Search results for: plant density
3747 Application of Principal Component Analysis and Ordered Logit Model in Diabetic Kidney Disease Progression in People with Type 2 Diabetes
Authors: Mequanent Wale Mekonen, Edoardo Otranto, Angela Alibrandi
Abstract:
Diabetic kidney disease is one of the main microvascular complications caused by diabetes. Several clinical and biochemical variables are reported to be associated with diabetic kidney disease in people with type 2 diabetes. However, their interrelations could distort the effect estimation of these variables for the disease's progression. The objective of the study is to determine how the biochemical and clinical variables in people with type 2 diabetes are interrelated with each other and their effects on kidney disease progression through advanced statistical methods. First, principal component analysis was used to explore how the biochemical and clinical variables intercorrelate with each other, which helped us reduce a set of correlated biochemical variables to a smaller number of uncorrelated variables. Then, ordered logit regression models (cumulative, stage, and adjacent) were employed to assess the effect of biochemical and clinical variables on the order-level response variable (progression of kidney function) by considering the proportionality assumption for more robust effect estimation. This retrospective cross-sectional study retrieved data from a type 2 diabetic cohort in a polyclinic hospital at the University of Messina, Italy. The principal component analysis yielded three uncorrelated components. These are principal component 1, with negative loading of glycosylated haemoglobin, glycemia, and creatinine; principal component 2, with negative loading of total cholesterol and low-density lipoprotein; and principal component 3, with negative loading of high-density lipoprotein and a positive load of triglycerides. The ordered logit models (cumulative, stage, and adjacent) showed that the first component (glycosylated haemoglobin, glycemia, and creatinine) had a significant effect on the progression of kidney disease. For instance, the cumulative odds model indicated that the first principal component (linear combination of glycosylated haemoglobin, glycemia, and creatinine) had a strong and significant effect on the progression of kidney disease, with an effect or odds ratio of 0.423 (P value = 0.000). However, this effect was inconsistent across levels of kidney disease because the first principal component did not meet the proportionality assumption. To address the proportionality problem and provide robust effect estimates, alternative ordered logit models, such as the partial cumulative odds model, the partial adjacent category model, and the partial continuation ratio model, were used. These models suggested that clinical variables such as age, sex, body mass index, medication (metformin), and biochemical variables such as glycosylated haemoglobin, glycemia, and creatinine have a significant effect on the progression of kidney disease.Keywords: diabetic kidney disease, ordered logit model, principal component analysis, type 2 diabetes
Procedia PDF Downloads 393746 A Concept in Addressing the Singularity of the Emerging Universe
Authors: Mahmoud Reza Hosseini
Abstract:
The universe is in a continuous expansion process, resulting in the reduction of its density and temperature. Also, by extrapolating back from its current state, the universe at its early times has been studied known as the big bang theory. According to this theory, moments after creation, the universe was an extremely hot and dense environment. However, its rapid expansion due to nuclear fusion led to a reduction in its temperature and density. This is evidenced through the cosmic microwave background and the universe structure at a large scale. However, extrapolating back further from this early state reaches singularity which cannot be explained by modern physics and the big bang theory is no longer valid. In addition, one can expect a nonuniform energy distribution across the universe from a sudden expansion. However, highly accurate measurements reveal an equal temperature mapping across the universe which is contradictory to the big bang principles. To resolve this issue, it is believed that cosmic inflation occurred at the very early stages of the birth of the universe According to the cosmic inflation theory, the elements which formed the universe underwent a phase of exponential growth due to the existence of a large cosmological constant. The inflation phase allows the uniform distribution of energy so that an equal maximum temperature could be achieved across the early universe. Also, the evidence of quantum fluctuations of this stage provides a means for studying the types of imperfections the universe would begin with. Although well-established theories such as cosmic inflation and the big bang together provide a comprehensive picture of the early universe and how it evolved into its current state, they are unable to address the singularity paradox at the time of universe creation. Therefore, a practical model capable of describing how the universe was initiated is needed. This research series aims at addressing the singularity issue by introducing an energy conversion mechanism. This is accomplished by establishing a state of energy called a “neutral state”, with an energy level which is referred to as “base energy” capable of converting into other states. Although it follows the same principles, the unique quanta state of the base energy allows it to be distinguishable from other states and have a uniform distribution at the ground level. Although the concept of base energy can be utilized to address the singularity issue, to establish a complete picture, the origin of the base energy should be also identified. This matter is the subject of the first study in the series “A Conceptual Study for Investigating the Creation of Energy and Understanding the Properties of Nothing” which is discussed in detail. Therefore, the proposed concept in this research series provides a road map for enhancing our understating of the universe's creation from nothing and its evolution and discusses the possibility of base energy as one of the main building blocks of this universe.Keywords: big bang, cosmic inflation, birth of universe, energy creation
Procedia PDF Downloads 893745 Computational Analysis of Thermal Degradation in Wind Turbine Spars' Equipotential Bonding Subjected to Lightning Strikes
Authors: Antonio A. M. Laudani, Igor O. Golosnoy, Ole T. Thomsen
Abstract:
Rotor blades of large, modern wind turbines are highly susceptible to downward lightning strikes, as well as to triggering upward lightning; consequently, it is necessary to equip them with an effective lightning protection system (LPS) in order to avoid any damage. The performance of existing LPSs is affected by carbon fibre reinforced polymer (CFRP) structures, which lead to lightning-induced damage in the blades, e.g. via electrical sparks. A solution to prevent internal arcing would be to electrically bond the LPS and the composite structures such that to obtain the same electric potential. Nevertheless, elevated temperatures are achieved at the joint interfaces because of high contact resistance, which melts and vaporises some of the epoxy resin matrix around the bonding. The produced high-pressure gasses open up the bonding and can ignite thermal sparks. The objective of this paper is to predict the current density distribution and the temperature field in the adhesive joint cross-section, in order to check whether the resin pyrolysis temperature is achieved and any damage is expected. The finite element method has been employed to solve both the current and heat transfer problems, which are considered weakly coupled. The mathematical model for electric current includes Maxwell-Ampere equation for induced electric field solved together with current conservation, while the thermal field is found from heat diffusion equation. In this way, the current sub-model calculates Joule heat release for a chosen bonding configuration, whereas the thermal analysis allows to determining threshold values of voltage and current density not to be exceeded in order to maintain the temperature across the joint below the pyrolysis temperature, therefore preventing the occurrence of outgassing. In addition, it provides an indication of the minimal number of bonding points. It is worth to mention that the numerical procedures presented in this study can be tailored and applied to any type of joints other than adhesive ones for wind turbine blades. For instance, they can be applied for lightning protection of aerospace bolted joints. Furthermore, they can even be customized to predict the electromagnetic response under lightning strikes of other wind turbine systems, such as nacelle and hub components.Keywords: carbon fibre reinforced polymer, equipotential bonding, finite element method, FEM, lightning protection system, LPS, wind turbine blades
Procedia PDF Downloads 1643744 Effect on the Integrity of the DN300 Pipe and Valves in the Cooling Water System Imposed by the Pipes and Ventilation Pipes above in an Earthquake Situation
Authors: Liang Zhang, Gang Xu, Yue Wang, Chen Li, Shao Chong Zhou
Abstract:
Presently, more and more nuclear power plants are facing the issue of life extension. When a nuclear power plant applies for an extension of life, its condition needs to meet the current design standards, which is not fine for all old reactors, typically for seismic design. Seismic-grade equipment in nuclear power plants are now generally placed separately from the non-seismic-grade equipment, but it was not strictly required before. Therefore, it is very important to study whether non-seismic-grade equipment will affect the seismic-grade equipment when dropped down in an earthquake situation, which is related to the safety of nuclear power plants and future life extension applications. This research was based on the cooling water system with the seismic and non-seismic grade equipment installed together, as an example to study whether the non-seismic-grade equipment such as DN50 fire pipes and ventilation pipes arranged above will damage the DN300 pipes and valves arranged below when earthquakes occur. In the study, the simulation was carried out by ANSYS / LY-DYNA, and Johnson-Cook was used as the material model and failure model. For the experiments, the relative positions of objects in the room were restored by 1: 1. In the experiment, the pipes and valves were filled with water with a pressure of 0.785 MPa. The pressure-holding performance of the pipe was used as a criterion for damage. In addition to the pressure-holding performance, the opening torque was considered as well for the valves. The research results show that when the 10-meter-long DN50 pipe was dropped from the position of 8 meters height and the 8-meter-long air pipe dropped from a position of 3.6 meters height, they do not affect the integrity of DN300 pipe below. There is no failure phenomenon in the simulation as well. After the experiment, the pressure drop in two hours for the pipe is less than 0.1%. The main body of the valve does not fail either. The opening torque change after the experiment is less than 0.5%, but the handwheel of the valve may break, which affects the opening actions. In summary, impacts of the upper pipes and ventilation pipes dropdown on the integrity of the DN300 pipes and valves below in a cooling water system of a typical second-generation nuclear power plant under an earthquake was studied. As a result, the functionality of the DN300 pipeline and the valves themselves are not significantly affected, but the handwheel of the valve or similar articles can probably be broken and need to take care.Keywords: cooling water system, earthquake, integrity, pipe and valve
Procedia PDF Downloads 1123743 Mechanical Characterization of Extrudable Foamed Concrete: An Experimental Study
Authors: D. Falliano, D. De Domenico, G. Ricciardi, E. Gugliandolo
Abstract:
This paper is focused on the mechanical characterization of foamed concrete specimens with protein-based foaming agent. Unlike classic foamed concrete, a peculiar property of the analyzed foamed concrete is the extrudability, which is achieved via a specific additive in the concrete mix that significantly improves the cohesion and viscosity of the fresh cementitious paste. A broad experimental campaign was conducted to evaluate the compressive strength and the indirect tensile strength of the specimens. The study has comprised three different cement types, two water/cement ratios, three curing conditions and three target dry densities. The variability of the strength values upon the above mentioned factors is discussed.Keywords: cement type, curing conditions, density, extrudable concrete, foamed concrete, mechanical characterization
Procedia PDF Downloads 2653742 Linear Study of Electrostatic Ion Temperature Gradient Mode with Entropy Gradient Drift and Sheared Ion Flows
Authors: M. Yaqub Khan, Usman Shabbir
Abstract:
History of plasma reveals that continuous struggle of experimentalists and theorists are not fruitful for confinement up to now. It needs a change to bring the research through entropy. Approximately, all the quantities like number density, temperature, electrostatic potential, etc. are connected to entropy. Therefore, it is better to change the way of research. In ion temperature gradient mode with the help of Braginskii model, Boltzmannian electrons, effect of velocity shear is studied inculcating entropy in the magnetoplasma. New dispersion relation is derived for ion temperature gradient mode, and dependence on entropy gradient drift is seen. It is also seen velocity shear enhances the instability but in anomalous transport, its role is not seen significantly but entropy. This work will be helpful to the next step of tokamak and space plasmas.Keywords: entropy, velocity shear, ion temperature gradient mode, drift
Procedia PDF Downloads 3873741 Invitro Study of Anti-Leishmanial Property of Nigella Sativa Methanalic Black Seed Extract
Authors: Tawqeer Ali Syed, Prakash Chandra
Abstract:
This study aims to evaluate the antileishmanial activity of Nigella sativa black seed extract. This well-known plant extract was taken from the botanical garden of Kashmir. Materials and Methods: The methanolic extracts of these plants were screened for their antileishmanial activity against Leishmania major using 3‑(4.5‑dimethylthiazol‑2yl)‑2.5‑diphenyltetrazolium bromide assay or MTT assay. Results: The methanolic extract of Nigella sativa showed potential antileishmanial activity at an inhibition% value of 80.29% ± 0.65%. IC 50 was calculated after 48 hours to be 964.3 µg/ml. Conclusion: Considering these results, these medicinal plants from Kashmir could serve as potential drug sources for antileishmanial compounds.Keywords: MTT assay, antileishmanial, cell viability, Nigella sativa
Procedia PDF Downloads 2133740 Land Use, Land Cover Changes and Woody Vegetation Status of Tsimur Saint Gebriel Monastery, in Tigray Region, Northern Ethiopia
Authors: Abraha Hatsey, Nesibu Yahya, Abeje Eshete
Abstract:
Ethiopian Orthodox Tewahido Church has a long tradition of conserving the Church vegetation and is an area treated as a refugee camp for many endangered indigenous tree species in Northern Ethiopia. Though around 36,000 churches exist in Ethiopia, only a few churches have been studied so far. Thus, this study assessed the land use land cover change of 3km buffer (1986-2018) and the woody species diversity and regeneration status of Tsimur St. Gebriel monastery in Tigray region, Northern Ethiopia. For vegetation study, systematic sampling was used with 100m spacing between plots and between transects. Plot size was 20m*20m for the main plot and 2 subplots (5m*5m each) for the regeneration study. Tree height, diameter at breast height(DBH) and crown area were measured in the main plot for all trees with DBH ≥ 5cm. In the subplots, all seedlings and saplings were counted with DBH < 5cm. The data was analyzed on excel and Pass biodiversity software for diversity and evenness analysis. The major land cover classes identified include bare land, farmland, forest, shrubland and wetland. The extents of forest and shrubland were declined considerably due to bare land and agricultural land expansions within the 3km buffer, indicating an increasing pressure on the church forest. Regarding the vegetation status, A total of 19 species belonging to 13 families were recorded in the monastery. The diversity (H’) and evenness recorded were 2.4 and 0.5, respectively. The tree density (DBH ≥ 5cm) was 336/ha and a crown cover of 65%. Olea europaea was the dominant (6.4m2/ha out of 10.5m2 total basal area) and a frequent species (100%) with good regeneration in the monastery. The rest of the species are less frequent and are mostly confined to water sources with good site conditions. Juniperus procera (overharvested) and the other indigenous species were with few trees left and with no/very poor regeneration status. The species having poor density, frequency and regeneration (Junperus procera, Nuxia congesta Fersen and Jasminium abyssinica) need prior conservation and enrichment planting. The indigenous species could also serve as a potential seed source for the reproduction and restoration of nearby degraded landscapes. The buffer study also demonstrated expansion of agriculture and bare land, which could be a threat to the forest of the isolated monastery. Hence, restoring the buffer zone is the only guarantee for the healthy existence of the church forest.Keywords: church forests, regeneration, land use change, vegetation status
Procedia PDF Downloads 2053739 Material Selection for Footwear Insole Using Analytical Hierarchal Process
Authors: Mohammed A. Almomani, Dina W. Al-Qudah
Abstract:
Product performance depends on the type and quality of its building material. Successful product must be made using high quality material, and using the right methods. Many foot problems took place as a result of using poor insole material. Therefore, selecting a proper insole material is crucial to eliminate these problems. In this study, the analytical hierarchy process (AHP) is used to provide a systematic procedure for choosing the best material adequate for this application among three material alternatives (polyurethane, poron, and plastzote). Several comparison criteria are used to build the AHP model including: density, stiffness, durability, energy absorption, and ease of fabrication. Poron was selected as the best choice. Inconsistency testing indicates that the model is reasonable, and the materials alternative ranking is effective.Keywords: AHP, footwear insole, insole material, materials selection
Procedia PDF Downloads 3493738 Absorption Control of Organic Solar Cells under LED Light for High Efficiency Indoor Power System
Authors: Premkumar Vincent, Hyeok Kim, Jin-Hyuk Bae
Abstract:
Organic solar cells have high potential which enables these to absorb much weaker light than 1-sun in indoor environment. They also have several practical advantages, such as flexibility, cost-advantage, and semi-transparency that can have superiority in indoor solar energy harvesting. We investigate organic solar cells based on poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) for indoor application while Finite Difference Time Domain (FDTD) simulations were run to find the optimized structure. This may provide the highest short-circuit current density to acquire high efficiency under indoor illumination.Keywords: indoor solar cells, indoor light harvesting, organic solar cells, P3HT:ICBA, renewable energy
Procedia PDF Downloads 3083737 Investigation of the Turbulent Cavitating Flows from the Viewpoint of the Lift Coefficient
Authors: Ping-Ben Liu, Chien-Chou Tseng
Abstract:
The objective of this study is to investigate the relationship between the lift coefficient and dynamic behaviors of cavitating flow around a two-dimensional Clark Y hydrofoil at 8° angle of attack, cavitation number of 0.8, and Reynolds number of 7.10⁵. The flow field is investigated numerically by using a vapor transfer equation and a modified turbulence model which applies the filter and local density correction. The results including time-averaged lift/drag coefficient and shedding frequency agree well with experimental observations, which confirmed the reliability of this simulation. According to the variation of lift coefficient, the cycle which consists of growth and shedding of cavitation can be divided into three stages, and the lift coefficient at each stage behaves similarly due to the formation and shedding of the cavity around the trailing edge.Keywords: Computational Fluid Dynamics, cavitation, turbulence, lift coefficient
Procedia PDF Downloads 3503736 Investigation of the Effect of Nano-Alumina Particles on Adsorption Property of Acrylic Fiber
Authors: Mehdi Ketabchi, Shallah Alijanlo
Abstract:
The flue gas from fossil fuels combustion contains harmful pollutants dangerous for human health and environment. One of the air pollution control methods to restrict the emission of these pollutants is based on using the nanoparticle in adsorption process. In the present research, gamma nano-alumina particle is added to polyacrylonitrile (PAN) polymer through simple loading method, and the adsorption capacity of the wet spun fiber is investigated. The results of exposure the fiber to the acid gases including SO2, CO, NO2, NO, and CO2 show the noticeable increase of gas adsorption capacity on fiber contains nanoparticle. The research has been conducted in Acrylic II Plant of Polyacryl Iran Corporation.Keywords: acrylic fiber, adsorbent, wet spun, polyacryl company, nano gamma alumina
Procedia PDF Downloads 1773735 Analysis of Tannins from Padus asiatica
Authors: Telmen Dashdondov, Selenge Erdenechimeg
Abstract:
Padus asiatica contains large quantities of polyphenolic compounds, and it is one of the most consumed fruits throughout the country. These compounds have the biological activity of the fruit and have long been used in traditional Mongolian medicine for diarrhea, coughs, pneumonia, and gastritis. In this study, we studied the solvents that can be used to make extracts from dried raw fruits; in order to determine the amount of tannin in Padus asiatica, we selected three solvents: distilled water, 20% ethanol, and 40% ethanol, and determined the amount of tannin. As a result, the amount of extract (distilled water) was 11.8%, the amount of extract (20% ethanol) was 15.7%, and the amount of extract (40% ethanol) was 8.2%. Therefore, it was found that tannins are extracted better in 20% ethanol solution.Keywords: Padus asiatica, tannin, diarrhea, Mongolian medicinal plant
Procedia PDF Downloads 1623734 Fuzzy Rules Based Improved BEENISH Protocol for Wireless Sensor Networks
Authors: Rishabh Sharma
Abstract:
The main design parameter of WSN (wireless sensor network) is the energy consumption. To compensate this parameter, hierarchical clustering is a technique that assists in extending duration of the networks life by efficiently consuming the energy. This paper focuses on dealing with the WSNs and the FIS (fuzzy interface system) which are deployed to enhance the BEENISH protocol. The node energy, mobility, pause time and density are considered for the selection of CH (cluster head). The simulation outcomes exhibited that the projected system outperforms the traditional system with regard to the energy utilization and number of packets transmitted to sink.Keywords: wireless sensor network, sink, sensor node, routing protocol, fuzzy rule, fuzzy inference system
Procedia PDF Downloads 1063733 Mechanisms of Atiulcerogenic Activity of Costus speciosus Rhizome Extract in Ethanol-Induced Gastric Mucosal Injury in Rats
Authors: Somayeh Fani, Mahmood Ameen Abdulla
Abstract:
Costus speciosus is an important Malaysian medicinal plant commonly used traditionally in the treatment of many aliments. The present investigation is designed to elucidate preventive effects of ethanolic extracts of C. speciosus rhizome against absolute ethanol-induced gastric mucosal injury in Sprague-Dawley rats. Five groups of rats were orally pre-treated with vehicle, carboxymethylcellulose (CMC) as normal control group (Group 1), ethanol as ulcer control group (Group 2), omeprazole 20 mg/kg (reference group) (Group 3), and 250 and 500 mg/kg of C. speciosus extract (experimental groups) (Group 4 and 5), respectively. An hour later, CMC was given orally to Group 1 rats and absolute ethanol was given orally to Group 2-5 rats to generate gastric mucosal injury. After an additional hour, the rats were sacrificed. Grossly, ulcer control group exhibited severe of gastric mucosal hemorrhagic injury and increased in ulcer area, whereas groups pre-treated with omeprazole or plant’s rhizomes exhibited the significant reduction of gastric mucosal injury. Significant increase in the pH and mucous of gastric content was observed in rats re-treated with C. speciosus rhizome. Histology, ulcer control rats, demonstrated remarkable disruption of gastric mucosa, increased in edema and inflammatory cells infiltration of submucosal layer compared to rats pre-treated with rhizomes extract. Periodic acid Schiff staining for glycoprotein, rats pre-fed with C. speciosus C. displayed remarkably intense uptake of magenta color by glandular gastric mucosa compared with ulcer control rats. Immunostaining of gastric epithelium, rats pre-treatment with rhizome extract provide evidence of up-regulation of HSP70 and down-regulation of Bax proteins compared to ulcer control animals. Gastric tissue homogenate, C. speciosus significantly increased the activity of superoxide dismutase (SOD), and catalase (CAT), increased the level of non-protein sulfhydryl (NP-SH) and decreased the level of lipid peroxidation after ethanol administration. Acute toxicity test did not show any signs of toxicity. The mechanisms implicated the gasrtoprotective property of C. speciosus depend upon the antisecretory activity, increased in gastric mucus glycoprotein, up-regulation of HSP70 protein and down-regulation of Bax proteins, reduction in the lipid peroxidation and increase in the level of NP-SH and antioxidant enzymes activity in gastic homogenate.Keywords: antioxidant, Costus speciosus, gastric ulcer, histology, omeprazole
Procedia PDF Downloads 3073732 Membranes for Direct Lithium Extraction (DLE)
Authors: Amir Razmjou, Elika Karbassi Yazdi
Abstract:
Several direct lithium extraction (DLE) technologies have been developed for Li extraction from different brines. Although laboratory studies showed that they can technically recover Li to 90%, challenges still remain in developing a sustainable process that can serve as a foundation for the lithium dependent low-carbon economy. There is a continuing quest for DLE technologies that do not need extensive pre-treatments, fewer materials, and have simplified extraction processes with high Li selectivity. Here, an overview of DLE technologies will be provided with an emphasis on the basic principles of the materials’ design for the development of membranes with nanochannels and nanopores with Li ion selectivity. We have used a variety of building blocks such as nano-clay, organic frameworks, Graphene/oxide, MXene, etc., to fabricate the membranes. Molecular dynamic simulation (MD) and density functional theory (DFT) were used to reveal new mechanisms by which high Li selectivity was obtained.Keywords: lithium recovery, membrane, lithium selectivity, decarbonization
Procedia PDF Downloads 1123731 Effects of Conversion of Indigenous Forest to Plantation Forest on the Diversity of Macro-Fungi in Kereita Forest, Kikuyu Escarpment, Kenya
Authors: Susan Mwai, Mary Muchane, Peter Wachira, Sheila Okoth, Muchai Muchane, Halima Saado
Abstract:
Tropical forests harbor a wide range of biodiversity and rich macro-fungi diversity compared to the temperate regions in the World. However, biodiversity is facing the threat of extinction following the rate of forest loss taking place before proper study and documentation of macrofungi is achieved. The present study was undertaken to determine the effect of converting indigenous habitat to plantation forest on macrofungi diversity. To achieve the objective of this study, an inventory focusing on macro-fungi diversity was conducted within Kereita block in Kikuyu Escarpment forest which is on the southern side of Aberdare mountain range. The macrofungi diversity was conducted in the indigenous forest and in more than 15 year old Patula plantation forest , during the wet (long rain season, December 2014) and dry (Short rain season, May, 2015). In each forest type, 15 permanent (20m x 20m) sampling plots distributed across three (3) forest blocks were used. Both field and laboratory methods involved recording abundance of fruiting bodies, taxonomic identity of species and analysis of diversity indices and measures in terms of species richness, density and diversity. R statistical program was used to analyze for species diversity and Canoco 4.5 software for species composition. A total number of 76 genera in 28 families and 224 species were encountered in both forest types. The most represented taxa belonged to the Agaricaceae (16%), Polyporaceae (12%), Marasmiaceae, Mycenaceae (7%) families respectively. Most of the recorded macro-fungi were saprophytic, mostly colonizing the litter 38% and wood 34% based substrates, which was followed by soil organic dwelling species (17%). Ecto-mycorrhiza fungi (5%) and parasitic fungi (2%) were the least encountered. The data established that indigenous forests (native ecosystems) hosts a wide range of macrofungi assemblage in terms of density (2.6 individual fruit bodies / m2), species richness (8.3 species / plot) and species diversity (1.49/ plot level) compared to the plantation forest. The Conversion of native forest to plantation forest also interfered with species composition though did not alter species diversity. Seasonality was also shown to significantly affect the diversity of macro-fungi and 61% of the total species being present during the wet season. Based on the present findings, forested ecosystems in Kenya hold diverse macro-fungi community which warrants conservation measures.Keywords: diversity, Indigenous forest, macro-fungi, plantation forest, season
Procedia PDF Downloads 2143730 Study on Concentration and Temperature Measurement with 760 nm Diode Laser in Combustion System Using Tunable Diode Laser Absorption Spectroscopy
Authors: Miyeon Yoo, Sewon Kim, Changyeop Lee
Abstract:
It is important to measure the internal temperature or temperature distribution precisely in combustion system to increase energy efficiency and reduce the pollutants. Especially in case of large combustion systems such as power plant boiler and reheating furnace of steel making process, it is very difficult to measure those physical properties in detail. Tunable diode laser absorption spectroscopy measurement and analysis can be attractive method to overcome the difficulty. In this paper, TDLAS methods are used to measure the oxygen concentration and temperature distribution in various experimental conditions.Keywords: tunable diode laser absorption Spectroscopy, temperature distribution, gas concentration
Procedia PDF Downloads 3863729 Effect of Pollutions on Mangrove Forests of Nayband National Marine Park
Authors: Esmaeil Kouhgardi, Elaheh Shakerdargah
Abstract:
The mangrove ecosystem is a complex of various inter-related elements in the land-sea interface zone which is linked with other natural systems of the coastal region such as corals, sea-grass, coastal fisheries and beach vegetation. The mangrove ecosystem consists of water, muddy soil, trees, shrubs, and their associated flora, fauna and microbes. It is a very productive ecosystem sustaining various forms of life. Its waters are nursery grounds for fish, crustacean, and mollusk and also provide habitat for a wide range of aquatic life, while the land supports a rich and diverse flora and fauna, but pollutions may affect these characteristics. Iran has the lowest share of Persian Gulf pollution among the eight littoral states; environmental experts are still deeply concerned about the serious consequences of the pollution in the oil-rich gulf. Prolongation of critical conditions in the Persian Gulf has endangered its aquatic ecosystem. Water purification equipment, refineries, wastewater emitted by onshore installations, especially petrochemical plans, urban sewage, population density and extensive oil operations of Arab states are factors contaminating the Persian Gulf waters. Population density has been the major cause of pollution and environmental degradation in the Persian Gulf. Persian Gulf is a closed marine environment which is connected to open waterways only from one way. It usually takes between three and four years for the gulf's water to be completely replaced. Therefore, any pollution entering the water will remain there for a relatively long time. Presently, the high temperature and excessive salt level in the water have exposed the marine creatures to extra threats, which mean they have to survive very tough conditions. The natural environment of the Persian Gulf is very rich with good fish grounds, extensive coral reefs and pearl oysters in abundance, but has become increasingly under pressure due to the heavy industrialization and in particular the repeated major oil spillages associated with the various recent wars fought in the region. Pollution may cause the mortality of mangrove forests by effect on root, leaf and soil of the area. Study was showed the high correlation between industrial pollution and mangrove forests health in south of Iran and increase of population, coupled with economic growth, inevitably caused the use of mangrove lands for various purposes such as construction of roads, ports and harbors, industries and urbanization.Keywords: Mangrove forest, pollution, Persian Gulf, population, environment
Procedia PDF Downloads 3993728 Modern Trends in Pest Management Agroindustry
Authors: Amarjit S Tanda
Abstract:
Integrated Pest Management Technology (IPMT) offers a crop protection model with sustainable agriculture production with minimum damage to the environment and human health. A concept of agro-ecological crop protection seems unsuitable under dynamic environmental systems. To remedy this, we are proposing Genetically Engineered Crop Protection System (GECPS), as an alternate concept in IPMT that suggests how GE cultivars can be optimally put to the service of crop protection. Genetically engineered cultivars which are developed by gene editing biotechnology may provide a preventive defense against the insect pests and plant diseases, a suitable alternative crop system for blending in IPMT program, in the future agro-industry.Keywords: integrated, pest, management, technology
Procedia PDF Downloads 733727 Implementing a Mobility Platform to Connect Hubs in Rural Areas
Authors: E. Neidhardt
Abstract:
Mobility is not only an aspect of personal freedom, but for many people mobility is also a requirement to be able to satisfy the needs of daily life. They must buy food, get to work, or go to the doctor. Many people are dependent on public transport to satisfy their needs. Especially in rural areas with a low population density this is difficult. In these areas it is often not cost-effective to provide public transport with sufficient coverage and frequency. Therefore, the available public transport is unattractive. As a result, people use their own car, which is not desirable from a sustainable point of view. Children and some elderly people also do not have this option. Sometimes people organize themselves and volunteer transport services are created, which function similarly to the demand-oriented taxis. With a platform for demand-oriented transport, we want to make the available public transport more usable and attractive by linking scheduled transport with voluntary transport services.Keywords: demand-oriented, HubChain, living lab, public transport
Procedia PDF Downloads 2233726 ML-Based Blind Frequency Offset Estimation Schemes for OFDM Systems in Non-Gaussian Noise Environments
Authors: Keunhong Chae, Seokho Yoon
Abstract:
This paper proposes frequency offset (FO) estimation schemes robust to the non-Gaussian noise for orthogonal frequency division multiplexing (OFDM) systems. A maximum-likelihood (ML) scheme and a low-complexity estimation scheme are proposed by applying the probability density function of the cyclic prefix of OFDM symbols to the ML criterion. From simulation results, it is confirmed that the proposed schemes offer a significant FO estimation performance improvement over the conventional estimation scheme in non-Gaussian noise environments.Keywords: frequency offset, cyclic prefix, maximum-likelihood, non-Gaussian noise, OFDM
Procedia PDF Downloads 4763725 Removal of Nitenpyram from Farmland Runoff by an Integrated Ecological Ditches with Constructed Wetland System
Authors: Dan Qu, Dezhi Sun, Benhang Li
Abstract:
The removal of Nitenpyram from farmland runoff by an integrated eco-ditches and constructed wetland system was investigated in the case of different HRT. Experimental results show that the removal of COD, N and P was not influenced by the Nitenpyram. When the HRT was 2.5 d, 2 d, and 1 d, the Nitenpyram removal efficiency could reach 100%, 100% and 84%, respectively. The removal efficiency in the ecological ditches was about 38%-40% in the case of different HRT, while that in the constructed wetland was influenced by the HRT variation. The optimum HRT for Nitenpyram and pollutants removal was 2 d. The substrate zeolite with soil and hollow brick layer enabled higher Nitenpyram removal rates, probably due to the cooperative phenomenon of plant uptake and microbiological deterioration as well as the adsorption by the substrate.Keywords: ecological ditch, vertical flow constructed wetland, hydraulic retention time, Nitenpyram
Procedia PDF Downloads 4013724 Influence of Processing Regime and Contaminants on the Properties of Postconsumer Thermoplastics
Authors: Fares Alsewailem
Abstract:
Material recycling of thermoplastic waste offers practical solution for municipal solid waste reduction. Post-consumer plastics such as polyethylene (PE), polyethyleneterephtalate (PET), and polystyrene (PS) may be separated from each other by physical methods such as density difference and hence processed as single plastic, however one should be cautious about the contaminants presence in the waste stream inform of paper, glue, etc. since these articles even in trace amount may deteriorate properties of the recycled plastics especially the mechanical properties. furthermore, melt processing methods used to recycle thermoplastics such as extrusion and compression molding may induce degradation of some of the recycled plastics such as PET and PS. In this research, it is shown that care should be taken when processing recycled plastics by melt processing means in two directions, first contaminants should be extremely minimized, and secondly melt processing steps should also be minimum.Keywords: Recycling, PET, PS, HDPE, mechanical
Procedia PDF Downloads 2843723 Development of a Multi-Variate Model for Matching Plant Nitrogen Requirements with Supply for Reducing Losses in Dairy Systems
Authors: Iris Vogeler, Rogerio Cichota, Armin Werner
Abstract:
Dairy farms are under pressure to increase productivity while reducing environmental impacts. Effective fertiliser management practices are critical to achieve this. Determination of optimum nitrogen (N) fertilisation rates which maximise pasture growth and minimise N losses is challenging due to variability in plant requirements and likely near-future supply of N by the soil. Remote sensing can be used for mapping N nutrition status of plants and to rapidly assess the spatial variability within a field. An algorithm is, however, lacking which relates the N status of the plants to the expected yield response to additions of N. The aim of this simulation study was to develop a multi-variate model for determining N fertilisation rate for a target percentage of the maximum achievable yield based on the pasture N concentration (ii) use of an algorithm for guiding fertilisation rates, and (iii) evaluation of the model regarding pasture yield and N losses, including N leaching, denitrification and volatilisation. A simulation study was carried out using the Agricultural Production Systems Simulator (APSIM). The simulations were done for an irrigated ryegrass pasture in the Canterbury region of New Zealand. A multi-variate model was developed and used to determine monthly required N fertilisation rates based on pasture N content prior to fertilisation and targets of 50, 75, 90 and 100% of the potential monthly yield. These monthly optimised fertilisation rules were evaluated by running APSIM for a ten-year period to provide yield and N loss estimates from both nonurine and urine affected areas. Comparison with typical fertilisation rates of 150 and 400 kg N/ha/year was also done. Assessment of pasture yield and leaching from fertiliser and urine patches indicated a large reduction in N losses when N fertilisation rates were controlled by the multi-variate model. However, the reduction in leaching losses was much smaller when taking into account the effects of urine patches. The proposed approach based on biophysical modelling to develop a multi-variate model for determining optimum N fertilisation rates dependent on pasture N content is very promising. Further analysis, under different environmental conditions and validation is required before the approach can be used to help adjust fertiliser management practices to temporal and spatial N demand based on the nitrogen status of the pasture.Keywords: APSIM modelling, optimum N fertilization rate, pasture N content, ryegrass pasture, three dimensional surface response function.
Procedia PDF Downloads 1303722 The Effect of the Incorporation of Glass Powder into Cement Sorel
Authors: Rim Zgueb, Noureddine Yacoubi
Abstract:
The work concerns thermo-mechanical properties of cement Sorel mixed with different proportions of glass powder. Five specimens were developed. Four different glass powder mixtures were developed 5%, 10%, 15% and 20% with one control sample without glass powder. The research presented in this study focused on evaluating the effects of replacing portion of glass powder with various percentages of cement Sorel. The influence of the glass powder on the thermal conductivity, thermal diffusivity, bulk density and compressive strength of the cement Sorel at 28 days of curing were determined. The thermal property of cement was measured by using Photothermal deflection technique PTD. The results revealed that the glass powder additive affected greatly on the thermal properties of the cement.Keywords: cement sorel, photothermal deflection technique, thermal conductivity, thermal diffusivity
Procedia PDF Downloads 4253721 Particle Separation Using Individually-Controlled Magnetic Soft Artificial Cilia
Authors: Yau-Luen Ng, Nathan Banka, Santosh Devasia
Abstract:
In this paper, a method based on soft artificial cilia is introduced to separate particles based on size and mass. In nature, cilia are used for fluid propulsion in the mammalian circulatory system, as well as for swimming and size-selective particle entrainment for feeding in microorganisms. Inspired by biological cilia, an array of artificial cilia was fabricated using Polydimethylsiloxane (PDMS) to simulate the actual motion. A row of four individually-controlled magnetic artificial cilia in a semi-circular channel are actuated by the magnetic fields from four permanent magnets. Each cilium is a slender rectangular cantilever approximately 13mm long made from a composite of PDMS and carbonyl iron particles. A time-varying magnetic force is achieved by periodically varying the out-of-plane distance from the permanent magnets to the cilia, resulting in large-amplitude deflections of the cilia that can be used to drive fluid motion. Previous results have shown that this system of individually-controlled magnetic cilia can generate effective mixing flows; the purpose of the present work is to apply the individual cilia control to a particle separation task. Based on the observed beating patterns of cilia arrays in nature, the experimental beating patterns were selected as a metachronal wave, in which a fixed phase lead or lag is imposed between adjacent cilia. Additionally, the beating frequency was varied. For each set of experimental parameters, the channel was filled with water and polyethylene microspheres introduced at the center of the cilia array. Two types of particles were used: large red microspheres with density 0.9971 g/cm³ and 850-1000 μm avg. diameter, and small blue microspheres with density 1.06 g/cm³ and diameter 30 μm. At low beating frequencies, all particles were propelled in the mean flow direction. However, the large particles were observed to reverse directions above about 4.8 Hz, whereas reversal of the small particle transport direction did not occur until 6 Hz. Between these two transition frequencies, the large and small particles can be separated as they move in opposite directions. The experimental results show that selecting an appropriate cilia beating pattern can lead to selective transport of neutrally-buoyant particles based on their size. Importantly, the separation threshold can be chosen dynamically by adjusting the actuation frequency. However, further study is required to determine the range of particle sizes that can be effectively separated for a given system geometry.Keywords: magnetic cilia, particle separation, tunable separation, soft actutors
Procedia PDF Downloads 1993720 Mechanisms of Ginger Bioactive Compounds Extract Using Soxhlet and Accelerated Water Extraction
Authors: M. N. Azian, A. N. Ilia Anisa, Y. Iwai
Abstract:
The mechanism for extraction bioactive compounds from plant matrix is essential for optimizing the extraction process. As a benchmark technique, a soxhlet extraction has been utilized for discussing the mechanism and compared with an accelerated water extraction. The trends of both techniques show that the process involves extraction and degradation. The highest yields of 6-, 8-, 10-gingerols and 6-shogaol in soxhlet extraction were 13.948, 7.12, 10.312 and 2.306 mg/g, respectively. The optimum 6-, 8-, 10-gingerols and 6-shogaol extracted by the accelerated water extraction at 140oC were 68.97±3.95 mg/g at 3min, 18.98±3.04 mg/g at 5min, 5.167±2.35 mg/g at 3min and 14.57±6.27 mg/g at 3min, respectively. The effect of temperature at 3mins shows that the concentration of 6-shogaol increased rapidly as decreasing the recovery of 6-gingerol.Keywords: mechanism, ginger bioactive compounds, soxhlet extraction, accelerated water extraction
Procedia PDF Downloads 4343719 Landfill Leachate: A Promising Substrate for Microbial Fuel Cells
Authors: Jayesh M. Sonawane, Prakash C. Ghosh
Abstract:
Landfill leachate emerges as a promising feedstock for microbial fuel cells (MFCs). In the present investigation, direct air-breathing cathode-based MFCs are fabricated to investigate the potential of landfill leachate. Three MFCs that have different cathode areas are fabricated and investigated for 17 days under open circuit conditions. The maximum open circuit voltage (OCV) is observed to be as high as 1.29 V. The maximum cathode area specific power density achieved in the reactor is 1513 mW m-2. Further studies are under progress to understand the origin of high OCV obtained from landfill leachate-based MFCs.Keywords: microbial fuel cells, landfill leachate, air-breathing cathode, performance study
Procedia PDF Downloads 3103718 Analysis of Correlation Between Manufacturing Parameters and Mechanical Strength Followed by Uncertainty Propagation of Geometric Defects in Lattice Structures
Authors: Chetra Mang, Ahmadali Tahmasebimoradi, Xavier Lorang
Abstract:
Lattice structures are widely used in various applications, especially in aeronautic, aerospace, and medical applications because of their high performance properties. Thanks to advancement of the additive manufacturing technology, the lattice structures can be manufactured by different methods such as laser beam melting technology. However, the presence of geometric defects in the lattice structures is inevitable due to the manufacturing process. The geometric defects may have high impact on the mechanical strength of the structures. This work analyzes the correlation between the manufacturing parameters and the mechanical strengths of the lattice structures. To do that, two types of the lattice structures; body-centered cubic with z-struts (BCCZ) structures made of Inconel718, and body-centered cubic (BCC) structures made of Scalmalloy, are manufactured by laser melting beam machine using Taguchi design of experiment. Each structure is placed on the substrate with a specific position and orientation regarding the roller direction of deposed metal powder. The position and orientation are considered as the manufacturing parameters. The geometric defects of each beam in the lattice are characterized and used to build the geometric model in order to perform simulations. Then, the mechanical strengths are defined by the homogeneous response as Young's modulus and yield strength. The distribution of mechanical strengths is observed as a function of manufacturing parameters. The mechanical response of the BCCZ structure is stretch-dominated, i.e., the mechanical strengths are directly dependent on the strengths of the vertical beams. As the geometric defects of vertical beams are slightly changed based on their position/orientation on the manufacturing substrate, the mechanical strengths are less dispersed. The manufacturing parameters are less influenced on the mechanical strengths of the structure BCCZ. The mechanical response of the BCC structure is bending-dominated. The geometric defects of inclined beam are highly dispersed within a structure and also based on their position/orientation on the manufacturing substrate. For different position/orientation on the substrate, the mechanical responses are highly dispersed as well. This shows that the mechanical strengths are directly impacted by manufacturing parameters. In addition, this work is carried out to study the uncertainty propagation of the geometric defects on the mechanical strength of the BCC lattice structure made of Scalmalloy. To do that, we observe the distribution of mechanical strengths of the lattice according to the distribution of the geometric defects. A probability density law is determined based on a statistical hypothesis corresponding to the geometric defects of the inclined beams. The samples of inclined beams are then randomly drawn from the density law to build the lattice structure samples. The lattice samples are then used for simulation to characterize the mechanical strengths. The results reveal that the distribution of mechanical strengths of the structures with the same manufacturing parameters is less dispersed than one of the structures with different manufacturing parameters. Nevertheless, the dispersion of mechanical strengths due to the structures with the same manufacturing parameters are unneglectable.Keywords: geometric defects, lattice structure, mechanical strength, uncertainty propagation
Procedia PDF Downloads 123