoU, usually used to evaluate supervised learning models, into the unsupervised domain, which solves the problem by factoring in subject matter expertise and intuition about the ideal output from the model. This metric essentially provides a scale that allows us to compare the performance across numerous unsupervised models or tune hyper-parameters and compare different versions of the same model.Keywords: general metric, unsupervised learning, classification, intersection over union
Procedia PDF Downloads 4915807 Software Quality Measurement System for Telecommunication Industry in Malaysia
Authors: Nor Fazlina Iryani Abdul Hamid, Mohamad Khatim Hasan
Abstract:
Evolution of software quality measurement has been started since McCall introduced his quality model in year 1977. Starting from there, several software quality models and software quality measurement methods had emerged but none of them focused on telecommunication industry. In this paper, the implementation of software quality measurement system for telecommunication industry was compulsory to accommodate the rapid growth of telecommunication industry. The quality value of the telecommunication related software could be calculated using this system by entering the required parameters. The system would calculate the quality value of the measured system based on predefined quality metrics and aggregated by referring to the quality model. It would classify the quality level of the software based on Net Satisfaction Index (NSI). Thus, software quality measurement system was important to both developers and users in order to produce high quality software product for telecommunication industry.Keywords: software quality, quality measurement, quality model, quality metric, net satisfaction index
Procedia PDF Downloads 59215806 Electro-Fenton Degradation of Erythrosine B Using Carbon Felt as a Cathode: Doehlert Design as an Optimization Technique
Authors: Sourour Chaabane, Davide Clematis, Marco Panizza
Abstract:
This study investigates the oxidation of Erythrosine B (EB) food dye by a homogeneous electro-Fenton process using iron (II) sulfate heptahydrate as a catalyst, carbon felt as cathode, and Ti/RuO2. The treated synthetic wastewater contains 100 mg L⁻¹ of EB and has a pH = 3. The effects of three independent variables have been considered for process optimization, such as applied current intensity (0.1 – 0.5 A), iron concentration (1 – 10 mM), and stirring rate (100 – 1000 rpm). Their interactions were investigated considering response surface methodology (RSM) based on Doehlert design as optimization method. EB removal efficiency and energy consumption were considered model responses after 30 minutes of electrolysis. Analysis of variance (ANOVA) revealed that the quadratic model was adequately fitted to the experimental data with R² (0.9819), adj-R² (0.9276) and low Fisher probability (< 0.0181) for EB removal model, and R² (0.9968), adj-R² (0.9872) and low Fisher probability (< 0.0014) relative to the energy consumption model reflected a robust statistical significance. The energy consumption model significantly depends on current density, as expected. The foregoing results obtained by RSM led to the following optimal conditions for EB degradation: current intensity of 0.2 A, iron concentration of 9.397 mM, and stirring rate of 500 rpm, which gave a maximum decolorization rate of 98.15 % with a minimum energy consumption of 0.74 kWh m⁻³ at 30 min of electrolysis.Keywords: electrofenton, erythrosineb, dye, response serface methdology, carbon felt
Procedia PDF Downloads 7215805 Formal Verification for Ethereum Smart Contract Using Coq
Authors: Xia Yang, Zheng Yang, Haiyong Sun, Yan Fang, Jingyu Liu, Jia Song
Abstract:
The smart contract in Ethereum is a unique program deployed on the Ethereum Virtual Machine (EVM) to help manage cryptocurrency. The security of this smart contract is critical to Ethereum’s operation and highly sensitive. In this paper, we present a formal model for smart contract, using the separated term-obligation (STO) strategy to formalize and verify the smart contract. We use the IBM smart sponsor contract (SSC) as an example to elaborate the detail of the formalizing process. We also propose a formal smart sponsor contract model (FSSCM) and verify SSC’s security properties with an interactive theorem prover Coq. We found the 'Unchecked-Send' vulnerability in the SSC, using our formal model and verification method. Finally, we demonstrate how we can formalize and verify other smart contracts with this approach, and our work indicates that this formal verification can effectively verify the correctness and security of smart contracts.Keywords: smart contract, formal verification, Ethereum, Coq
Procedia PDF Downloads 69115804 An Approach to Analyze Testing of Nano On-Chip Networks
Authors: Farnaz Fotovvatikhah, Javad Akbari
Abstract:
Test time of a test architecture is an important factor which depends on the architecture's delay and test patterns. Here a new architecture to store the test results based on network on chip is presented. In addition, simple analytical model is proposed to calculate link test time for built in self-tester (BIST) and external tester (Ext) in multiprocessor systems. The results extracted from the model are verified using FPGA implementation and experimental measurements. Systems consisting 16, 25, and 36 processors are implemented and simulated and test time is calculated. In addition, BIST and Ext are compared in terms of test time at different conditions such as at different number of test patterns and nodes. Using the model the maximum frequency of testing could be calculated and the test structure could be optimized for high speed testing.Keywords: test, nano on-chip network, JTAG, modelling
Procedia PDF Downloads 48815803 Synthesis of a Model Predictive Controller for Artificial Pancreas
Authors: Mohamed El Hachimi, Abdelhakim Ballouk, Ilyas Khelafa, Abdelaziz Mouhou
Abstract:
Introduction: Type 1 diabetes occurs when beta cells are destroyed by the body's own immune system. Treatment of type 1 diabetes mellitus could be greatly improved by applying a closed-loop control strategy to insulin delivery, also known as an Artificial Pancreas (AP). Method: In this paper, we present a new formulation of the cost function for a Model Predictive Control (MPC) utilizing a technic which accelerates the speed of control of the AP and tackles the nonlinearity of the control problem via asymmetric objective functions. Finding: The finding of this work consists in a new Model Predictive Control algorithm that leads to good performances like decreasing the time of hyperglycaemia and avoiding hypoglycaemia. Conclusion: These performances are validated under in silico trials.Keywords: artificial pancreas, control algorithm, biomedical control, MPC, objective function, nonlinearity
Procedia PDF Downloads 30715802 A Self-Coexistence Strategy for Spectrum Allocation Using Selfish and Unselfish Game Models in Cognitive Radio Networks
Authors: Noel Jeygar Robert, V. K.Vidya
Abstract:
Cognitive radio is a software-defined radio technology that allows cognitive users to operate on the vacant bands of spectrum allocated to licensed users. Cognitive radio plays a vital role in the efficient utilization of wireless radio spectrum available between cognitive users and licensed users without making any interference to licensed users. The spectrum allocation followed by spectrum sharing is done in a fashion where a cognitive user has to wait until spectrum holes are identified and allocated when the licensed user moves out of his own allocated spectrum. In this paper, we propose a self –coexistence strategy using bargaining and Cournot game model for achieving spectrum allocation in cognitive radio networks. The game-theoretic model analyses the behaviour of cognitive users in both cooperative and non-cooperative scenarios and provides an equilibrium level of spectrum allocation. Game-theoretic models such as bargaining game model and Cournot game model produce a balanced distribution of spectrum resources and energy consumption. Simulation results show that both game theories achieve better performance compared to other popular techniquesKeywords: cognitive radio, game theory, bargaining game, Cournot game
Procedia PDF Downloads 29915801 Modeling and Experimental Verification of Crystal Growth Kinetics in Glass Forming Alloys
Authors: Peter K. Galenko, Stefanie Koch, Markus Rettenmayr, Robert Wonneberger, Evgeny V. Kharanzhevskiy, Maria Zamoryanskaya, Vladimir Ankudinov
Abstract:
We analyze the structure of undercooled melts, crystal growth kinetics and amorphous/crystalline microstructure of rapidly solidifying glass-forming Pd-based and CuZr-based alloys. A dendrite growth model is developed using a combination of the kinetic phase-field model and mesoscopic sharp interface model. The model predicts features of crystallization kinetics in alloys from thermodynamically controlled growth (governed by the Gibbs free energy change on solidification) to the kinetically limited regime (governed by atomic attachment-detachment processes at the solid/liquid interface). Comparing critical undercoolings observed in the crystallization kinetics with experimental data on melt viscosity, atomistic simulation's data on liquid microstructure and theoretically predicted dendrite growth velocity allows us to conclude that the dendrite growth kinetics strongly depends on the cluster structure changes of the melt. The obtained data of theoretical and experimental investigations are used for interpretation of microstructure of samples processed in electro-magnetic levitator on board International Space Station in the frame of the project "MULTIPHAS" (European Space Agency and German Aerospace Center, 50WM1941) and "KINETIKA" (ROSKOSMOS).Keywords: dendrite, kinetics, model, solidification
Procedia PDF Downloads 12015800 Mathematical Modeling Pressure Losses of Trapezoidal Labyrinth Channel and Bi-Objective Optimization of the Design Parameters
Authors: Nina Philipova
Abstract:
The influence of the geometric parameters of trapezoidal labyrinth channel on the pressure losses along the labyrinth length is investigated in this work. The impact of the dentate height is studied at fixed values of the dentate angle and the dentate spacing. The objective of the work presented in this paper is to derive a mathematical model of the pressure losses along the labyrinth length depending on the dentate height. The numerical simulations of the water flow movement are performed by using Commercial codes ANSYS GAMBIT and FLUENT. Dripper inlet pressure is set up to be 1 bar. As a result, the mathematical model of the pressure losses is determined as a second-order polynomial by means Commercial code STATISTIKA. Bi-objective optimization is performed by using the mean algebraic function of utility. The optimum value of the dentate height is defined at fixed values of the dentate angle and the dentate spacing. The derived model of the pressure losses and the optimum value of the dentate height are used as a basis for a more successful emitter design.Keywords: drip irrigation, labyrinth channel hydrodynamics, numerical simulations, Reynolds stress model
Procedia PDF Downloads 15415799 Earnings vs Cash Flows: The Valuation Perspective
Authors: Megha Agarwal
Abstract:
The research paper is an effort to compare the earnings based and cash flow based methods of valuation of an enterprise. The theoretically equivalent methods based on either earnings such as Residual Earnings Model (REM), Abnormal Earnings Growth Model (AEGM), Residual Operating Income Method (ReOIM), Abnormal Operating Income Growth Model (AOIGM) and its extensions multipliers such as price/earnings ratio, price/book value ratio; or cash flow based models such as Dividend Valuation Method (DVM) and Free Cash Flow Method (FCFM) all provide different estimates of valuation of the Indian giant corporate Reliance India Limited (RIL). An ex-post analysis of published accounting and financial data for four financial years from 2008-09 to 2011-12 has been conducted. A comparison of these valuation estimates with the actual market capitalization of the company shows that the complex accounting based model AOIGM provides closest forecasts. These different estimates may be derived due to inconsistencies in discount rate, growth rates and the other forecasted variables. Although inputs for earnings based models may be available to the investor and analysts through published statements, precise estimation of free cash flows may be better undertaken by the internal management. The estimation of value from more stable parameters as residual operating income and RNOA could be considered superior to the valuations from more volatile return on equity.Keywords: earnings, cash flows, valuation, Residual Earnings Model (REM)
Procedia PDF Downloads 37615798 Exploring the Spatial Relationship between Built Environment and Ride-hailing Demand: Applying Street-Level Images
Authors: Jingjue Bao, Ye Li, Yujie Qi
Abstract:
The explosive growth of ride-hailing has reshaped residents' travel behavior and plays a crucial role in urban mobility within the built environment. Contributing to the research of the spatial variation of ride-hailing demand and its relationship to the built environment and socioeconomic factors, this study utilizes multi-source data from Haikou, China, to construct a Multi-scale Geographically Weighted Regression model (MGWR), considering spatial scale heterogeneity. The regression results showed that MGWR model was demonstrated superior interpretability and reliability with an improvement of 3.4% on R2 and from 4853 to 4787 on AIC, compared with Geographically Weighted Regression model (GWR). Furthermore, to precisely identify the surrounding environment of sampling point, DeepLabv3+ model is employed to segment street-level images. Features extracted from these images are incorporated as variables in the regression model, further enhancing its rationality and accuracy by 7.78% improvement on R2 compared with the MGWR model only considered region-level variables. By integrating multi-scale geospatial data and utilizing advanced computer vision techniques, this study provides a comprehensive understanding of the spatial dynamics between ride-hailing demand and the urban built environment. The insights gained from this research are expected to contribute significantly to urban transportation planning and policy making, as well as ride-hailing platforms, facilitating the development of more efficient and effective mobility solutions in modern cities.Keywords: travel behavior, ride-hailing, spatial relationship, built environment, street-level image
Procedia PDF Downloads 8215797 The Improvement of Environmental Protection through Motor Vehicle Noise Abatement
Authors: Z. Jovanovic, Z. Masonicic, S. Dragutinovic, Z. Sakota
Abstract:
In this paper, a methodology for noise reduction of motor vehicles in use is presented. The methodology relies on synergic model of noise generation as a function of time. The arbitrary number of motor vehicle noise sources act in concert yielding the generation of the overall noise level of motor vehicle thereafter. The number of noise sources participating in the overall noise level of motor vehicle is subjected to the constraint of the calculation of the acoustic potential of each noise source under consideration. It is the prerequisite condition for the calculation of the acoustic potential of the whole vehicle. The recast form of pertinent set of equations describing the synergic model is laid down and solved by dint of Gauss method. The bunch of results emerged and some of them i.e. those ensuing from model application to MDD FAP Priboj motor vehicle in use are particularly elucidated.Keywords: noise abatement, MV noise sources, noise source identification, muffler
Procedia PDF Downloads 44515796 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform
Authors: Reza Mohammadzadeh
Abstract:
The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.Keywords: data model, geotechnical risks, machine learning, underground coal mining
Procedia PDF Downloads 27415795 Development of Medical Intelligent Process Model Using Ontology Based Technique
Authors: Emmanuel Chibuogu Asogwa, Tochukwu Sunday Belonwu
Abstract:
An urgent demand for creative solutions has been created by the rapid expansion of medical knowledge, the complexity of patient care, and the requirement for more precise decision-making. As a solution to this problem, the creation of a Medical Intelligent Process Model (MIPM) utilizing ontology-based appears as a promising way to overcome this obstacle and unleash the full potential of healthcare systems. The development of a Medical Intelligent Process Model (MIPM) using ontology-based techniques is motivated by a lack of quick access to relevant medical information and advanced tools for treatment planning and clinical decision-making, which ontology-based techniques can provide. The aim of this work is to develop a structured and knowledge-driven framework that leverages ontology, a formal representation of domain knowledge, to enhance various aspects of healthcare. Object-Oriented Analysis and Design Methodology (OOADM) were adopted in the design of the system as we desired to build a usable and evolvable application. For effective implementation of this work, we used the following materials/methods/tools: the medical dataset for the test of our model in this work was obtained from Kaggle. The ontology-based technique was used with Confusion Matrix, MySQL, Python, Hypertext Markup Language (HTML), Hypertext Preprocessor (PHP), Cascaded Style Sheet (CSS), JavaScript, Dreamweaver, and Fireworks. According to test results on the new system using Confusion Matrix, both the accuracy and overall effectiveness of the medical intelligent process significantly improved by 20% compared to the previous system. Therefore, using the model is recommended for healthcare professionals.Keywords: ontology-based, model, database, OOADM, healthcare
Procedia PDF Downloads 7815794 Using TRACE and SNAP Codes to Establish the Model of Maanshan PWR for SBO Accident
Authors: B. R. Shen, J. R. Wang, J. H. Yang, S. W. Chen, C. Shih, Y. Chiang, Y. F. Chang, Y. H. Huang
Abstract:
In this research, TRACE code with the interface code-SNAP was used to simulate and analyze the SBO (station blackout) accident which occurred in Maanshan PWR (pressurized water reactor) nuclear power plant (NPP). There are four main steps in this research. First, the SBO accident data of Maanshan NPP were collected. Second, the TRACE/SNAP model of Maanshan NPP was established by using these data. Third, this TRACE/SNAP model was used to perform the simulation and analysis of SBO accident. Finally, the simulation and analysis of SBO with mitigation equipments was performed. The analysis results of TRACE are consistent with the data of Maanshan NPP. The mitigation equipments of Maanshan can maintain the safety of Maanshan in the SBO according to the TRACE predictions.Keywords: pressurized water reactor (PWR), TRACE, station blackout (SBO), Maanshan
Procedia PDF Downloads 19415793 Indigenous Conceptualization of School Readiness: Mother's Perspective in Pakistan
Authors: Ayesha Inam, R. Moazzam, Z. Akhtar
Abstract:
School readiness plays a significant role in helping a child deal with various school demands and expectations as well as in determining academic success outcomes. There is a scarcity of data concerning the condition of school readiness in Pakistan. This qualitative research seeks to examine the perspective of mothers about school readiness along with its four domains (self-care, socio-emotional, physical and cognitive) as well as about the appropriate age of entry into formal preschool. Fifteen interviews were conducted with mothers of pre-school children in Islamabad and Rawalpindi. It was found that mothers shared the common perception that children should be socially, emotionally, physically and cognitively prepared to be ready for pre-school. The results concluded that the mothers unanimously agreed in their perceptions that three to four years was the appropriate age range for children to begin pre-school and that early or late entry into pre-school had negative implications for children’s ability to learn and understand, and hence, their school readiness. Mental age was perceived as a more important criterion for deciding when to send children to pre-school. Mothers were found to send their children to school earlier, and children were found to be increasingly exposed to technology, both of which were found to influence children’s readiness for school. Both schools and mothers were found to play an instrumental role in preparing children for school and in school adjustment by nurturing their skills and abilities.Keywords: perception of mothers, Pakistan, school readiness, entry to preschool
Procedia PDF Downloads 15715792 Impact of Enhanced Business Models on Technology Companies in the Pandemic: A Case Study about the Revolutionary Change in Management Styles
Authors: Murat Colak, Berkay Cakir Saridogan
Abstract:
Since the dawn of modern corporations, almost every single employee has been working in the same loop, which contains three basic steps: going to work, providing the needs for the work, and getting back home. Only a small amount of people were able to break that standard and live outside the box. As the 2019 pandemic hit the Earth and most companies shut down their physical offices, that loop had to change for everyone. This means that the old management styles had to be significantly re-arranged to the "work from home" type of business methods. The methods include online conferences and meetings, time and task tracking using algorithms, globalization of the work, and, most importantly, remote working. After the global epidemic started, even the tech giants were concerned. Now, it can be seen those technology companies have an incredible step-up in their shares compared to the other companies because they know how to manage such situations even better than every other industry. This study aims to take the old traditional management styles in big companies and compare them with the post-covid methods (2019-2022). As a result of this comparison made using the annual reports and shared statistics, this study aims to explain why the winners of this crisis are the technology companies.Keywords: Covid-19, technology companies, business models, remote work
Procedia PDF Downloads 6515791 Leveraging Information for Building Supply Chain Competitiveness
Authors: Deepika Joshi
Abstract:
Operations in automotive industry rely greatly on information shared between Supply Chain (SC) partners. This leads to efficient and effective management of SC activity. Automotive sector in India is growing at 14.2 percent per annum and has huge economic importance. We find that no study has been carried out on the role of information sharing in SC management of Indian automotive manufacturers. Considering this research gap, the present study is planned to establish the significance of information sharing in Indian auto-component supply chain activity. An empirical research was conducted for large scale auto component manufacturers from India. Twenty four Supply Chain Performance Indicators (SCPIs) were collected from existing literature. These elements belong to eight diverse but internally related areas of SC management viz., demand management, cost, technology, delivery, quality, flexibility, buyer-supplier relationship, and operational factors. A pair-wise comparison and an open ended questionnaire were designed using these twenty four SCPIs. The questionnaire was then administered among managerial level employees of twenty-five auto-component manufacturing firms. Analytic Network Process (ANP) technique was used to analyze the response of pair-wise questionnaire. Finally, twenty-five priority indexes are developed, one for each respondent. These were averaged to generate an industry specific priority index. The open-ended questions depicted strategies related to information sharing between buyers and suppliers and their influence on supply chain performance. Results show that the impact of information sharing on certain performance indicators is relatively greater than their corresponding variables. For example, flexibility, delivery, demand and cost related elements have massive impact on information sharing. Technology is relatively less influenced by information sharing but it immensely influence the quality of information shared. Responses obtained from managers reveal that timely and accurate information sharing lowers the cost, increases flexibility and on-time delivery of auto parts, therefore, enhancing the competitiveness of Indian automotive industry. Any flaw in dissemination of information can disturb the cycle time of both the parties and thus increases the opportunity cost. Due to supplier’s involvement in decisions related to design of auto parts, quality conformance is found to improve, leading to reduction in rejection rate. Similarly, mutual commitment to share right information at right time between all levels of SC enhances trust level. SC partners share information to perform comprehensive quality planning to ingrain total quality management. This study contributes to operations management literature which faces scarcity of empirical examination on this subject. It views information sharing as a building block which firms can promote and evolve to leverage the operational capability of all SC members. It will provide insights for Indian managers and researchers as every market is unique and suppliers and buyers are driven by local laws, industry status and future vision. While major emphasis in this paper is given to SC operations happening between domestic partners, placing more focus on international SC can bring in distinguished results.Keywords: Indian auto component industry, information sharing, operations management, supply chain performance indicators
Procedia PDF Downloads 55015790 The Potential Roles of Digital Technologies in Developing Children's Artistic Ability and Promoting Creative Activity in Children Aged
Authors: Aber Aboalgasm, Rupert Ward, Ruth Taylor, Jonathan Glazzard
Abstract:
Teaching art by digital means is a big challenge for the majority of teachers of art and artistic design courses in primary education schools. These courses can clearly identify relationships between art, technology, and creativity in the classroom .The aim of this article is to present a modern way of teaching art, using digital tools in the art classroom in order to improve creative ability in pupils aged between 9 and 11 years; it also presents a conceptual model for creativity based on digital art. The model could be useful for pupils interested in learning drawing and using an e-drawing package, and for teachers who are interested in teaching their students modern digital art, and improving children’s creativity. This model is designed to show the strategy of teaching art through technology, in order for children to learn how to be creative. This will also help education providers to make suitable choices about which technological approaches they should choose to teach students and enhance their creative ability. It is also expected that use of this model will help to develop social interactive qualities that may improve intellectual ability.Keywords: digital tools, motivation, creative activity, education
Procedia PDF Downloads 340