Search results for: carbon nanotubes network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7777

Search results for: carbon nanotubes network

4717 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors

Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin

Abstract:

IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).

Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)

Procedia PDF Downloads 142
4716 Image Classification with Localization Using Convolutional Neural Networks

Authors: Bhuyain Mobarok Hossain

Abstract:

Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).

Keywords: image classification, object detection, localization, particle filter

Procedia PDF Downloads 307
4715 Availability Strategy of Medical Information for Telemedicine Services

Authors: Rozo D. Juan Felipe, Ramírez L. Leonardo Juan, Puerta A. Gabriel Alberto

Abstract:

The telemedicine services require correct computing resource management to guarantee productivity and efficiency for medical and non-medical staff. The aim of this study was to examine web management strategies to ensure the availability of resources and services in telemedicine so as to provide medical information management with an accessible strategy. In addition, to evaluate the quality-of-service parameters, the followings were measured: delays, throughput, jitter, latency, available bandwidth, percent of access and denial of services based of web management performance map with profiles permissions and database management. Through 24 different test scenarios, the results show 100% in availability of medical information, in relation to access of medical staff to web services, and quality of service (QoS) of 99% because of network delay and performance of computer network. The findings of this study suggest that the proposed strategy of web management is an ideal solution to guarantee the availability, reliability, and accessibility of medical information. Finally, this strategy offers seven user profile used at telemedicine center of Bogota-Colombia keeping QoS parameters suitable to telemedicine services.

Keywords: availability, medical information, QoS, strategy, telemedicine

Procedia PDF Downloads 206
4714 The Convolution Recurrent Network of Using Residual LSTM to Process the Output of the Downsampling for Monaural Speech Enhancement

Authors: Shibo Wei, Ting Jiang

Abstract:

Convolutional-recurrent neural networks (CRN) have achieved much success recently in the speech enhancement field. The common processing method is to use the convolution layer to compress the feature space by multiple upsampling and then model the compressed features with the LSTM layer. At last, the enhanced speech is obtained by deconvolution operation to integrate the global information of the speech sequence. However, the feature space compression process may cause the loss of information, so we propose to model the upsampling result of each step with the residual LSTM layer, then join it with the output of the deconvolution layer and input them to the next deconvolution layer, by this way, we want to integrate the global information of speech sequence better. The experimental results show the network model (RES-CRN) we introduce can achieve better performance than LSTM without residual and overlaying LSTM simply in the original CRN in terms of scale-invariant signal-to-distortion ratio (SI-SNR), speech quality (PESQ), and intelligibility (STOI).

Keywords: convolutional-recurrent neural networks, speech enhancement, residual LSTM, SI-SNR

Procedia PDF Downloads 203
4713 Ground Surface Temperature History Prediction Using Long-Short Term Memory Neural Network Architecture

Authors: Venkat S. Somayajula

Abstract:

Ground surface temperature history prediction model plays a vital role in determining standards for international nuclear waste management. International standards for borehole based nuclear waste disposal require paleoclimate cycle predictions on scale of a million forward years for the place of waste disposal. This research focuses on developing a paleoclimate cycle prediction model using Bayesian long-short term memory (LSTM) neural architecture operated on accumulated borehole temperature history data. Bayesian models have been previously used for paleoclimate cycle prediction based on Monte-Carlo weight method, but due to limitations pertaining model coupling with certain other prediction networks, Bayesian models in past couldn’t accommodate prediction cycle’s over 1000 years. LSTM has provided frontier to couple developed models with other prediction networks with ease. Paleoclimate cycle developed using this process will be trained on existing borehole data and then will be coupled to surface temperature history prediction networks which give endpoints for backpropagation of LSTM network and optimize the cycle of prediction for larger prediction time scales. Trained LSTM will be tested on past data for validation and then propagated for forward prediction of temperatures at borehole locations. This research will be beneficial for study pertaining to nuclear waste management, anthropological cycle predictions and geophysical features

Keywords: Bayesian long-short term memory neural network, borehole temperature, ground surface temperature history, paleoclimate cycle

Procedia PDF Downloads 130
4712 Research and Implementation of Cross-domain Data Sharing System in Net-centric Environment

Authors: Xiaoqing Wang, Jianjian Zong, Li Li, Yanxing Zheng, Jinrong Tong, Mao Zhan

Abstract:

With the rapid development of network and communication technology, a great deal of data has been generated in different domains of a network. These data show a trend of increasing scale and more complex structure. Therefore, an effective and flexible cross-domain data-sharing system is needed. The Cross-domain Data Sharing System(CDSS) in a net-centric environment is composed of three sub-systems. The data distribution sub-system provides data exchange service through publish-subscribe technology that supports asynchronism and multi-to-multi communication, which adapts to the needs of the dynamic and large-scale distributed computing environment. The access control sub-system adopts Attribute-Based Access Control(ABAC) technology to uniformly model various data attributes such as subject, object, permission and environment, which effectively monitors the activities of users accessing resources and ensures that legitimate users get effective access control rights within a legal time. The cross-domain access security negotiation subsystem automatically determines the access rights between different security domains in the process of interactive disclosure of digital certificates and access control policies through trust policy management and negotiation algorithms, which provides an effective means for cross-domain trust relationship establishment and access control in a distributed environment. The CDSS’s asynchronous,multi-to-multi and loosely-coupled communication features can adapt well to data exchange and sharing in dynamic, distributed and large-scale network environments. Next, we will give CDSS new features to support the mobile computing environment.

Keywords: data sharing, cross-domain, data exchange, publish-subscribe

Procedia PDF Downloads 125
4711 Comparison of Agree Method and Shortest Path Method for Determining the Flow Direction in Basin Morphometric Analysis: Case Study of Lower Tapi Basin, Western India

Authors: Jaypalsinh Parmar, Pintu Nakrani, Bhaumik Shah

Abstract:

Digital Elevation Model (DEM) is elevation data of the virtual grid on the ground. DEM can be used in application in GIS such as hydrological modelling, flood forecasting, morphometrical analysis and surveying etc.. For morphometrical analysis the stream flow network plays a very important role. DEM lacks accuracy and cannot match field data as it should for accurate results of morphometrical analysis. The present study focuses on comparing the Agree method and the conventional Shortest path method for finding out morphometric parameters in the flat region of the Lower Tapi Basin which is located in the western India. For the present study, open source SRTM (Shuttle Radar Topography Mission with 1 arc resolution) and toposheets issued by Survey of India (SOI) were used to determine the morphometric linear aspect such as stream order, number of stream, stream length, bifurcation ratio, mean stream length, mean bifurcation ratio, stream length ratio, length of overland flow, constant of channel maintenance and aerial aspect such as drainage density, stream frequency, drainage texture, form factor, circularity ratio, elongation ratio, shape factor and relief aspect such as relief ratio, gradient ratio and basin relief for 53 catchments of Lower Tapi Basin. Stream network was digitized from the available toposheets. Agree DEM was created by using the SRTM and stream network from the toposheets. The results obtained were used to demonstrate a comparison between the two methods in the flat areas.

Keywords: agree method, morphometric analysis, lower Tapi basin, shortest path method

Procedia PDF Downloads 239
4710 Social Networks in a Communication Strategy of a Large Company

Authors: Kherbache Mehdi

Abstract:

Within the framework of the validation of the Master in business administration marketing and sales in INSIM institute international in management Blida, we get the opportunity to do a professional internship in Sonelgaz Enterprise and a thesis. The thesis deals with the integration of social networking in the communication strategy of a company. The problematic is: How communicate with social network can be a solution for companies? The challenges stressed by this thesis were to suggest limits and recommendations to Sonelgaz Enterprise concerning social networks. The whole social networks represent more than a billion people as a potential target for the companies. Thanks to research and a qualitative approach, we have identified tree valid hypothesis. The first hypothesis allows confirming that using social networks cannot be ignored by any company in its communication strategy. However, the second hypothesis demonstrates that it’s necessary to prepare a strategy that integrates social networks in the communication plan of the company. The risk of this strategy is very limited because failure on social networks is not a restraint for the enterprise, social networking is not expensive and, a bad image which could result from it is not as important in the long-term. Furthermore, the return on investment is difficult to evaluate. Finally, the last hypothesis shows that firms establish a new relation between consumers and brands thanks to the proximity allowed by social networks. After the validation of the hypothesis, we suggested some recommendations to Sonelgaz Enterprise regarding the communication through social networks. Firstly, the company must use the interactivity of social network in order to have fruitful exchanges with the community. We also recommended having a strategy to treat negative comments. The company must also suggest delivering resources to the community thanks to a community manager, in order to have a good relation with the community. Furthermore, we advised using social networks to do business intelligence. Sonelgaz Enterprise can have some creative and interactive contents with some amazing applications on Facebook for example. Finally, we recommended to the company to be not intrusive with “fans” or “followers” and to be open to all the platforms: Twitter, Facebook, Linked-In for example.

Keywords: social network, buzz, communication, consumer, return on investment, internet users, web 2.0, Facebook, Twitter, interaction

Procedia PDF Downloads 424
4709 Damage Tolerance of Composites Containing Hybrid, Carbon-Innegra, Fibre Reinforcements

Authors: Armin Solemanifar, Arthur Wilkinson, Kinjalkumar Patel

Abstract:

Carbon fibre (CF) - polymer laminate composites have very low densities (approximately 40% lower than aluminium), high strength and high stiffness but in terms of toughness properties they often require modifications. For example, adding rubbers or thermoplastics toughening agents are common ways of improving the interlaminar fracture toughness of initially brittle thermoset composite matrices. The main aim of this project was to toughen CF-epoxy resin laminate composites using hybrid CF-fabrics incorporating Innegra™ a commercial highly-oriented polypropylene (PP) fibre, in which more than 90% of its crystal orientation is parallel to the fibre axis. In this study, the damage tolerance of hybrid (carbon-Innegra, CI) composites was investigated. Laminate composites were produced by resin-infusion using: pure CF fabric; fabrics with different ratios of commingled CI, and two different types of pure Innegra fabrics (Innegra 1 and Innegra 2). Dynamic mechanical thermal analysis (DMTA) was used to measure the glass transition temperature (Tg) of the composite matrix and values of flexural storage modulus versus temperature. Mechanical testing included drop-weight impact, compression-after-impact (CAI), and interlaminar (short-beam) shear strength (ILSS). Ultrasonic C-Scan imaging was used to determine the impact damage area and scanning electron microscopy (SEM) to observe the fracture mechanisms that occur during failure of the composites. For all composites, 8 layers of fabrics were used with a quasi-isotropic sequence of [-45°, 0°, +45°, 90°]s. DMTA showed the Tg of all composites to be approximately same (123 ±3°C) and that flexural storage modulus (before the onset of Tg) was the highest for the pure CF composite while the lowest were for the Innegra 1 and 2 composites. Short-beam shear strength of the commingled composites was higher than other composites, while for Innegra 1 and 2 composites only inelastic deformation failure was observed during the short-beam test. During impact, the Innegra 1 composite withstood up to 40 J without any perforation while for the CF perforation occurred at 10 J. The rate of reduction in compression strength upon increasing the impact energy was lowest for the Innegra 1 and 2 composites, while CF showed the highest rate. On the other hand, the compressive strength of the CF composite was highest of all the composites at all impacted energy levels. The predominant failure modes for Innegra composites observed in cross-sections of fractured specimens were fibre pull-out, micro-buckling, and fibre plastic deformation; while fibre breakage and matrix delamination were a major failure observed in the commingled composites due to the more brittle behaviour of CF. Thus, Innegra fibres toughened the CF composites but only at the expense of reducing compressive strength.

Keywords: hybrid composite, thermoplastic fibre, compression strength, damage tolerance

Procedia PDF Downloads 296
4708 Machine Learning Methods for Flood Hazard Mapping

Authors: Stefano Zappacosta, Cristiano Bove, Maria Carmela Marinelli, Paola di Lauro, Katarina Spasenovic, Lorenzo Ostano, Giuseppe Aiello, Marco Pietrosanto

Abstract:

This paper proposes a novel neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The proposed hybrid model can be used to classify four different increasing levels of hazard. The classification capability was compared with the flood hazard mapping River Basin Plans (PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.

Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment

Procedia PDF Downloads 182
4707 A Decision Support System for the Detection of Illicit Substance Production Sites

Authors: Krystian Chachula, Robert Nowak

Abstract:

Manufacturing home-made explosives and synthetic drugs is an increasing problem in Europe. To combat that, a data fusion system is proposed for the detection and localization of production sites in urban environments. The data consists of measurements of properties of wastewater performed by various sensors installed in a sewage network. A four-stage fusion strategy allows detecting sources of waste products from known chemical reactions. First, suspicious measurements are used to compute the amount and position of discharged compounds. Then, this information is propagated through the sewage network to account for missing sensors. The next step is clustering and the formation of tracks. Eventually, tracks are used to reconstruct discharge events. Sensor measurements are simulated by a subsystem based on real-world data. In this paper, different discharge scenarios are considered to show how the parameters of used algorithms affect the effectiveness of the proposed system. This research is a part of the SYSTEM project (SYnergy of integrated Sensors and Technologies for urban sEcured environMent).

Keywords: continuous monitoring, information fusion and sensors, internet of things, multisensor fusion

Procedia PDF Downloads 117
4706 Collective Potential: A Network of Acupuncture Interventions for Flood Resilience

Authors: Sachini Wickramanayaka

Abstract:

The occurrence of natural disasters has increased in an alarming rate in recent times due to escalating effects of climate change. One such natural disaster that has continued to grow in frequency and intensity is ‘flooding’, adversely affecting communities around the globe. This is an exploration on how architecture can intervene and facilitate in preserving communities in the face of disaster, specifically in battling floods. ‘Resilience’ is one of the concepts that have been brought forward to be instilled in vulnerable communities to lower the impact from such disasters as a preventative and coping mechanism. While there are number of ways to achieve resilience in the built environment, this paper aims to create a synthesis between resilience and ‘urban acupuncture’. It will consider strengthening communities from within, by layering a network of relatively small-scale, fast phased interventions on pre-existing conventional flood preventative large-scale engineering infrastructure.By investigating ‘The Woodlands’, a planned neighborhood as a case study, this paper will argue that large-scale water management solutions while extremely important will not suffice as a single solution particularly during a time of frequent and extreme weather events. The different projects will try to synthesize non-architectural aspects such as neighborhood aspirations, requirements, potential and awareness into a network of architectural forms that would collectively increase neighborhood resiliency to floods. A mapping study of the selected study area will identify the problematic areas that flood in the neighborhood while the empirical data from previously implemented case studies will assess the success of each solution.If successful the different solutions for each of the identified problem areas will exhibithow flooding and water management can be integrated as part and parcel of daily life.

Keywords: acupuncture, architecture, resiliency, micro-interventions, neighborhood

Procedia PDF Downloads 173
4705 Market Acceptance of a Murabaha-Based Finance Structure within a Social Network of Non-Islamic Small and Medium Enterprise Owners in African Procurement

Authors: Craig M. Allen

Abstract:

Twenty two African entrepreneurs with Small and Medium Enterprises (SMEs) in a single social network centered around a non-Muslim population in a smaller African country, selected an Islamic financing structure, a form of Murabaha, based solely on market rationale. These entrepreneurs had all won procurement contracts from major purchasers of goods within their country and faced difficulty arranging traditional bank financing to support their supply-chain needs. The Murabaha-based structure satisfied their market-driven demand and provided an attractive alternative to the traditional bank-offered lending products. The Murabaha-styled trade-financing structure was not promoted with any religious implications, but solely as a market solution to the existing problems associated with bank-related financing. This indicates the strong market forces that draw SMEs to financing structures that are traditionally considered within the framework of Islamic finance.

Keywords: Africa, entrepreneurs, Islamic finance, market acceptance, Murabaha, SMEs

Procedia PDF Downloads 183
4704 Passengers’ Behavior Analysis under the Public Transport Disruption: An Agent-Based Simulation

Authors: M. Rahimi, F. Corman

Abstract:

This paper study the travel behavior of passengers in a public transport disruption under information provision strategies. We develop a within-day approach for multi-agent simulation to evaluate the behavior of the agents, under comprehensive scenarios through various information exposure, equilibrium, and non-equilibrium scenarios. In particular, we quantify the effects of information strategies in disruption situation on passengers’ satisfaction, number of involved agents, and the caused delay. An agent-based micro-simulation model (MATSim) is applied for the city of Zürich, Switzerland, for the purpose of activity-based simulation in a multimodal network. Statistic outcome is analysed for all the agents who may be involved in the disruption. Agents’ movement in the public transport network illustrates agents’ adaptations to available information about the disruption. Agents’ delays and utility reveal that information significantly affects agents’ satisfaction and delay in public transport disruption. Besides, while the earlier availability of the information causes the fewer consequent delay for the involved agents, however, it also leads to more amount of affected agents.

Keywords: agent-based simulation, disruption management, passengers’ behavior simulation, public transport

Procedia PDF Downloads 154
4703 Dynamic Analysis of Functionally Graded Nano Composite Pipe with PZT Layers Subjected to Moving Load

Authors: Morteza Raminnia

Abstract:

In this study, dynamic analysis of functionally graded nano-composite pipe reinforced by single-walled carbon nano-tubes (SWCNTs) with simply supported boundary condition subjected to moving mechanical loads is investigated. The material properties of functionally graded carbon nano tube-reinforced composites (FG-CNTRCs) are assumed to be graded in the thickness direction and are estimated through a micro-mechanical model. In this paper polymeric matrix considered as isotropic material and for the CNTRC, uniform distribution (UD) and three types of FG distribution patterns of SWCNT reinforcements are considered. The system equation of motion is derived by using Hamilton's principle under the assumptions of first order shear deformation theory (FSDT).The thin piezoelectric layers embedded on inner and outer surfaces of FG-CNTRC layer are acted as distributed sensor and actuator to control dynamic characteristics of the FG-CNTRC laminated pipe. The modal analysis technique and Newmark's integration method are used to calculate the displacement and dynamic stress of the pipe subjected to moving loads. The effects of various material distribution and velocity of moving loads on dynamic behavior of the pipe is presented. This present approach is validated by comparing the numerical results with the published numerical results in literature. The results show that the above-mentioned effects play very important role on dynamic behavior of the pipe .This present work shows that some meaningful results that which are interest to scientific and engineering community in the field of FGM nano-structures.

Keywords: nano-composite, functionally garded material, moving load, active control, PZT layers

Procedia PDF Downloads 420
4702 A Framework for Analyzing Public Interaction of Saudi Universities on Twitter

Authors: Sahar Al-Qahtani, Rabeeh Ayaz Abbasi, Naif Radi Aljohani

Abstract:

Many universities use social media platforms as new communication channels to disseminate information and promptly communicate with their audience. As Twitter is one of the widely used social media platforms, this research aims to explore the adaption and utilization of Twitter by universities. We propose a framework called 'Social Network Analysis for Universities on Twitter' (SNAUT) to analyze the usage of Twitter by universities and to measure their interaction with public. The study includes a sample of around 110,000 tweets from 36 Saudi universities, including both public and private universities. Using SNAUT, we can (1) investigate the purpose of using Twitter by universities, (2) determine the broad topics discussed by them, and (3) identify the groups closely associated with the universities. The results show that most of the Saudi universities (whether public or private) actively use Twitter. Results also reveal that public universities respond to public queries more frequently, but private universities stand out more in terms of information dissemination using retweets and diverse hashtags. Finally, we develop a ranking mechanism in SNAUT for ranking universities based on their social interaction with the public on Twitter.

Keywords: social media, twitter, social network analysis, universities, higher education, Saudi Arabia

Procedia PDF Downloads 138
4701 Direct Current Electric Field Stimulation against PC12 Cells in 3D Bio-Reactor to Enhance Axonal Extension

Authors: E. Nakamachi, S. Tanaka, K. Yamamoto, Y. Morita

Abstract:

In this study, we developed a three-dimensional (3D) direct current electric field (DCEF) stimulation bio-reactor for axonal outgrowth enhancement to generate the neural network of the central nervous system (CNS). By using our newly developed 3D DCEF stimulation bio-reactor, we cultured the rat pheochromocytoma cells (PC12) and investigated the effects on the axonal extension enhancement and network generation. Firstly, we designed and fabricated a 3D bio-reactor, which can load DCEF stimulation on PC12 cells embedded in the collagen gel as extracellular environment. The connection between the electrolyte and the medium using salt bridges for DCEF stimulation was introduced to avoid the cell death by the toxicity of metal ion. The distance between the salt bridges was adopted as the design variable to optimize a structure for uniform DCEF stimulation, where the finite element (FE) analyses results were used. Uniform DCEF strength and electric flux vector direction in the PC12 cells embedded in collagen gel were examined through measurements of the fabricated 3D bio-reactor chamber. Measurement results of DCEF strength in the bio-reactor showed a good agreement with FE results. In addition, the perfusion system was attached to maintain pH 7.2 ~ 7.6 of the medium because pH change was caused by DCEF stimulation loading. Secondly, we disseminated PC12 cells in collagen gel and carried out 3D culture. Finally, we measured the morphology of PC12 cell bodies and neurites by the multiphoton excitation fluorescence microscope (MPM). The effectiveness of DCEF stimulation to enhance the axonal outgrowth and the neural network generation was investigated. We confirmed that both an increase of mean axonal length and axogenesis rate of PC12, which have been exposed 5 mV/mm for 6 hours a day for 4 days in the bioreactor. We found following conclusions in our study. 1) Design and fabrication of DCEF stimulation bio-reactor capable of 3D culture nerve cell were completed. A uniform electric field strength of average value of 17 mV/mm within the 1.2% error range was confirmed by using FE analyses, after the structure determination through the optimization process. In addition, we attached a perfusion system capable of suppressing the pH change of the culture solution due to DCEF stimulation loading. 2) Evaluation of DCEF stimulation effects on PC12 cell activity was executed. The 3D culture of PC 12 was carried out adopting the embedding culture method using collagen gel as a scaffold for four days under the condition of 5.0 mV/mm and 10mV/mm. There was a significant effect on the enhancement of axonal extension, as 11.3% increase in an average length, and the increase of axogenesis rate. On the other hand, no effects on the orientation of axon against the DCEF flux direction was observed. Further, the network generation was enhanced to connect longer distance between the target neighbor cells by DCEF stimulation.

Keywords: PC12, DCEF stimulation, 3D bio-reactor, axonal extension, neural network generation

Procedia PDF Downloads 185
4700 Examples of Techniques and Algorithms Used in Wlan Security

Authors: Vahid Bairami Rad

Abstract:

Wireless communications offer organizations and users many benefits such as portability and flexibility, increased productivity, and lower installation costs. Wireless networks serve as the transport mechanism between devices and among devices and the traditional wired networks (enterprise networks and the internet). Wireless networks are many and diverse but are frequently categorized into three groups based on their coverage range: WWAN, WLAN, and WPAN. WWAN, representing wireless wide area networks, includes wide coverage area technologies such as 2G cellular, Cellular Digital Packet Data (CDPD), Global System for Mobile Communications (GSM), and Mobitex. WLAN, representing wireless local area networks, includes 802.11, Hyper lan, and several others. WPAN, represents wireless personal area network technologies such as Bluetooth and Infrared. The security services are provided largely by the WEP (Wired Equivalent Privacy) protocol to protect link-level data during wireless transmission between clients and access points. That is, WEP does not provide end-to-end security but only for the wireless portion of the connection.

Keywords: wireless lan, wired equivalent privacy, wireless network security, wlan security

Procedia PDF Downloads 571
4699 Energy and Carbon Footprint Analysis of Food Waste Treatment Alternatives for Hong Kong

Authors: Asad Iqbal, Feixiang Zan, Xiaoming Liu, Guang-Hao Chen

Abstract:

Water, food, and energy nexus is a vital subject to achieve sustainable development goals worldwide. Wastewater (WW) and food waste (FW) from municipal sources are primary contributors to their respective wastage sum from a country. Along with the loss of these invaluable natural resources, their treatment systems also consume a lot of abiotic energy and resources input with a perceptible contribution to global warming. Hence, the global paradigm has evolved from simple pollution mitigation to a resource recovery system (RRS). In this study, the prospects of six alternative FW treatment scenarios are quantitatively evaluated for Hong Kong in terms of energy use and greenhouse emissions (GHEs) potential, using life cycle assessment (LCA). Considered scenarios included: aerobic composting, anaerobic digestion (AD), combine AD and composting (ADC), co-disposal, and treatment with wastewater (CoD-WW), incineration, and conventional landfilling as base-case. Results revealed that in terms of GHEs saving, all-new scenarios performed significantly better than conventional landfilling, with ADC scenario as best-case and incineration, AD alone, CoD-WW ranked as second, third, and fourth best respectively. Whereas, composting was the worst-case scenario in terms of energy balance, while incineration ranked best and AD alone, ADC, and CoD-WW ranked as second, third, and fourth best, respectively. However, these results are highly sensitive to boundary settings, e.g., the inclusion of the impact of biogenic carbon emissions and waste collection and transportation, and several other influential parameters. The study provides valuable insights and policy guidelines for the decision-makers locally and a generic modelling template for environmental impact assessment.

Keywords: food waste, resource recovery, greenhouse emissions, energy balance

Procedia PDF Downloads 110
4698 Experimental Study and Numerical Simulation of the Reaction and Flow on the Membrane Wall of Entrained Flow Gasifier

Authors: Jianliang Xu, Zhenghua Dai, Zhongjie Shen, Haifeng Liu, Fuchen Wang

Abstract:

In an entrained flow gasifier, the combustible components are converted into the gas phase, and the mineral content is converted into ash. Most of the ash particles or droplets are deposited on the refractory or membrane wall and form a slag layer that flows down to the quenching system. The captured particle reaction process and slag flow and phase transformation play an important role in gasifier performance and safe and stable operation. The reaction characteristic of captured char particles on the molten slag had been studied by applied a high-temperature stage microscope. The gasification process of captured chars with CO2 on the slag surface was observed and recorded, compared to the original char gasification. The particle size evolution, heat transfer process are discussed, and the gasification reaction index of the capture char particle are modeled. Molten slag layer promoted the char reactivity from the analysis of reaction index, Coupled with heat transfer analysis, shrinking particle model (SPM) was applied and modified to predict the gasification time at carbon conversion of 0.9, and results showed an agreement with the experimental data. A comprehensive model with gas-particle-slag flow and reaction models was used to model the different industry gasifier. The carbon conversion information in the spatial space and slag layer surface are investigated. The slag flow characteristic, such as slag velocity, molten slag thickness, slag temperature distribution on the membrane wall and refractory brick are discussed.

Keywords: char, slag, numerical simulation, gasification, wall reaction, membrane wall

Procedia PDF Downloads 309
4697 Synthesis of Pd@ Cu Core−Shell Nanowires by Galvanic Displacement of Cu by Pd²⁺ Ions as a Modified Glassy Carbon Electrode for the Simultaneous Determination of Dihydroxybenzene Isomers Speciation

Authors: Majid Farsadrouh Rashti, Parisa Jahani, Amir Shafiee, Mehrdad Mofidi

Abstract:

The dihydroxybenzene isomers, hydroquinone (HQ), catechol (CC) and resorcinol (RS) have been widely recognized as important environmental pollutants due to their toxicity and low degradability in the ecological environment. Speciation of HQ, CC and RS is very important for environmental analysis because they co-exist of these isomers in environmental samples and are too difficult to degrade as an environmental contaminant with high toxicity. There are many analytical methods have been reported for detecting these isomers, such as spectrophotometry, fluorescence, High-performance liquid chromatography (HPLC) and electrochemical methods. These methods have attractive advantages such as simple and fast response, low maintenance costs, wide linear analysis range, high efficiency, excellent selectivity and high sensitivity. A novel modified glassy carbon electrode (GCE) with Pd@ Cu/CNTs core−shell nanowires for the simultaneous determination of hydroquinone (HQ), catechol (CC) and resorcinol (RS) is described. A detailed investigation by field emission scanning electron microscopy and electrochemistry was performed in order to elucidate the preparation process and properties of the GCE/ Pd/CuNWs-CNTs. The electrochemical response characteristic of the modified GPE/LFOR toward HQ, CC and RS were investigated by cyclic voltammetry, differential pulse voltammetry (DPV) and Chronoamperometry. Under optimum conditions, the calibrations curves were linear up to 228 µM for each with detection limits of 0.4, 0.6 and 0.8 µM for HQ, CC and RS, respectively. The diffusion coefficient for the oxidation of HQ, CC and RS at the modified electrode was calculated as 6.5×10⁻⁵, 1.6 ×10⁻⁵ and 8.5 ×10⁻⁵ cm² s⁻¹, respectively. DPV was used for the simultaneous determination of HQ, CC and RS at the modified electrode and the relative standard deviations were 2.1%, 1.9% and 1.7% for HQ, CC and RS, respectively. Moreover, GCE/Pd/CuNWs-CNTs was successfully used for determination of HQ, CC and RS in real samples.

Keywords: dihydroxybenzene isomers, galvanized copper nanowires, electrochemical sensor, Palladium, speciation

Procedia PDF Downloads 129
4696 Easy Way of Optimal Process-Storage Network Design

Authors: Gyeongbeom Yi

Abstract:

The purpose of this study is to introduce the analytic solution for determining the optimal capacity (lot-size) of a multiproduct, multistage production and inventory system to meet the finished product demand. Reasonable decision-making about the capacity of processes and storage units is an important subject for industry. The industrial solution for this subject is to use the classical economic lot sizing method, EOQ/EPQ (Economic Order Quantity/Economic Production Quantity) model, incorporated with practical experience. However, the unrealistic material flow assumption of the EOQ/EPQ model is not suitable for chemical plant design with highly interlinked processes and storage units. This study overcomes the limitation of the classical lot sizing method developed on the basis of the single product and single stage assumption. The superstructure of the plant considered consists of a network of serially and/or parallelly interlinked processes and storage units. The processes involve chemical reactions with multiple feedstock materials and multiple products as well as mixing, splitting or transportation of materials. The objective function for optimization is minimizing the total cost composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units. A novel production and inventory analysis method, PSW (Periodic Square Wave) model, is applied. The advantage of the PSW model comes from the fact that the model provides a set of simple analytic solutions in spite of a realistic description of the material flow between processes and storage units. The resulting simple analytic solution can greatly enhance the proper and quick investment decision for plant design and operation problem confronted in diverse economic situations.

Keywords: analytic solution, optimal design, process-storage network

Procedia PDF Downloads 333
4695 N-Heterocyclic Carbene Based Dearomatized Iridium Complex as an Efficient Catalyst towards Carbon-Carbon Bond Formation via Hydrogen Borrowing Strategy

Authors: Mandeep Kaur, Jitendra K. Bera

Abstract:

The search for atom-economical and green synthetic methods for the synthesis of functionalized molecules has attracted much attention. Metal ligand cooperation (MLC) plays a pivotal role in organometallic catalysis to activate C−H, H−H, O−H, N−H and B−H bonds through reversible bond breaking and bond making process. Towards this goal, a bifunctional N─heterocyclic carbene (NHC) based pyridyl-functionalized amide ligand precursor, and corresponding dearomatized iridium complex was synthesized. The NMR and UV/Vis acid titration study have been done to prove the proton response nature of the iridium complex. Further, the dearomatized iridium complex explored as a catalyst on the platform of MLC via dearomatzation/aromatization mode of action towards atom economical α and β─alkylation of ketones and secondary alcohols by using primary alcohols through hydrogen borrowing methodology. The key features of the catalysis are high turnover frequency (TOF) values, low catalyst loading, low base loading and no waste product. The greener syntheses of quinoline, lactone derivatives and selective alkylation of drug molecules like pregnenolone and testosterone were also achieved successfully. Another structurally similar iridium complex was also synthesized with modified ligand precursor where a pendant amide unit was absent. The inactivity of this analogue iridium complex towards catalysis authenticated the participation of proton responsive imido sidearm of the ligand to accelerate the catalytic reaction. The mechanistic investigation through control experiments, NMR and deuterated labeling study, authenticate the borrowing hydrogen strategy.

Keywords: C-C bond formation, hydrogen borrowing, metal ligand cooperation (MLC), n-heterocyclic carbene

Procedia PDF Downloads 182
4694 A Bi-Objective Stochastic Mathematical Model for Agricultural Supply Chain Network

Authors: Mohammad Mahdi Paydar, Armin Cheraghalipour, Mostafa Hajiaghaei-Keshteli

Abstract:

Nowadays, in advanced countries, agriculture as one of the most significant sectors of the economy, plays an important role in its political and economic independence. Due to farmers' lack of information about products' demand and lack of proper planning for harvest time, annually the considerable amount of products is corrupted. Besides, in this paper, we attempt to improve these unfavorable conditions via designing an effective supply chain network that tries to minimize total costs of agricultural products along with minimizing shortage in demand points. To validate the proposed model, a stochastic optimization approach by using a branch and bound solver of the LINGO software is utilized. Furthermore, to accumulate the data of parameters, a case study in Mazandaran province placed in the north of Iran has been applied. Finally, using ɛ-constraint approach, a Pareto front is obtained and one of its Pareto solutions as best solution is selected. Then, related results of this solution are explained. Finally, conclusions and suggestions for the future research are presented.

Keywords: perishable products, stochastic optimization, agricultural supply chain, ɛ-constraint

Procedia PDF Downloads 371
4693 Microclimate Impacts on Solar Panel Power Generation in Midlands Area, UK

Authors: Stamatis Zoras, Boris Ceranic, Ashley Redfern

Abstract:

Green House Gas emissions from domestic properties currently account for a substantial part of the total UK’s carbon emissions and is a priority area for UK to reach zero carbon emissions. However, GHG emissions of urban complexes depend on building, road, structural developments etc surfaces that form urban microclimate. This in turn may further influence renewable energy system power generation that depend on solar or wind potential. Moreover, urban climatic conditions are also influenced by the installation of those power generation systems that may impact their own power generation efficiency. Increased air temperature is attributed to densely installed roof based solar panels that consequently impact their own production efficiency. Installation of roof based solar panels requires adequate guidance to enable housing businesses, councils and organisations to implement sufficient measures for improved power generation in relation to local urban microclimate. How microclimate is affected and how, in return, it affects solar power productivity. Derby Council & Derby Homes have been collecting solar panel power generation data for a large number of properties. The different building areas and system operation performance will be studied against microclimate conditions through time. It is envisaged that the outcomes of the study will support a working up strategy for Derby city to ensure that owned homes would be able to access information and data of solar photo voltaic PV and solar thermal panels potential on social housing, helping residents on low incomes create their own green energy to power their homes and heat their homeshot water.

Keywords: microclimate, solar power, urban climatology, urban morphology

Procedia PDF Downloads 71
4692 Deep Learning Based Road Crack Detection on an Embedded Platform

Authors: Nurhak Altın, Ayhan Kucukmanisa, Oguzhan Urhan

Abstract:

It is important that highways are in good condition for traffic safety. Road crashes (road cracks, erosion of lane markings, etc.) can cause accidents by affecting driving. Image processing based methods for detecting road cracks are available in the literature. In this paper, a deep learning based road crack detection approach is proposed. YOLO (You Look Only Once) is adopted as core component of the road crack detection approach presented. The YOLO network structure, which is developed for object detection, is trained with road crack images as a new class that is not previously used in YOLO. The performance of the proposed method is compared using different training methods: using randomly generated weights and training their own pre-trained weights (transfer learning). A similar training approach is applied to the simplified version of the YOLO network model (tiny yolo) and the results of the performance are examined. The developed system is able to process 8 fps on NVIDIA Jetson TX1 development kit.

Keywords: deep learning, embedded platform, real-time processing, road crack detection

Procedia PDF Downloads 341
4691 Application of Artificial Neural Network for Single Horizontal Bare Tube and Bare Tube Bundles (Staggered) of Large Particles: Heat Transfer Prediction

Authors: G. Ravindranath, S. Savitha

Abstract:

This paper presents heat transfer analysis of single horizontal bare tube and heat transfer analysis of staggered arrangement of bare tube bundles bare tube bundles in gas-solid (air-solid) fluidized bed and predictions are done by using Artificial Neural Network (ANN) based on experimental data. Fluidized bed provide nearly isothermal environment with high heat transfer rate to submerged objects i.e. due to through mixing and large contact area between the gas and the particle, a fully fluidized bed has little temperature variation and gas leaves at a temperature which is close to that of the bed. Measurement of average heat transfer coefficient was made by local thermal simulation technique in a cold bubbling air-fluidized bed of size 0.305 m. x 0.305 m. Studies were conducted for single horizontal Bare Tube of length 305mm and 28.6mm outer diameter and for bare tube bundles of staggered arrangement using beds of large (average particle diameter greater than 1 mm) particle (raagi and mustard). Within the range of experimental conditions influence of bed particle diameter ( Dp), Fluidizing Velocity (U) were studied, which are significant parameters affecting heat transfer. Artificial Neural Networks (ANNs) have been receiving an increasing attention for simulating engineering systems due to some interesting characteristics such as learning capability, fault tolerance, and non-linearity. Here, feed-forward architecture and trained by back-propagation technique is adopted to predict heat transfer analysis found from experimental results. The ANN is designed to suit the present system which has 3 inputs and 2 out puts. The network predictions are found to be in very good agreement with the experimental observed values of bare heat transfer coefficient (hb) and nusselt number of bare tube (Nub).

Keywords: fluidized bed, large particles, particle diameter, ANN

Procedia PDF Downloads 366
4690 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach

Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib

Abstract:

A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.

Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation

Procedia PDF Downloads 92
4689 Evaluating Multiple Diagnostic Tests: An Application to Cervical Intraepithelial Neoplasia

Authors: Areti Angeliki Veroniki, Sofia Tsokani, Evangelos Paraskevaidis, Dimitris Mavridis

Abstract:

The plethora of diagnostic test accuracy (DTA) studies has led to the increased use of systematic reviews and meta-analysis of DTA studies. Clinicians and healthcare professionals often consult DTA meta-analyses to make informed decisions regarding the optimum test to choose and use for a given setting. For example, the human papilloma virus (HPV) DNA, mRNA, and cytology can be used for the cervical intraepithelial neoplasia grade 2+ (CIN2+) diagnosis. But which test is the most accurate? Studies directly comparing test accuracy are not always available, and comparisons between multiple tests create a network of DTA studies that can be synthesized through a network meta-analysis of diagnostic tests (DTA-NMA). The aim is to summarize the DTA-NMA methods for at least three index tests presented in the methodological literature. We illustrate the application of the methods using a real data set for the comparative accuracy of HPV DNA, HPV mRNA, and cytology tests for cervical cancer. A search was conducted in PubMed, Web of Science, and Scopus from inception until the end of July 2019 to identify full-text research articles that describe a DTA-NMA method for three or more index tests. Since the joint classification of the results from one index against the results of another index test amongst those with the target condition and amongst those without the target condition are rarely reported in DTA studies, only methods requiring the 2x2 tables of the results of each index test against the reference standard were included. Studies of any design published in English were eligible for inclusion. Relevant unpublished material was also included. Ten relevant studies were finally included to evaluate their methodology. DTA-NMA methods that have been presented in the literature together with their advantages and disadvantages are described. In addition, using 37 studies for cervical cancer obtained from a published Cochrane review as a case study, an application of the identified DTA-NMA methods to determine the most promising test (in terms of sensitivity and specificity) for use as the best screening test to detect CIN2+ is presented. As a conclusion, different approaches for the comparative DTA meta-analysis of multiple tests may conclude to different results and hence may influence decision-making. Acknowledgment: This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning 2014-2020» in the context of the project “Extension of Network Meta-Analysis for the Comparison of Diagnostic Tests ” (MIS 5047640).

Keywords: colposcopy, diagnostic test, HPV, network meta-analysis

Procedia PDF Downloads 141
4688 Seismicity and Source Parameter of Some Events in Abu Dabbab Area, Red Sea Coast

Authors: Hamed Mohamed Haggag

Abstract:

Prior to 12 November 1955, no earthquakes have been reported from the Abu Dabbab area in the International Seismological Center catalogue (ISC). The largest earthquake in Abu Dabbab area occurred on November 12, 1955 with magnitude Mb 6.0. The closest station from the epicenter was at Helwan (about 700 km to the north), so the depth of this event is not constrained and no foreshocks or aftershocks were recorded. Two other earthquakes of magnitude Mb 4.5 and 5.2 took place in the same area on March 02, 1982 and July 02, 1984, respectively. Since the installation of Aswan Seismic Network stations in 1982, (250-300 km to the south-west of Abu Dabbab area) then the Egyptian Natoinal Seismic Network stations, it was possible to record some activity from Abu Dabbab area. The recorded earthquakes at Abu Dabbab area as recorded from 1982 to 2014 shows that the earthquake epicenters are distributed in the same direction of the main trends of the faults in the area, which is parallel to the Red Sea coast. The spectral analysis was made for some earthquakes. The source parameters, seismic moment (Mo), source dimension (r), stress drop (Δδ), and apparent stress (δ) are determined for these events. The spectral analysis technique was completed using MAG software program.

Keywords: Abu Dabbab, seismicity, seismic moment, source parameter

Procedia PDF Downloads 463