Search results for: building design
12309 A Methodology for Seismic Performance Enhancement of RC Structures Equipped with Friction Energy Dissipation Devices
Authors: Neda Nabid
Abstract:
Friction-based supplemental devices have been extensively used for seismic protection and strengthening of structures, however, the conventional use of these dampers may not necessarily lead to an efficient structural performance. Conventionally designed friction dampers follow a uniform height-wise distribution pattern of slip load values for more practical simplicity. This can lead to localizing structural damage in certain story levels, while the other stories accommodate a negligible amount of relative displacement demand. A practical performance-based optimization methodology is developed to tackle with structural damage localization of RC frame buildings with friction energy dissipation devices under severe earthquakes. The proposed methodology is based on the concept of uniform damage distribution theory. According to this theory, the slip load values of the friction dampers redistribute and shift from stories with lower relative displacement demand to the stories with higher inter-story drifts to narrow down the discrepancy between the structural damage levels in different stories. In this study, the efficacy of the proposed design methodology is evaluated through the seismic performance of five different low to high-rise RC frames equipped with friction wall dampers under six real spectrum-compatible design earthquakes. The results indicate that compared to the conventional design, using the suggested methodology to design friction wall systems can lead to, by average, up to 40% reduction of maximum inter-story drift; and incredibly more uniform height-wise distribution of relative displacement demands under the design earthquakes.Keywords: friction damper, nonlinear dynamic analysis, RC structures, seismic performance, structural damage
Procedia PDF Downloads 22812308 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification
Authors: Babak Forouraghi
Abstract:
A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers
Procedia PDF Downloads 6612307 Developing of Ecological Internal Insulation Composite Boards for Innovative Retrofitting of Heritage Buildings
Authors: J. N. Nackler, K. Saleh Pascha, W. Winter
Abstract:
WHISCERS™ (Whole House In-Situ Carbon and Energy Reduction Solution) is an innovative process for Internal Wall Insulation (IWI) for energy-efficient retrofitting of heritage building, which uses laser measuring to determine the dimensions of a room, off-site insulation board cutting and rapid installation to complete the process. As part of a multinational investigation consortium the Austrian part adapted the WHISCERS system to local conditions of Vienna where most historical buildings have valuable stucco facades, precluding the application of an external insulation. The Austrian project contribution addresses the replacement of commonly used extruded polystyrene foam (XPS) with renewable materials such as wood and wood products to develop a more sustainable IWI system. As the timber industry is a major industry in Austria, a new innovative and more sustainable IWI solution could also open up new markets. The first approach of investigation was the Life Cycle Assessment (LCA) to define the performance of wood fibre board as insulation material in comparison to normally used XPS-boards. As one of the results the global-warming potential (GWP) of wood-fibre-board is 15 times less the equivalent to carbon dioxide while in the case of XPS it´s 72 times more. The hygrothermal simulation program WUFI was used to evaluate and simulate heat and moisture transport in multi-layer building components of the developed IWI solution. The results of the simulations prove in examined boundary conditions of selected representative brickwork constructions to be functional and usable without risk regarding vapour diffusion and liquid transport in proposed IWI. In a further stage three different solutions were developed and tested (1 - glued/mortared, 2 - with soft board, connected to wall with gypsum board as top layer, 3 - with soft board and clay board as top layer). All three solutions presents a flexible insulation layer out of wood fibre towards the existing wall, thus compensating irregularities of the wall surface. From first considerations at the beginning of the development phase, three different systems had been developed and optimized according to assembly technology and tested as small specimen in real object conditions. The built prototypes are monitored to detect performance and building physics problems and to validate the results of the computer simulation model. This paper illustrates the development and application of the Internal Wall Insulation system.Keywords: internal insulation, wood fibre, hygrothermal simulations, monitoring, clay, condensate
Procedia PDF Downloads 22112306 The Development of the Kamakhya Temple as a Historical Landmark in the Present State of Assam, India
Authors: Priyanka Tamta, Sukanya Sharma
Abstract:
The Kamakhya Temple in Assam plays a very important role in the development of Assam as not only a historical place but also as an archaeologically important site. Temple building activity on the site began in 5th century AD when a cave temple dedicated to Lord Balabhadraswami was constructed here by King Maharajadhiraja Sri Surendra Varman. In the history of Assam, the name of this king is not found and neither the name of this form of Vishnu is known in this region. But this inscription sanctified the place as it recorded the first ever temple building activity in this region. The fifteen hundred years habitation history of the Kamakhya temple sites shows a gradual progression of the site from a religious site to an archaeological site and finally as a historical landmark. Here, in this paper, our main objective is to understand the evolution of Kamakhya temple site as a historical landscape and as an important landmark in the history of Assam. The central theme of the paper is the gradual development of the religious site to a historical landmark. From epigraphical records, it is known that the site received patronage from all ruling dynasties of Assam and its adjoining regions. Royal households of Kashmir, Nepal, Bengal, Orissa, Bihar, etc. have left their footprints on the site. According to records they donated wealth, constructed or renovated temples and participated in the overall maintenance of the deity. This made Kamakhya temple a ground of interaction of faiths, communities, and royalties of the region. Since the 5th century AD, there was a continuous struggle between different beliefs, faiths, and power on the site to become the dominant authority of the site. In the process, powerful beliefs system subsumed minor ones into a larger doctrine of beliefs. This can be seen in the case of the evolution of the Kamakhya temple site as one of the important Shakta temples in India. Today, it is cultural identity marker of the state of Assam within which it is located. Its diverse faiths and beliefs have been appropriated by powerful legends to the dominant faith of the land. The temple has evolved from a cave temple to a complex of seventeen temples. The faith has evolved from the worship of water, an element of nature to the worship of the ten different forms of the goddess with their five male consorts or Bhairavas. Today, it represents and symbolizes the relationship of power and control out of which it has emerged. During different periods of occupation certain architectural and iconographical characters developed which indicated diffusion and cultural adaptation. Using this as sources and the epigraphical records this paper will analyze the interactive and dynamic processes which operated in the building of this cultural marker, the archaeological site of Kamakhya.Keywords: cultural adaptation and diffusion, cultural and historical landscape, Kamakhya, Saktism, temple art and architecture, historiography
Procedia PDF Downloads 25312305 Study of Parking Demand for Offices – Case Study: Kolkata
Authors: Sanghamitra Roy
Abstract:
In recent times, India has experienced the phenomenal rise in the number of registered vehicles and vehicular trips, particularly intra-city trips in most of its urban areas. The increase in vehicle ownership and use have increased parking demand immensely and accommodating the same is now a matter of big concern. Most cities do not have adequate off-street parking facilities thus forcing people to park on the streets. This has resulted in decreased carrying capacity, decreased traffic speed, increased congestion, and increased environmental problems. While integrated multi-modal transportation system is the answer to such problems, parking issues will continue to exist. In Kolkata, only 6.4% land is devoted for roads. The consequences of this huge crunch in road spaces coupled with increased parking demand are severe particularly in the CBD and major commercial areas, making the role of off-street parking facilities in Kolkata even more critical. To meaningfully address parking issues, it is important to identify the factors that influence parking demand so that it can be assessed and comprehensive parking policies and plans for the city can be formulated. This paper aims at identifying the factors that contribute towards parking demand for offices in Kolkata and their degree of correlation with parking demand. The study is limited to home-to-work trips located within Kolkata Municipal Corporation (KMC) where parking related issues are most pronounced. The data for the study is collected through personal interviews, questionnaires and direct observations from offices across the wards of KMC. SPSS is used for classification of the data and analyses of the same. The findings of this study will help in re-assessment of the parking requirements specified in The Kolkata Municipal Corporation Building Rules as a step towards alleviating parking related issues in the city.Keywords: building rules, office spaces, parking demand, urbanization
Procedia PDF Downloads 31812304 Preference Heterogeneity as a Positive Rather Than Negative Factor towards Acceptable Monitoring Schemes: Co-Management of Artisanal Fishing Communities in Vietnam
Authors: Chi Nguyen Thi Quynh, Steven Schilizzi, Atakelty Hailu, Sayed Iftekhar
Abstract:
Territorial Use Rights for Fisheries (TURFs) have been emerged as a promising tool for fisheries conservation and management. However, illegal fishing has undermined the effectiveness of TURFs, profoundly degrading global fish stocks and marine ecosystems. Conservation and management of fisheries, therefore, largely depends on effectiveness of enforcing fishing regulations, which needs co-enforcement by fishers. However, fishers tend to resist monitoring participation, as their views towards monitoring scheme design has not been received adequate attention. Fishers’ acceptability of a monitoring scheme is likely to be achieved if there is a mechanism allowing fishers to engage in the early planning and design stages. This study carried out a choice experiment with 396 fishers in Vietnam to elicit fishers’ preferences for monitoring scheme and to estimate the relative importance that fishers place on the key design elements. Preference heterogeneity was investigated using a Scale-Adjusted Latent Class Model that accounts for both preference and scale variance. Welfare changes associated with the proposed monitoring schemes were also examined. It is found that there are five distinct preference classes, suggesting that there is no one-size-fits-all scheme well-suited to all fishers. Although fishers prefer to be compensated more for their participation, compensation is not a driving element affecting fishers’ choice. Most fishers place higher value on other elements, such as institutional arrangements and monitoring capacity. Fishers’ preferences are driven by their socio-demographic and psychological characteristics. Understanding of how changes in design elements’ levels affect the participation of fishers could provide policy makers with insights useful for monitoring scheme designs tailored to the needs of different fisher classes.Keywords: Design of monitoring scheme, Enforcement, Heterogeneity, Illegal Fishing, Territorial Use Rights for Fisheries
Procedia PDF Downloads 32612303 Design and Development of Data Mining Application for Medical Centers in Remote Areas
Authors: Grace Omowunmi Soyebi
Abstract:
Data Mining is the extraction of information from a large database which helps in predicting a trend or behavior, thereby helping management make knowledge-driven decisions. One principal problem of most hospitals in rural areas is making use of the file management system for keeping records. A lot of time is wasted when a patient visits the hospital, probably in an emergency, and the nurse or attendant has to search through voluminous files before the patient's file can be retrieved; this may cause an unexpected to happen to the patient. This Data Mining application is to be designed using a Structured System Analysis and design method, which will help in a well-articulated analysis of the existing file management system, feasibility study, and proper documentation of the Design and Implementation of a Computerized medical record system. This Computerized system will replace the file management system and help to easily retrieve a patient's record with increased data security, access clinical records for decision-making, and reduce the time range at which a patient gets attended to.Keywords: data mining, medical record system, systems programming, computing
Procedia PDF Downloads 21312302 Artificial Intelligent Methodology for Liquid Propellant Engine Design Optimization
Authors: Hassan Naseh, Javad Roozgard
Abstract:
This paper represents the methodology based on Artificial Intelligent (AI) applied to Liquid Propellant Engine (LPE) optimization. The AI methodology utilized from Adaptive neural Fuzzy Inference System (ANFIS). In this methodology, the optimum objective function means to achieve maximum performance (specific impulse). The independent design variables in ANFIS modeling are combustion chamber pressure and temperature and oxidizer to fuel ratio and output of this modeling are specific impulse that can be applied with other objective functions in LPE design optimization. To this end, the LPE’s parameter has been modeled in ANFIS methodology based on generating fuzzy inference system structure by using grid partitioning, subtractive clustering and Fuzzy C-Means (FCM) clustering for both inferences (Mamdani and Sugeno) and various types of membership functions. The final comparing optimization results shown accuracy and processing run time of the Gaussian ANFIS Methodology between all methods.Keywords: ANFIS methodology, artificial intelligent, liquid propellant engine, optimization
Procedia PDF Downloads 59612301 Experimental Investigation on the Optimal Operating Frequency of a Thermoacoustic Refrigerator
Authors: Kriengkrai Assawamartbunlue, Channarong Wantha
Abstract:
This paper presents the effects of the mean operating pressure on the optimal operating frequency based on temperature differences across stack ends in a thermoacoustic refrigerator. In addition to the length of the resonance tube, components of the thermoacoustic refrigerator have an influence on the operating frequency due to their acoustic properties, i.e. absorptivity, reflectivity and transmissivity. The interference of waves incurs and distorts the original frequency generated by the driver so that the optimal operating frequency differs from the designs. These acoustic properties are not parameters in the designs and it is very complicated to infer their responses. A prototype thermoacoustic refrigerator is constructed and used to investigate its optimal operating frequency compared to the design at various operating pressures. Helium and air are used as working fluids during the experiments. The results indicate that the optimal operating frequency of the prototype thermoacoustic refrigerator using helium is at 6 bar and 490Hz or approximately 20% away from the design frequency. The optimal operating frequency at other mean pressures differs from the design in an unpredictable manner, however, the optimal operating frequency and pressure can be identified by testing.Keywords: acoustic properties, Carnot’s efficiency, interference of waves, operating pressure, optimal operating frequency, stack performance, standing wave, thermoacoustic refrigerator
Procedia PDF Downloads 48812300 Design of a Surveillance Drone with Computer Aided Durability
Authors: Maram Shahad Dana Anfal
Abstract:
This research paper presents the design of a surveillance drone with computer-aided durability and model analyses that provides a cost-effective and efficient solution for various applications. The quadcopter's design is based on a lightweight and strong structure made of materials such as aluminum and titanium, which provide a durable structure for the quadcopter. The structure of this product and the computer-aided durability system are both designed to ensure frequent repairs or replacements, which will save time and money in the long run. Moreover, the study discusses the drone's ability to track, investigate, and deliver objects more quickly than traditional methods, makes it a highly efficient and cost-effective technology. In this paper, a comprehensive analysis of the quadcopter's operation dynamics and limitations is presented. In both simulation and experimental data, the computer-aided durability system and the drone's design demonstrate their effectiveness, highlighting the potential for a variety of applications, such as search and rescue missions, infrastructure monitoring, and agricultural operations. Also, the findings provide insights into possible areas for improvement in the design and operation of the drone. Ultimately, this paper presents a reliable and cost-effective solution for surveillance applications by designing a drone with computer-aided durability and modeling. With its potential to save time and money, increase reliability, and enhance safety, it is a promising technology for the future of surveillance drones. operation dynamic equations have been evaluated successfully for different flight conditions of a quadcopter. Also, CAE modeling techniques have been applied for the modal risk assessment at operating conditions.Stress analysis have been performed under the loadings of the worst-case combined motion flight conditions.Keywords: drone, material, solidwork, hypermesh
Procedia PDF Downloads 15012299 3D Numerical Study of Tsunami Loading and Inundation in a Model Urban Area
Authors: A. Bahmanpour, I. Eames, C. Klettner, A. Dimakopoulos
Abstract:
We develop a new set of diagnostic tools to analyze inundation into a model district using three-dimensional CFD simulations, with a view to generating a database against which to test simpler models. A three-dimensional model of Oregon city with different-sized groups of building next to the coastline is used to run calculations of the movement of a long period wave on the shore. The initial and boundary conditions of the off-shore water are set using a nonlinear inverse method based on Eulerian spatial information matching experimental Eulerian time series measurements of water height. The water movement is followed in time, and this enables the pressure distribution on every surface of each building to be followed in a temporal manner. The three-dimensional numerical data set is validated against published experimental work. In the first instance, we use the dataset as a basis to understand the success of reduced models - including 2D shallow water model and reduced 1D models - to predict water heights, flow velocity and forces. This is because models based on the shallow water equations are known to underestimate drag forces after the initial surge of water. The second component is to identify critical flow features, such as hydraulic jumps and choked states, which are flow regions where dissipation occurs and drag forces are large. Finally, we describe how future tsunami inundation models should be modified to account for the complex effects of buildings through drag and blocking.Financial support from UCL and HR Wallingford is greatly appreciated. The authors would like to thank Professor Daniel Cox and Dr. Hyoungsu Park for providing the data on the Seaside Oregon experiment.Keywords: computational fluid dynamics, extreme events, loading, tsunami
Procedia PDF Downloads 11812298 Sustainable and Aesthetic Features of Traditional Architectures in Central Part of Iran
Authors: Azadeh Rezafar
Abstract:
Iran is one of the oldest countries with traditional culture in the world. All over the history Iranians had traditional architectural designs, which were at the same time sustainable, ecological, functional and environmental consistent. These human scale architectures were built for maximum use, comfort, climate adaptation with available resources and techniques. Climate variability of the country caused developing of variety design methods. More of these methods such as windcatchers in Yazd City or Panam (Insulation) were scientific solutions at the same time. Renewable energy resources were used in these methods that featured in them. While climate and ecological issues were dominant parts of these traditional designs, aesthetic and beauty issues were not ignored. Conformity with the community’s culture caused more compact designs that the visual aesthetics of them can be seen inside of them. Different organizations of space were used for these visual aesthetic issues inside the houses as well as historical urban designs. For example dry and hot climates in central parts of the country designed with centralized organization. Most central parts of these designs functioned as a courtyard for temperate the air in the summer. This paper will give summary descriptive information about traditional Iranian architectural style by figures all around the country with different climate conditions, while focus of the paper is traditional architectural design of the central part of the country, with dry and hot climate condition. This information may be useful for contemporary architectural designs, which are designed without noticing to the vernacular condition and caused cities look like each other.Keywords: architectural design, traditional design, Iran, sustainability
Procedia PDF Downloads 22912297 Performance Evaluation of a Millimeter-Wave Phased Array Antenna Using Circularly Polarized Elements
Authors: Rawad Asfour, Salam Khamas, Edward A. Ball
Abstract:
This paper is focused on the design of an mm-wave phased array. To date, linear polarization is adapted in the reported designs of phased arrays. However, linear polarization faces several well-known challenges. As such, an advanced design for phased array antennas is required that offers circularly polarized (CP) radiation. A feasible solution for achieving CP phased array antennas is proposed using open-circular loop antennas. To this end, a 3-element circular loop phased array antenna is designed to operate at 28GHz. In addition, the array ability to control the direction of the main lobe is investigated. The results show that the highest achievable field of view (FOV) is 100°, i.e., 50° to the left and 50° to the right-hand side directions. The results are achieved with a CP bandwidth of 15%. Furthermore, the results demonstrate that a high broadside gain of circa 11 dBi can be achieved for the steered beam. Besides, a radiation efficiency of 97 % can also be achieved based on the proposed design.Keywords: loop antenna, phased array, beam steering, wide bandwidth, circular polarization, CST
Procedia PDF Downloads 30512296 Modeling and Optimization of Performance of Four Stroke Spark Ignition Injector Engine
Authors: A. A. Okafor, C. H. Achebe, J. L. Chukwuneke, C. G. Ozoegwu
Abstract:
The performance of an engine whose basic design parameters are known can be predicted with the assistance of simulation programs into the less time, cost and near value of actual. This paper presents a comprehensive mathematical model of the performance parameters of four stroke spark ignition engine. The essence of this research work is to develop a mathematical model for the analysis of engine performance parameters of four stroke spark ignition engine before embarking on full scale construction, this will ensure that only optimal parameters are in the design and development of an engine and also allow to check and develop the design of the engine and it’s operation alternatives in an inexpensive way and less time, instead of using experimental method which requires costly research test beds. To achieve this, equations were derived which describe the performance parameters (sfc, thermal efficiency, mep and A/F). The equations were used to simulate and optimize the engine performance of the model for various engine speeds. The optimal values obtained for the developed bivariate mathematical models are: sfc is 0.2833kg/kwh, efficiency is 28.77% and a/f is 20.75.Keywords: bivariate models, engine performance, injector engine, optimization, performance parameters, simulation, spark ignition
Procedia PDF Downloads 33312295 Design of Uniform Spray Nozzle and Simulation of Carrier Gas Flow Rate Distribution for FTO Thin Film Fabrication Process
Authors: HyeSuk Ri, HyonChol Kim, NamChol Yu
Abstract:
The FTO thin films were deposited on 15 cm × 15 cm glass substrates by ultrasonic spray pyrolysis, and the influence of process parameters on the film properties was investigated. This paper is the first report on the design of a uniform nozzle and simulating the carrier gas flow characteristics in an ultrasonic spray pyrolysis process. The uniformity of FTO films was evaluated by surface resistivity. The structure, surface morphology and optical properties of FTO films were investigated using scanning electron microscopy, X-ray diffraction, and UV-Vis spectroscopy. The process conditions for film preparation were SnCl₄ concentration of 1.34 mol, NH₄F concentration of 0.08 mol, temperature of 500 °C, deposition time of 15 min, carrier gas flow rate of 3 m/s, distance between nozzle and substrate of 0.7 cm. The transmittance of the fabricated FTO films was 80%, the surface resistance showed a uniform behavior at 14-15Ω/cm² and the X-ray analysis showed a high orientation of SnO₂ crystals in the 200-plane. SEM analysis showed that the crystallite size was constant.Keywords: nozzle design, FTO film, simulation, ultrasonic spray pyrolysis
Procedia PDF Downloads 2012294 Rights-Based Approach to Artificial Intelligence Design: Addressing Harm through Participatory ex ante Impact Assessment
Authors: Vanja Skoric
Abstract:
The paper examines whether the impacts of artificial intelligence (AI) can be meaningfully addressed through the rights-based approach to AI design, investigating in particular how the inclusive, participatory process of assessing the AI impact would make this viable. There is a significant gap between envisioning rights-based AI systems and their practical application. Plausibly, internalizing human rights approach within AI design process might be achieved through identifying and assessing implications of AI features human rights, especially considering the case of vulnerable individuals and communities. However, there is no clarity or consensus on how such an instrument should be operationalised to usefully identify the impact, mitigate harms and meaningfully ensure relevant stakeholders’ participation. In practice, ensuring the meaningful inclusion of those individuals, groups, or entire communities who are affected by the use of the AI system is a prerequisite for a process seeking to assess human rights impacts and risks. Engagement in the entire process of the impact assessment should enable those affected and interested to access information and better understand the technology, product, or service and resulting impacts, but also to learn about their rights and the respective obligations and responsibilities of developers and deployers to protect and/or respect these rights. This paper will provide an overview of the study and practice of the participatory design process for AI, including inclusive impact assessment, its main elements, propose a framework, and discuss the lessons learned from the existing theory. In addition, it will explore pathways for enhancing and promoting individual and group rights through such engagement by discussing when, how, and whom to include, at which stage of the process, and what are the pre-requisites for meaningful and engaging. The overall aim is to ensure using the technology that works for the benefit of society, individuals, and particular (historically marginalised) groups.Keywords: rights-based design, AI impact assessment, inclusion, harm mitigation
Procedia PDF Downloads 15512293 Influence of the Quality Differences in the Same Type of Bitumen and Dosage Rate of Reclaimed Asphalt on Lifetime
Authors: Pahirangan Sivapatham, , Esser Barbara
Abstract:
The impacts of the asphalt mix design, the properties of aggregates and quality differences in the same type of bitumen, as well as the dosage rate of reclaimed asphalt on the relevant material parameter of the analytical pavement design method are not known. Due to that, in this study, the influence of the above mentioned characteristics on relevant material parameters has been determined and analyzed by means of the analytical pavement calculations method. Therefore, material parameters for several asphalt mixes for asphalt wearing course, asphalt binder course and asphalt base course have been determined. Thereby several bitumens of the same type from different producer’s have been used. In addition, asphalt base course materials with three different dosages of reclaimed asphalt have been produced and tested. As material parameter according to the German analytical pavement design guide(RDO Asphalt), the stiffness’s at different temperatures and fatigue behavior have been determined. The findings of asphalt base course materials produced with several pen graded bitumen from different producers and different dosages of reclaimed asphalt indicate the distinct impact on fatigue behaviors and mechanical properties. The calculated test results of the analytical pavement design method show significant differences in the lifetimes. The pavement design calculation is to carry out by means of the actual material parameter. The calculated lifetime of the asphalt base course materials differentiates by the factor 3.2. The determining test results of bitumen characteristics meet the requirement according to the German Standards. But, further investigations of bitumen in different aging conditions show significant differences in their quality. The fatigue behavior and stiffness of asphalt pavement improves with increasing dosage of reclaimed asphalt. Furthermore, the type of aggregates used shows no significant influences.Keywords: reclaimed asphalt pavement, quality differences in the bitumen, life time calculation, Asphalt mix with RAP
Procedia PDF Downloads 19212292 Research Design for Developing and Validating Ice-Hockey Team Diagnostics Scale
Authors: Gergely Geczi
Abstract:
In the modern world, ice hockey (and, in a broader sense, team sports) is becoming an increasingly popular field of entertainment. Although the main element is most likely perceived as the show itself, winning is an inevitable part of the successful operation of any sports team. In this paper, the author creates a research design allowing him to develop and validate an ice-hockey team-focused diagnostics scale, which enables researchers and practitioners to identify the problems associated with underperforming teams. The construction of the scale starts with personal interviews with experts of the field, carefully chosen from the sector of Hungarian ice hockey. Based on the interviews, the author is shown to be in the position to create the categories and the relevant items for the scale. When constructed, the next step is the validation process on a Hungarian sample. Data for validation are acquired through reaching the licensed database of the Hungarian Ice-Hockey Federation involving Hungarian ice-hockey coaches and players. The Ice-Hockey Team Diagnostics Scale is to be created to orient practitioners in understanding both effective and underperforming teamwork.Keywords: diagnostics scale, effective versus underperforming team work, ice-hockey, research design
Procedia PDF Downloads 13512291 A Novel Antenna Design for Telemedicine Applications
Authors: Amar Partap Singh Pharwaha, Shweta Rani
Abstract:
To develop a reliable and cost effective communication platform for the telemedicine applications, novel antenna design has been presented using bacterial foraging optimization (BFO) technique. The proposed antenna geometry is achieved by etching a modified Koch curve fractal shape at the edges and a square shape slot at the center of the radiating element of a patch antenna. It has been found that the new antenna has achieved 43.79% size reduction and better resonating characteristic than the original patch. Representative results for both simulations and numerical validations are reported in order to assess the effectiveness of the developed methodology.Keywords: BFO, electrical permittivity, fractals, Koch curve
Procedia PDF Downloads 51012290 Primary Study of the Impact of the Riverfront Urban Transformations Inside Egyptian Cities in Future Urban Design Process: Case Study of North Asyut City
Authors: Islam Abouelhamd
Abstract:
Rives have long been recognized as one of the most important natural resources, They are important to ensure human health, civilization, and sustainable development, and the importance of rivers as the focal point of cities was established from the early times of civilization and will remain so. Urban design of Riverfront has been an issue of wide concern and extensive discussion since the 1970s, however, Cities seek a riverfront that is a place of public enjoyment, They want a Riverfront where there is ample visual and physical public access to both the water and the land, they want a place that contributes to the quality of life in all of its aspects; economic, social, and cultural, on another hand, Successful urban design of Riverfront requires an understanding of development processes, dimensions of urban design and an appreciation of the distinctiveness of Riverfront locations. A close association between cities and river is inherently over the history of civilization, and in fact, many urban cities in Egypt are located close to Nile River areas. Always trying to use the land closer to the river to take advantage of the benefits it provides, And in spite of the significant role played by the littoral fronts in the life of the city, the riverfronts have remained generally in Egypt and especially in Asyut city neglected. According to the knowledge gained from the literature review, review of case studies and the historical researches of Asyut Riverfront, this research aims to identify the urban transformations of Asyut riverfront and expect the Opportunities and Challenges which will play an important part of the future urban design issues and researches will prepare, especially in the case study area (northern areas of Asyut riverfront). After that, the case study data, historical framework and International experiences were collected and analyzed to Produce Primary indicators of the expectations of the riverfront urban design process inside the case study area, In addition to preparing the conclusions of the theoretical framework and recommendations for the paper.Keywords: civilization, sustainable development, riverfront, urban transformations
Procedia PDF Downloads 18012289 Optimization of Lercanidipine Nanocrystals Using Design of Experiments Approach
Authors: Dolly Gadhiya, Jayvadan Patel, Mihir Raval
Abstract:
Lercanidipine hydrochloride is a calcium channel blockers used for treating angina pectoris and hypertension. Lercanidipine is a BCS Class II drug having poor aqueous solubility. Absolute bioavailability of Lercanidipine is very low and the main reason ascribed for this is poor aqueous solubility of the drug. Design and formulatation of nanocrystals by media milling method was main focus of this study. In this present study preliminary optimization was carried out with one factor at a time (OFAT) approach. For this different parameters like size of milling beads, amount of zirconium beads, types of stabilizer, concentrations of stabilizer, concentrations of drug, stirring speeds and milling time were optimized on the basis of particle size, polydispersity index and zeta potential. From the OFAT model different levels for above parameters selected for Plackett - Burman Design (PBD). Plackett-Burman design having 13 runs involving 6 independent variables was carried out at higher and lower level. Based on statistical analysis of PBD it was found that concentration of stabilizer, concentration of drug and stirring speed have significant impact on particle size, PDI, zeta potential value and saturation solubility. These experimental designs for preparation of nanocrystals were applied successfully which shows increase in aqueous solubility and dissolution rate of Lercanidipine hydrochloride.Keywords: Lercanidipine hydrochloride, nanocrystals, OFAT, Plackett Burman
Procedia PDF Downloads 20912288 Food Package Design To Preserve The Food Temperature
Authors: Sugiono, Wuwus Ardiatna, Himma Firdaus, Nanang Kusnandar, Bayu Utomo, Jimmy Abdel Kadar
Abstract:
This study was aimed to explore the best design of single-used hot food packaging through various package designs. It examined how designed packages keep some local hot food reasonably longer than standard packages. The food packages were realized to consist of the outer and the inner layers of food-grade materials. The packages were evaluated to keep the hot food decreased to the minimum temperature of safe food. This study revealed a significant finding that the transparent plastic box with thin film aluminum foil is the best package.Keywords: hot food, local food, one used, packaging, aluminum foil
Procedia PDF Downloads 15312287 The Interaction of Country-of-Manufacturing with Country-of-Design within Different Consumption Context
Authors: Ebru Genc, Shih-Ching Wang
Abstract:
In today’s globalized world, while companies move their production centers to developing countries in order to gain cost advantage, they receive negative responses from consumers because of the weak image of those countries. In this study, we looked at this tradeoff faced by multinational companies. Some companies that have headquarters in developed countries have devised a strategy of manipulating country-of-origin (COO) information by introducing the concept of country of design (COD). We analyzed the impact of country-of-manufacturing (COM) information on consumers’ product evaluation and purchase intention in the presence of different levels of COD information, namely, in terms of developed and developing countries. We found that it is not advantageous for a firm to publish a design location with a strong image if the firm is producing in a country that has a weak image. On the other hand, revealing COD information has a reinforcing effect on consumers’ product evaluation and purchase intention if the firm is producing in a country with a strong image. Second, we studied the impact of consumption context on this relationship (in terms of public or private use) and found that for products that are typically used in public, COM has significantly shown higher importance on product evaluation and purchase intention, compared to products typically used in private. However, our results show that consumption context shows no effect of an impact resulting from COD information.Keywords: consumption context, country of design, country of manufacturing, country of origin
Procedia PDF Downloads 25412286 Service Life Study of Polymers Used in Renovation of Heritage Buildings and Other Structures
Authors: Parastou Kharazmi
Abstract:
Degradation of building materials particularly pipelines causes environmental damage during renovation or replacement and is a time consuming and costly process. Rehabilitation by polymer composites is a solution for renovation of degraded pipeline in heritage buildings and other structures which are less costly, faster and causes less damage to the environment; however, it is still not clear for how long these materials can perform as expected in the field and working condition. To study their service life, two types of composites based on Epoxy and Polyester resins have been evaluated by accelerated exposure and field exposure. The primary degradation agent used in accelerated exposure has been cycling temperature with half of the tests performed in presence of water. Thin films of materials used in accelerated testing were prepared in laboratory by using the same amount of material as well as technique of multi-layers application used in majority of the field installations. Extreme intensity levels of degradation agents have been used only to evaluate materials properties and as also mentioned in ISO 15686, are not directly correlated with degradation mechanisms that would be experienced in service. In the field exposure study, the focus has been to identify possible failure modes, causes, and effects. In field exposure, it has been observed that there are other degradation agents present which can be investigated further such as presence of contaminants and rust before application which prevents formation of a uniform layer of polymer or incompatibility between dissimilar materials. This part of the study also highlighted the importance of application’s quality of the materials in the field for providing the expected performance and service life. Results from extended accelerated exposure and field exposure can help in choosing inspection techniques, establishing the primary degradation agents and can be used for ageing exposure programs with clarifying relationship between different exposure periods and sites.Keywords: building, renovation, service life, pipelines
Procedia PDF Downloads 19212285 Sensor and Sensor System Design, Selection and Data Fusion Using Non-Deterministic Multi-Attribute Tradespace Exploration
Authors: Matthew Yeager, Christopher Willy, John Bischoff
Abstract:
The conceptualization and design phases of a system lifecycle consume a significant amount of the lifecycle budget in the form of direct tasking and capital, as well as the implicit costs associated with unforeseeable design errors that are only realized during downstream phases. Ad hoc or iterative approaches to generating system requirements oftentimes fail to consider the full array of feasible systems or product designs for a variety of reasons, including, but not limited to: initial conceptualization that oftentimes incorporates a priori or legacy features; the inability to capture, communicate and accommodate stakeholder preferences; inadequate technical designs and/or feasibility studies; and locally-, but not globally-, optimized subsystems and components. These design pitfalls can beget unanticipated developmental or system alterations with added costs, risks and support activities, heightening the risk for suboptimal system performance, premature obsolescence or forgone development. Supported by rapid advances in learning algorithms and hardware technology, sensors and sensor systems have become commonplace in both commercial and industrial products. The evolving array of hardware components (i.e. sensors, CPUs, modular / auxiliary access, etc…) as well as recognition, data fusion and communication protocols have all become increasingly complex and critical for design engineers during both concpetualization and implementation. This work seeks to develop and utilize a non-deterministic approach for sensor system design within the multi-attribute tradespace exploration (MATE) paradigm, a technique that incorporates decision theory into model-based techniques in order to explore complex design environments and discover better system designs. Developed to address the inherent design constraints in complex aerospace systems, MATE techniques enable project engineers to examine all viable system designs, assess attribute utility and system performance, and better align with stakeholder requirements. Whereas such previous work has been focused on aerospace systems and conducted in a deterministic fashion, this study addresses a wider array of system design elements by incorporating both traditional tradespace elements (e.g. hardware components) as well as popular multi-sensor data fusion models and techniques. Furthermore, statistical performance features to this model-based MATE approach will enable non-deterministic techniques for various commercial systems that range in application, complexity and system behavior, demonstrating a significant utility within the realm of formal systems decision-making.Keywords: multi-attribute tradespace exploration, data fusion, sensors, systems engineering, system design
Procedia PDF Downloads 19112284 Study of the Diaphragm Flexibility Effect on the Inelastic Seismic Response of Thin Wall Reinforced Concrete Buildings (TWRCB): A Purpose to Reduce the Uncertainty in the Vulnerability Estimation
Authors: A. Zapata, Orlando Arroyo, R. Bonett
Abstract:
Over the last two decades, the growing demand for housing in Latin American countries has led to the development of construction projects based on low and medium-rise buildings with thin reinforced concrete walls. This system, known as Thin Walls Reinforced Concrete Buildings (TWRCB), uses walls with thicknesses from 100 to 150 millimetres, with flexural reinforcement formed by welded wire mesh (WWM) with diameters between 5 and 7 millimetres, arranged in one or two layers. These walls often have irregular structural configurations, including combinations of rectangular shapes. Experimental and numerical research conducted in regions where this structural system is commonplace indicates inherent weaknesses, such as limited ductility due to the WWM reinforcement and thin element dimensions. Because of its complexity, numerical analyses have relied on two-dimensional models that don't explicitly account for the floor system, even though it plays a crucial role in distributing seismic forces among the resilient elements. Nonetheless, the numerical analyses assume a rigid diaphragm hypothesis. For this purpose, two study cases of buildings were selected, low-rise and mid-rise characteristics of TWRCB in Colombia. The buildings were analyzed in Opensees using the MVLEM-3D for walls and shell elements to simulate the slabs to involve the effect of coupling diaphragm in the nonlinear behaviour. Three cases are considered: a) models without a slab, b) models with rigid slabs, and c) models with flexible slabs. An incremental static (pushover) and nonlinear dynamic analyses were carried out using a set of 44 far-field ground motions of the FEMA P-695, scaled to 1.0 and 1.5 factors to consider the probability of collapse for the design base earthquake (DBE) and the maximum considered earthquake (MCE) for the model, according to the location sites and hazard zone of the archetypes in the Colombian NSR-10. Shear base capacity, maximum displacement at the roof, walls shear base individual demands and probabilities of collapse were calculated, to evaluate the effect of absence, rigid and flexible slabs in the nonlinear behaviour of the archetype buildings. The pushover results show that the building exhibits an overstrength between 1.1 to 2 when the slab is considered explicitly and depends on the structural walls plan configuration; additionally, the nonlinear behaviour considering no slab is more conservative than if the slab is represented. Include the flexible slab in the analysis remarks the importance to consider the slab contribution in the shear forces distribution between structural elements according to design resistance and rigidity. The dynamic analysis revealed that including the slab reduces the collapse probability of this system due to have lower displacements and deformations, enhancing the safety of residents and the seismic performance. The strategy of including the slab in modelling is important to capture the real effect on the distribution shear forces in walls due to coupling to estimate the correct nonlinear behaviour in this system and the adequate distribution to proportionate the correct resistance and rigidity of the elements in the design to reduce the possibility of damage to the elements during an earthquake.Keywords: thin wall reinforced concrete buildings, coupling slab, rigid diaphragm, flexible diaphragm
Procedia PDF Downloads 7812283 Cybersecurity Engineering BS Degree Curricula Design Framework and Assessment
Authors: Atma Sahu
Abstract:
After 9/11, there will only be cyberwars. The cyberwars increase in intensity the country's cybersecurity workforce's hiring and retention issues. Currently, many organizations have unfilled cybersecurity positions, and to a lesser degree, their cybersecurity teams are understaffed. Therefore, there is a critical need to develop a new program to help meet the market demand for cybersecurity engineers (CYSE) and personnel. Coppin State University in the United States was responsible for developing a cybersecurity engineering BS degree program. The CYSE curriculum design methodology consisted of three parts. First, the ACM Cross-Cutting Concepts standard's pervasive framework helped curriculum designers and students explore connections among the core courses' knowledge areas and reinforce the security mindset conveyed in them. Second, the core course context was created to assist students in resolving security issues in authentic cyber situations involving cyber security systems in various aspects of industrial work while adhering to the NIST standards framework. The last part of the CYSE curriculum design aspect was the institutional student learning outcomes (SLOs) integrated and aligned in content courses, representing more detailed outcomes and emphasizing what learners can do over merely what they know. The CYSE program's core courses express competencies and learning outcomes using action verbs from Bloom's Revised Taxonomy. This aspect of the CYSE BS degree program's design is based on these three pillars: the ACM, NIST, and SLO standards, which all CYSE curriculum designers should know. This unique CYSE curriculum design methodology will address how students and the CYSE program will be assessed and evaluated. It is also critical that educators, program managers, and students understand the importance of staying current in this fast-paced CYSE field.Keywords: cyber security, cybersecurity engineering, systems engineering, NIST standards, physical systems
Procedia PDF Downloads 9912282 Design and Performance Analysis of a Hydro-Power Rim-Driven Superconducting Synchronous Generator
Authors: A. Hassannia, S. Ramezani
Abstract:
The technology of superconductivity has developed in many power system devices such as transmission cable, transformer, current limiter, motor and generator. Superconducting wires can carry high density current without loss, which is the capability that is used to design the compact, lightweight and more efficient electrical machines. Superconducting motors have found applications in marine and air propulsion systems as well as superconducting generators are considered in low power hydraulic and wind generators. This paper presents a rim-driven superconducting synchronous generator for hydraulic power plant. The rim-driven concept improves the performance of hydro turbine. Furthermore, high magnetic field that is produced by superconducting windings allows replacing the rotor core. As a consequent, the volume and weight of the machine is decreased significantly. In this paper, a 1 MW coreless rim-driven superconducting synchronous generator is designed. Main performance characteristics of the proposed machine are then evaluated using finite elements method and compared to an ordinary similar size synchronous generator.Keywords: coreless machine, electrical machine design, hydraulic generator, rim-driven machine, superconducting generator
Procedia PDF Downloads 17912281 Exploring the Challenges of Post-conflict Peacebuilding in the Border Districts of Eastern Zone of Tigray Region
Authors: Gebreselassie Sebhatleab
Abstract:
According to the Global Peace Index report (GPI, 2023), global peacefulness has deteriorated by more than 0.42%. Old and new conflicts, COVID-19, and political and cultural polarization are the main drivers of conflicts in the world. The 2022 was the deadliest year for armed conflict in the history of the GPI. In Ethiopia, over half a million people died in the Tigray war, which was the largest conflict death event since the 1994 Rwandan genocide. In total, 84 countries recorded an improvement, while 79 countries recorded a deterioration in peacefulness across the globe. The Russia-Ukraine war and its consequences were the main drivers of the deterioration in peacefulness globally. Both Russia and Ukraine are now ranked amongst the ten least peaceful countries, and Ukraine had the largest deterioration of any country in the 2023 GPI. In the same year, the global impact of violence on the economy was 17 percent, which was equivalent to 10.9% of global GDP. Besides, the brutal conflict in Tigray started in November. 2020 claimed more than half a million lives lost and displaced nearly 3 million people, along with widespread human rights violations and sexual violence has left deep damage on the population. The displaced people are still unable to return home because the western, southern and Eastern parts of Tigray are occupied by Eritrean and Amhara forces, despite the Pretoria Agreement. Currently, armed conflicts in Amhara in the Oromya regions are intensified, and human rights violations are being reported in both regions. Meanwhile, protests have been held by war-injured TDF members, IDPs and teachers in the Tigray region. Hence, the general objective of this project is to explore the challenges of peace-building processes in the border woredas of the Eastern Zone of the Tigray Region. Methodologically, the project will employ exploratory qualitative research designs to gather and analyze qualitative data. A purposive sampling technique will be applied to gather pertinent information from the key stakeholders. Open-ended interview questions will be prepared to gather relevant information about the challenges and perceptions of peacebuilding in the study area. Data will be analyzed using qualitative methods such as content analysis, narrative analysis and phenomenological analysis to deeply investigate the challenges of peace-building in the study woredas. Findings of this research project will be employed for program intervention to promote sustainable peace in the study area.Keywords: peace building, conflcit and violence, political instability, insecurity
Procedia PDF Downloads 4712280 Performance Evaluation of a Very High-Resolution Satellite Telescope
Authors: Walid A. Attia, Taher M. Bazan, Fawzy Eltohamy, Mahmoud Fathy
Abstract:
System performance evaluation is an essential stage in the design of high-resolution satellite telescopes prior to the development process. In this paper, a system performance evaluation of a very high-resolution satellite telescope is investigated. The evaluated system has a Korsch optical scheme design. This design has been discussed in another paper with respect to three-mirror anastigmat (TMA) scheme design and the former configuration showed better results. The investigated system is based on the Korsch optical design integrated with a time-delay and integration charge coupled device (TDI-CCD) sensor to achieve a ground sampling distance (GSD) of 25 cm. The key performance metrics considered are the spatial resolution, the signal to noise ratio (SNR) and the total modulation transfer function (MTF) of the system. In addition, the national image interpretability rating scale (NIIRS) metric is assessed to predict the image quality according to the modified general image quality equation (GIQE). Based on the orbital, optical and detector parameters, the estimated GSD is found to be 25 cm. The SNR has been analyzed at different illumination conditions of target albedos, sun and sensor angles. The system MTF has been computed including diffraction, aberration, optical manufacturing, smear and detector sampling as the main contributors for evaluation the MTF. Finally, the system performance evaluation results show that the computed MTF value is found to be around 0.08 at the Nyquist frequency, the SNR value was found to be 130 at albedo 0.2 with a nadir viewing angles and the predicted NIIRS is in the order of 6.5 which implies a very good system image quality.Keywords: modulation transfer function, national image interpretability rating scale, signal to noise ratio, satellite telescope performance evaluation
Procedia PDF Downloads 387