Search results for: Wireless Sensor Networks (WSN)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4356

Search results for: Wireless Sensor Networks (WSN)

1296 Integrating Data Mining within a Strategic Knowledge Management Framework: A Platform for Sustainable Competitive Advantage within the Australian Minerals and Metals Mining Sector

Authors: Sanaz Moayer, Fang Huang, Scott Gardner

Abstract:

In the highly leveraged business world of today, an organisation’s success depends on how it can manage and organize its traditional and intangible assets. In the knowledge-based economy, knowledge as a valuable asset gives enduring capability to firms competing in rapidly shifting global markets. It can be argued that ability to create unique knowledge assets by configuring ICT and human capabilities, will be a defining factor for international competitive advantage in the mid-21st century. The concept of KM is recognized in the strategy literature, and increasingly by senior decision-makers (particularly in large firms which can achieve scalable benefits), as an important vehicle for stimulating innovation and organisational performance in the knowledge economy. This thinking has been evident in professional services and other knowledge intensive industries for over a decade. It highlights the importance of social capital and the value of the intellectual capital embedded in social and professional networks, complementing the traditional focus on creation of intellectual property assets. Despite the growing interest in KM within professional services there has been limited discussion in relation to multinational resource based industries such as mining and petroleum where the focus has been principally on global portfolio optimization with economies of scale, process efficiencies and cost reduction. The Australian minerals and metals mining industry, although traditionally viewed as capital intensive, employs a significant number of knowledge workers notably- engineers, geologists, highly skilled technicians, legal, finance, accounting, ICT and contracts specialists working in projects or functions, representing potential knowledge silos within the organisation. This silo effect arguably inhibits knowledge sharing and retention by disaggregating corporate memory, with increased operational and project continuity risk. It also may limit the potential for process, product, and service innovation. In this paper the strategic application of knowledge management incorporating contemporary ICT platforms and data mining practices is explored as an important enabler for knowledge discovery, reduction of risk, and retention of corporate knowledge in resource based industries. With reference to the relevant strategy, management, and information systems literature, this paper highlights possible connections (currently undergoing empirical testing), between an Strategic Knowledge Management (SKM) framework incorporating supportive Data Mining (DM) practices and competitive advantage for multinational firms operating within the Australian resource sector. We also propose based on a review of the relevant literature that more effective management of soft and hard systems knowledge is crucial for major Australian firms in all sectors seeking to improve organisational performance through the human and technological capability captured in organisational networks.

Keywords: competitive advantage, data mining, mining organisation, strategic knowledge management

Procedia PDF Downloads 418
1295 Design and Development of a Safety Equipment and Accessory for Bicycle Users

Authors: Francine Siy, Stephen Buñi

Abstract:

Safety plays a significant role in everyone’s life on a day-to-day basis. We wish ourselves and our loved ones their safety as we all venture out on our daily commute. The road is undeniably dangerous and unpredictable, with abundant traffic collisions and pedestrians experiencing various injuries. For bicycle users, the risk of accidents is even more exacerbated, and injuries may be severe. Even when cyclists try their best to be safe and protected, the possibility of encountering danger is always there. Despite being equipped with protective gear, safety is never guaranteed. Cyclists often settle for helmets and standard reflector vests to establish a presence on the road. There are different types of vests available, depending on the profession. However, traditional reflector vests, mostly seen on construction workers and traffic enforcers, were not designed for riders and their protection from injuries. With insufficient protection for riders, they need access to ergonomically designed equipment and accessories that suit the riders and cater to their needs. This research aimed to offer a protective vest with safety features for riders that is comfortable, effective, durable, and intuitive. This sheds light and addresses the safety of the biker population, which continuously grows through the years. The product was designed and developed by gathering data and using the cognitive mapping method to ensure that all qualitative and quantitative data were considered in this study to improve other existing products that do not have the proper design considerations. It is known that available equipment for cyclists is often sold separately or lacks the safety features for cyclists traversing open roads. Each safety feature like the headlights, reflectors, signal or rear lights, zipper pouch, body camera attachment, and wireless remote control all play a particular role in helping cyclists embark on their daily commute. These features aid in illumination, visibility, easy maneuvering, convenience, and security, allowing cyclists to go for a safer ride that is of use throughout the day. The product is designed and produced effectively and inexpensively without sacrificing the quality and purpose of its usage.

Keywords: bicycle accessory, protective gear, safety, transport, visibility

Procedia PDF Downloads 85
1294 Medical Knowledge Management since the Integration of Heterogeneous Data until the Knowledge Exploitation in a Decision-Making System

Authors: Nadjat Zerf Boudjettou, Fahima Nader, Rachid Chalal

Abstract:

Knowledge management is to acquire and represent knowledge relevant to a domain, a task or a specific organization in order to facilitate access, reuse and evolution. This usually means building, maintaining and evolving an explicit representation of knowledge. The next step is to provide access to that knowledge, that is to say, the spread in order to enable effective use. Knowledge management in the medical field aims to improve the performance of the medical organization by allowing individuals in the care facility (doctors, nurses, paramedics, etc.) to capture, share and apply collective knowledge in order to make optimal decisions in real time. In this paper, we propose a knowledge management approach based on integration technique of heterogeneous data in the medical field by creating a data warehouse, a technique of extracting knowledge from medical data by choosing a technique of data mining, and finally an exploitation technique of that knowledge in a case-based reasoning system.

Keywords: data warehouse, data mining, knowledge discovery in database, KDD, medical knowledge management, Bayesian networks

Procedia PDF Downloads 401
1293 Exploring the Situational Approach to Decision Making: User eConsent on a Health Social Network

Authors: W. Rowan, Y. O’Connor, L. Lynch, C. Heavin

Abstract:

Situation Awareness can offer the potential for conscious dynamic reflection. In an era of online health data sharing, it is becoming increasingly important that users of health social networks (HSNs) have the information necessary to make informed decisions as part of the registration process and in the provision of eConsent. This research aims to leverage an adapted Situation Awareness (SA) model to explore users’ decision making processes in the provision of eConsent. A HSN platform was used to investigate these behaviours. A mixed methods approach was taken. This involved the observation of registration behaviours followed by a questionnaire and focus group/s. Early results suggest that users are apt to automatically accept eConsent, and only later consider the long-term implications of sharing their personal health information. Further steps are required to continue developing knowledge and understanding of this important eConsent process. The next step in this research will be to develop a set of guidelines for the improved presentation of eConsent on the HSN platform.

Keywords: eConsent, health social network, mixed methods, situation awareness

Procedia PDF Downloads 298
1292 General Awareness of Teenagers in Information Security

Authors: Magdaléna Náplavová, Tomáš Ludík, Petr Hrůza, František Božek

Abstract:

The use of IT equipment has become a part of every day. However, each device that is part of cyberspace should be secured against unauthorized use. It is very important to know the basics of these security devices, but also the basics of safe conduct their owners. This information should be part of every curriculum computer science education in primary and secondary schools. Therefore, the work focuses on the education of pupils in primary and secondary schools on the Internet. Analysis of the current state describes approaches to the education of pupils in security issues on the Internet. The paper presents a questionnaire-based survey which was carried out in the Czech Republic, whose task was to ascertain the level of opinion pupils in primary and secondary schools on the issue of communication in social networks. The research showed that awareness of socio-pathological phenomena on the Internet environment is very low. Based on the results it was proposed appropriate ways of teaching to this issue and its inclusion a proposal of curriculum for primary and secondary schools.

Keywords: information security, cyber space, general awareness, questionnaire, socio-pathological phenomena, educational system

Procedia PDF Downloads 397
1291 The Feasibility and Usability of Antennas Silence Zone for Localization and Path Finding

Authors: S. Malebary, W. Xu

Abstract:

Antennas are important components that enable transmitting and receiving signals in mid-air (wireless). The radiation pattern of omni-directional (i.e., dipole) antennas, reflects the variation of power radiated by an antenna as a function of direction when transmitting. As the performance of the antenna is the same in transmitting and receiving, it also reflects the sensitivity of the antenna in different directions when receiving. The main observation when dealing with omni-directional antennas, regardless the application, is they equally radiate power in all directions in reference to Equivalent Isotropically Radiated Power (EIRP). Disseminating radio frequency signals in an omni-directional manner form a doughnut-shape-field with a cone in the middle of the elevation plane (when mounted vertically). In this paper, we investigate the existence of this physical phenomena namely silence cone zone (the zone where radiated power is nulled). First, we overview antenna types and properties that have the major impact on the shape of the electromagnetic field. Then we model various off the shelf dipoles in Matlab based on antennas’ features (dimensions, gain, operating frequency, … etc.) and compare the resulting radiation patterns. After that, we validate the existence of the null zone in Omni-directional antennas by conducting experiments and generating waveforms (using USRP1 and USRP2) at various frequencies using different types of antennas and gains in indoor/outdoor. We capture the generated waveforms around antennas' null zone in the reactive, near, and far field with a spectrum analyzer mounted on a drone, using various off the shelf antennas. We analyze the captured signals in RF-Explorer and plot the impact on received power and signal amplitude inside and around the null zone. Finally, it is concluded from evaluation and measurements the existence of null zones in Omni-directional antennas which we plan on extending this work in the near future to investigate the usability of the null zone for various applications such as localization and path finding.

Keywords: antennas, amplitude, field regions, frequency, FSPL, omni-directional, radiation pattern, RSSI, silence zone cone

Procedia PDF Downloads 306
1290 Longitudinal Study of the Phenomenon of Acting White in Hungarian Elementary Schools Analysed by Fixed and Random Effects Models

Authors: Lilla Dorina Habsz, Marta Rado

Abstract:

Popularity is affected by a variety of factors in the primary school such as academic achievement and ethnicity. The main goal of our study was to analyse whether acting white exists in Hungarian elementary schools. In other words, we observed whether Roma students penalize those in-group members who obtain the high academic achievement. Furthermore, to show how popularity is influenced by changes in academic achievement in inter-ethnic relations. The empirical basis of our research was the 'competition and negative networks' longitudinal dataset, which was collected by the MTA TK 'Lendület' RECENS research group. This research followed 11 and 12-year old students for a two-year period. The survey was analysed using fixed and random effect models. Overall, we found a positive correlation between grades and popularity, but no evidence for the acting white effect. However, better grades were more positively evaluated within the majority group than within the minority group, which may further increase inequalities.

Keywords: academic achievement, elementary school, ethnicity, popularity

Procedia PDF Downloads 204
1289 Design of an Automatic Bovine Feeding Machine

Authors: Huseyin A. Yavasoglu, Yusuf Ziya Tengiz, Ali Göksenli

Abstract:

In this study, an automatic feeding machine for different type and class of bovine animals is designed. Daily nutrition of a bovine consists of grass, corn, straw, silage, oat, wheat and different vitamins and minerals. The amount and mixture amount of each of the nutrition depends on different parameters of the bovine. These parameters are; age, sex, weight and maternity of the bovine, also outside temperature. The problem in a farm is to constitute the correct mixture and amount of nutrition for each animal. Faulty nutrition will cause an insufficient feeding of the animal concluding in an unhealthy bovine. To solve this problem, a new automatic feeding machine is designed. Travelling of the machine is performed by four tires, which is pulled by a tractor. The carrier consists of eight bins, which each of them carries a nutrition type. Capacity of each unit is 250 kg. At the bottom of each chamber is a sensor measuring the weight of the food inside. A funnel is at the bottom of each chamber by which open/close function is controlled by a valve. Each animal will carry a RFID tag including ID on its ear. A receiver on the feeding machine will read this ID and by given previous information by the operator (veterinarian), the system will detect the amount of each nutrition unit which will be given to the selected animal for feeding. In the system, each bin will open its exit gate by the help of the valve under the control of PLC (Programmable Logic Controller). The amount of each nutrition type will be controlled by measuring the open/close time. The exit canals of the bins are collected in a reservoir. To achieve a homogenous nitration, the collected feed will be mixed by a worm gear. Further the mixture will be transported by a help of a funnel to the feeding unit of the animal. The feeding process can be performed in 100 seconds. After feeding of the animal, the tractor pulls the travelling machine to the next animal. By the help of this system animals can be feeded by right amount and mixture of nutrition

Keywords: bovine, feeding, nutrition, transportation, automatic

Procedia PDF Downloads 344
1288 Weed Classification Using a Two-Dimensional Deep Convolutional Neural Network

Authors: Muhammad Ali Sarwar, Muhammad Farooq, Nayab Hassan, Hammad Hassan

Abstract:

Pakistan is highly recognized for its agriculture and is well known for producing substantial amounts of wheat, cotton, and sugarcane. However, some factors contribute to a decline in crop quality and a reduction in overall output. One of the main factors contributing to this decline is the presence of weed and its late detection. This process of detection is manual and demands a detailed inspection to be done by the farmer itself. But by the time detection of weed, the farmer will be able to save its cost and can increase the overall production. The focus of this research is to identify and classify the four main types of weeds (Small-Flowered Cranesbill, Chick Weed, Prickly Acacia, and Black-Grass) that are prevalent in our region’s major crops. In this work, we implemented three different deep learning techniques: YOLO-v5, Inception-v3, and Deep CNN on the same Dataset, and have concluded that deep convolutions neural network performed better with an accuracy of 97.45% for such classification. In relative to the state of the art, our proposed approach yields 2% better results. We devised the architecture in an efficient way such that it can be used in real-time.

Keywords: deep convolution networks, Yolo, machine learning, agriculture

Procedia PDF Downloads 123
1287 International Coffee Trade in Solidarity with the Zapatista Rebellion: Anthropological Perspectives on Commercial Ethics within Political Antagonistic Movements

Authors: Miria Gambardella

Abstract:

The influence of solidarity demonstrations towards the Zapatista National Liberation Army has been constantly present over the years, both locally and internationally, guaranteeing visibility to the cause, shaping the movement’s choices, and influencing its hopes of impact worldwide. Most of the coffee produced by the autonomous cooperatives from Chiapas is exported, therefore making coffee trade the main income from international solidarity networks. The question arises about the implications of the relations established between the communities in resistance in Southeastern Mexico and international solidarity movements, specifically on the strategies adopted to conciliate army's demands for autonomy and economic asymmetries between Zapatista cooperatives producing coffee and European collectives who hold purchasing power. In order to deepen the inquiry on those topics, a year-long multi-site investigation was carried out. The first six months of fieldwork were based in Barcelona, where Zapatista coffee was first traded in Spain and where one of the historical and most important European solidarity groups can be found. The last six months of fieldwork were carried out directly in Chiapas, in contact with coffee producers, Zapatista political authorities, international activists as well as vendors, and the rest of the network implicated in coffee production, roasting, and sale. The investigation was based on qualitative research methods, including participatory observation, focus groups, and semi-structured interviews. The analysis did not only focus on retracing the steps of the market chain as if it could be considered a linear and unilateral process, but it rather aimed at exploring actors’ reciprocal perceptions, roles, and dynamics of power. Demonstrations of solidarity and the money circulation they imply aim at changing the system in place and building alternatives, among other things, on the economic level. This work analyzes the formulation of discourse and the organization of solidarity activities that aim at building opportunities for action within a highly politicized economic sphere to which access must be regularly legitimized. The meaning conveyed by coffee is constructed on a symbolic level by the attribution of moral criteria to transactions. The latter participate in the construction of imaginaries that circulate through solidarity movements with the Zapatista rebellion. Commercial exchanges linked to solidarity networks turned out to represent much more than monetary transactions. The social, cultural, and political spheres are invested by ethics, which penetrates all aspects of militant action. It is at this level that the boundaries of different collective actors connect, contaminating each other: merely following the money flow would have been limiting in order to account for a reality within which imaginary is one of the main currencies. The notions of “trust”, “dignity” and “reciprocity” are repeatedly mobilized to negotiate discontinuous and multidirectional flows in the attempt to balance and justify commercial relations in a politicized context that characterizes its own identity through demonizing “market economy” and its dehumanizing powers.

Keywords: coffee trade, economic anthropology, international cooperation, Zapatista National Liberation Army

Procedia PDF Downloads 91
1286 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand

Authors: Neeta Kumari, Gopal Pathak

Abstract:

Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.

Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination

Procedia PDF Downloads 555
1285 Fusionopolis: The Most Decisive Economic Power Centers of the 21st Century

Authors: Norbert Csizmadia

Abstract:

The 21st Century's main power centers are the cities. More than 52% of the world’s population lives in cities, in particular in the megacities which have a population over 10 million people and is still growing. According to various research and forecasts, the main economic concentration will be in 40 megacities and global centers. Based on various competitiveness analyzes and indices, global city centers, and city networks are outlined, but if we look at other aspects of urban development like complexity, connectivity, creativity, technological development, viability, green cities, pedestrian and child friendly cities, creative and cultural centers, cultural spaces and knowledge centers, we get a city competitiveness index with quite new complex indicators. The research shows this result. In addition to the megacities and the global centers, with the investigation of functionality, we got 64 so-called ‘fusiononopolis’ (i.e., fusion-polis) which stand for the most decisive economic power centers of the 21st century. In this city competition Asian centers considerably rise, as the world's functional city competitiveness index is being formed.

Keywords: economic geography, human geography, technological development, urbanism

Procedia PDF Downloads 365
1284 Unified Public Transportation System for Mumbai Using Radio Frequency Identification

Authors: Saurabh Parkhedkar, Rajanikant Tenguria

Abstract:

The paper proposes revamping the public transportation system in Mumbai with the use of Radio Frequency Identification (RFID) technology in order to provide better integration and compatibility across various modes of transport. In Mumbai, mass transport system suffers from poor inter-compatible ticketing system, subpar money collection techniques, and lack of planning for optimum utilization of resources. Development of suburbs and growth in population will result in growing demand for mass transportation networks. Hence, the growing demand for the already overburdened public transportation system is only going to worsen the scenario. Thus, a superior system is essential in order to regulate, manage and supervise future transportation needs. The proposed RFID based system integrates Mumbai Suburban Railway, BEST (Brihanmumbai Electric Supply and Transport Undertaking transport wing) Bus, Mumbai Monorail and Mumbai Metro systems into a Unified Public Transportation System (UPTS). The UTPS takes into account various drawbacks of the present day system and offers solution, suitable for the modern age Mumbai.

Keywords: urbanization, transportation, RFID, Mumbai, public transportation, smart city.

Procedia PDF Downloads 417
1283 Greenhouse Controlled with Graphical Plotting in Matlab

Authors: Bruno R. A. Oliveira, Italo V. V. Braga, Jonas P. Reges, Luiz P. O. Santos, Sidney C. Duarte, Emilson R. R. Melo, Auzuir R. Alexandria

Abstract:

This project aims to building a controlled greenhouse, or for better understanding, a structure where one can maintain a given range of temperature values (°C) coming from radiation emitted by an incandescent light, as previously defined, characterizing as a kind of on-off control and a differential, which is the plotting of temperature versus time graphs assisted by MATLAB software via serial communication. That way it is possible to connect the stove with a computer and monitor parameters. In the control, it was performed using a PIC 16F877A microprocessor which enabled convert analog signals to digital, perform serial communication with the IC MAX232 and enable signal transistors. The language used in the PIC's management is Basic. There are also a cooling system realized by two coolers 12V distributed in lateral structure, being used for venting and the other for exhaust air. To find out existing temperature inside is used LM35DZ sensor. Other mechanism used in the greenhouse construction was comprised of a reed switch and a magnet; their function is in recognition of the door position where a signal is sent to a buzzer when the door is open. Beyond it exist LEDs that help to identify the operation which the stove is located. To facilitate human-machine communication is employed an LCD display that tells real-time temperature and other information. The average range of design operating without any major problems, taking into account the limitations of the construction material and structure of electrical current conduction, is approximately 65 to 70 ° C. The project is efficient in these conditions, that is, when you wish to get information from a given material to be tested at temperatures not as high. With the implementation of the greenhouse automation, facilitating the temperature control and the development of a structure that encourages correct environment for the most diverse applications.

Keywords: greenhouse, microcontroller, temperature, control, MATLAB

Procedia PDF Downloads 405
1282 Renovating Language Laboratories for Pedagogical and Technological Advancements in the New Era

Authors: Paul Lam, Chi Him Chan, Alan Tse

Abstract:

Language laboratories have been widely used in language learning, starting in the middle of the last century as one of the earliest forms of educational technology. They are designed to assist students’ language learning with technological innovations. Traditional language laboratories provide individual workstations that allow students to access multimedia language resources. In this type of facility, students can train their listening and speaking abilities, and teachers can also assess the performance of an individual student. Although such a setting promotes a student-centered pedagogy by encouraging students to work at their own pace and according to their own needs, it still favours a traditional, behaviourist language learning pedagogy which focuses on repetitive drilling. The change of pedagogies poses challenges to both the teachers and the facilities. The peer-learning pedagogy advocates that language learning should focus on the social aspect, which emphasizes the importance of everyday communication in language learning. The self-access, individual workstation language laboratories may not be able to provide the flexibility for interaction in the new pedagogies. Modern advancement in technology is another factor that drove our language laboratory renovation. In particular, mobile and wireless technology enabled the use of smaller and more flexible devices, making possible much clever use of space. The Chinese University of Hong Kong (CUHK) renovated nine existing language laboratories to provide lighter and more advanced equipment, movable tables, and round desks. These facilities allow more flexibility and encourage students’ interaction. It is believed that the renovated language laboratories can serve different peer learning activities and thus support peer-learning pedagogies in language teaching and learning. A survey has been conducted to collect comments from the teachers who have used the renovated language laboratories and received forty-four response. The teachers’ comments reveal that they experienced different challenges in using the renovated language laboratories, and there is a need to provide guidance to teachers during the technological and pedagogical transition. For example, teachers need instruction on using the newly installed devices such as touch-monitor and visualizer. They also need advice on planning new teaching and learning activities. Nevertheless, teachers appreciated that the renovated language laboratories are flexible and provide more spaces for different learning activities.

Keywords: language laboratories, language learning, peer-learning, student interaction

Procedia PDF Downloads 110
1281 Policy Monitoring and Water Stakeholders Network Analysis in Shemiranat

Authors: Fariba Ebrahimi, Mehdi Ghorbani

Abstract:

Achieving to integrated Water management fundamentally needs to effective relation, coordination, collaboration and synergy among various actors who have common but different responsibilities. In this sense, the foundation of comprehensive and integrated management is not compatible with centralization and top-down strategies. The aim of this paper is analysis institutional network of water relevant stakeholders and water policy monitoring in Shemiranat. In this study collaboration networks between informal and formal institutions co-management process have been investigated. Stakeholder network analysis as a quantitative method has been implicated in this research. The results of this study indicate that institutional cohesion is medium; sustainability of institutional network is about 40 percent (medium). Additionally the core-periphery index has measured in this study according to reciprocity index. Institutional capacities for integrated natural resource management in regional level are measured in this study. Furthermore, the necessity of centrality reduction and promote stakeholders relations and cohesion are emphasized to establish a collaborative natural resource governance.

Keywords: policy monitoring, water management, social network, stakeholder, shemiranat

Procedia PDF Downloads 279
1280 The Application of Artificial Neural Networks for the Performance Prediction of Evacuated Tube Solar Air Collector with Phase Change Material

Authors: Sukhbir Singh

Abstract:

This paper describes the modeling of novel solar air collector (NSAC) system by using artificial neural network (ANN) model. The objective of the study is to demonstrate the application of the ANN model to predict the performance of the NSAC with acetamide as a phase change material (PCM) storage. Input data set consist of time, solar intensity and ambient temperature wherever as outlet air temperature of NSAC was considered as output. Experiments were conducted between 9.00 and 24.00 h in June and July 2014 underneath the prevailing atmospheric condition of Kurukshetra (city of the India). After that, experimental results were utilized to train the back propagation neural network (BPNN) to predict the outlet air temperature of NSAC. The results of proposed algorithm show that the BPNN is effective tool for the prediction of responses. The BPNN predicted results are 99% in agreement with the experimental results.

Keywords: Evacuated tube solar air collector, Artificial neural network, Phase change material, solar air collector

Procedia PDF Downloads 126
1279 Optimal Scheduling of Trains in Complex National Scale Railway Networks

Authors: Sanat Ramesh, Tarun Dutt, Abhilasha Aswal, Anushka Chandrababu, G. N. Srinivasa Prasanna

Abstract:

Optimal Schedule Generation for a large national railway network operating thousands of passenger trains with tens of thousands of kilometers of track is a grand computational challenge in itself. We present heuristics based on a Mixed Integer Program (MIP) formulation for local optimization. These methods provide flexibility in scheduling new trains with varying speed and delays and improve utilization of infrastructure. We propose methods that provide a robust solution with hundreds of trains being scheduled over a portion of the railway network without significant increases in delay. We also provide techniques to validate the nominal schedules thus generated over global correlated variations in travel times thereby enabling us to detect conflicts arising due to delays. Our validation results which assume only the support of the arrival and departure time distributions takes an order of few minutes for a portion of the network and is computationally efficient to handle the entire network.

Keywords: mixed integer programming, optimization, railway network, train scheduling

Procedia PDF Downloads 162
1278 A Tactic for a Cosmopolitan City Comparison through a Data-Driven Approach: Case of Climate City Networking

Authors: Sombol Mokhles

Abstract:

Tackling climate change requires expanding networking opportunities between a diverse range of cities to accelerate climate actions. Existing climate city networks have limitations in actively engaging “ordinary” cities in networking processes between cities, as they encourage a few powerful cities to be followed by the many “ordinary” cities. To reimagine the networking opportunities between cities beyond global cities, this paper incorporates “cosmopolitan comparison” to expand our knowledge of a diverse range of cities using a data-driven approach. Through a cosmopolitan perspective, a framework is presented on how to utilise large data to expand knowledge of cities beyond global cities to reimagine the existing hierarchical networking practices. The contribution of this framework is beyond urban climate governance but inclusive of different fields which strive for a more inclusive and cosmopolitan comparison attentive to the differences across cities.

Keywords: cosmopolitan city comparison, data-driven approach, climate city networking, urban climate governance

Procedia PDF Downloads 116
1277 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation

Procedia PDF Downloads 158
1276 Green Building for Positive Energy Districts in European Cities

Authors: Paola Clerici Maestosi

Abstract:

Positive Energy District (PED) is a rather recent concept whose aim is to contribute to the main objectives of the Energy Union strategy. It is based on an integrated multi-sectoral approach in response to Europe's most complex challenges. PED integrates energy efficiency, renewable energy production, and energy flexibility in an integrated, multi-sectoral approach at the city level. The core idea behind Positive Energy Districts (PEDs) is to establish an urban area that can generate more energy than it consumes. Additionally, it should be flexible enough to adapt to changes in the energy market. This is crucial because a PED's goal is not just to achieve an annual surplus of net energy but also to help reduce the impact on the interconnected centralized energy networks. It achieves this by providing options to increase on-site load matching and self-consumption, employing technologies for short- and long-term energy storage, and offering energy flexibility through smart control. Thus, it seems that PEDs can encompass all types of buildings in the city environment. Given this which is the added value of having green buildings being constitutive part of PEDS? The paper will present a systematic literature review identifying the role of green building in Positive Energy District to provide answer to following questions: (RQ1) the state of the art of PEDs implementation; (RQ2) penetration of green building in Positive Energy District selected case studies. Methodological approach is based on a broad holistic study of bibliographic sources according to Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) further data will be analysed, mapped and text mining through VOSviewer. Main contribution of research is a cognitive framework on Positive Energy District in Europe and a selection of case studies where green building supported the transition to PED. The inclusion of green buildings within Positive Energy Districts (PEDs) adds significant value for several reasons. Firstly, green buildings are designed and constructed with a focus on environmental sustainability, incorporating energy-efficient technologies, materials, and design principles. As integral components of PEDs, these structures contribute directly to the district's overall ability to generate more energy than it consumes. Secondly, green buildings typically incorporate renewable energy sources, such as solar panels or wind turbines, further boosting the district's capacity for energy generation. This aligns with the PED objective of achieving a surplus of net energy. Moreover, green buildings often feature advanced systems for on-site energy management, load-matching, and self-consumption. This enhances the PED's capability to respond to variations in the energy market, making the district more agile and flexible in optimizing energy use. Additionally, the environmental considerations embedded in green buildings align with the broader sustainability goals of PEDs. By reducing the ecological footprint of individual structures, PEDs with green buildings contribute to minimizing the overall impact on centralized energy networks and promote a more sustainable urban environment. In summary, the incorporation of green buildings within PEDs not only aligns with the district's energy objectives but also enhances environmental sustainability, energy efficiency, and the overall resilience of the urban environment.

Keywords: positive energy district, renewables energy production, energy flexibility, energy efficiency

Procedia PDF Downloads 53
1275 A Neural Network Modelling Approach for Predicting Permeability from Well Logs Data

Authors: Chico Horacio Jose Sambo

Abstract:

Recently neural network has gained popularity when come to solve complex nonlinear problems. Permeability is one of fundamental reservoir characteristics system that are anisotropic distributed and non-linear manner. For this reason, permeability prediction from well log data is well suited by using neural networks and other computer-based techniques. The main goal of this paper is to predict reservoir permeability from well logs data by using neural network approach. A multi-layered perceptron trained by back propagation algorithm was used to build the predictive model. The performance of the model on net results was measured by correlation coefficient. The correlation coefficient from testing, training, validation and all data sets was evaluated. The results show that neural network was capable of reproducing permeability with accuracy in all cases, so that the calculated correlation coefficients for training, testing and validation permeability were 0.96273, 0.89991 and 0.87858, respectively. The generalization of the results to other field can be made after examining new data, and a regional study might be possible to study reservoir properties with cheap and very fast constructed models.

Keywords: neural network, permeability, multilayer perceptron, well log

Procedia PDF Downloads 408
1274 Analysis of Factors Influencing the Response Time of an Aspirating Gaseous Agent Concentration Detection Method

Authors: Yu Guan, Song Lu, Wei Yuan, Heping Zhang

Abstract:

Gas fire extinguishing system is widely used due to its cleanliness and efficiency, and since its spray will be affected by many factors such as convection and obstacles in jetting region, so in order to evaluate its effectiveness, detecting concentration distribution in the jetting area is indispensable, which is commonly achieved by aspirating concentration detection technique. During the concentration measurement, the response time of detector is a very important parameter, especially for those fire-extinguishing systems with rapid gas dispersion. Long response time will not only underestimate its concentration but also prolong the change of concentration with time. Therefore it is necessary to analyze the factors influencing the response time. In the paper, an aspirating concentration detection method was introduced, which is achieved by using a small critical nozzle and a laminar flowmeter, and because of the response time is mainly related to the gas transport process from sampling site to the sensor, the effects of exhaust pipe size, gas flow rate, and gas concentration on its response time were analyzed. During the research, Bromotrifluoromethane (CBrF₃) was used. The effect of the sampling tube was investigated with different length of 1, 2, 3, 4 and 5 m (5mm in pipe diameter) and different pipe diameter of 3, 4, 5, 6 and 8 mm (3m in length). The effect of gas flow rate was analyzed by changing the throat diameter of the critical nozzle with 0.5, 0.682, 0.75, 0.8, 0.84 and 0.88 mm. The effect of gas concentration on response time was studied with the concentration range of 0-25%. The result showed that the response time increased with the increase of both the length and diameter of the sampling pipe, and the effect of length on response time was linear, but for the effect of diameter, it was exponential. It was also found that as the throat diameter of critical nozzle increased, the response time reduced a lot, in other words, gas flow rate has a great influence on response time. For the effect of gas concentration, the response time increased with the increase of the CBrF₃ concentration, and the slope of the curve was reduced.

Keywords: aspirating concentration detection, fire extinguishing, gaseous agent, response time

Procedia PDF Downloads 276
1273 Application of Artificial Neural Network Technique for Diagnosing Asthma

Authors: Azadeh Bashiri

Abstract:

Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.

Keywords: asthma, data mining, Artificial Neural Network, intelligent system

Procedia PDF Downloads 279
1272 Movement Optimization of Robotic Arm Movement Using Soft Computing

Authors: V. K. Banga

Abstract:

Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.

Keywords: artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic

Procedia PDF Downloads 302
1271 Development and Evaluation of Virtual Basketball Game Using Motion Capture Technology

Authors: Shunsuke Aoki, Taku Ri, Tatsuya Yamazaki

Abstract:

These days, along with the development of e-sports, video games as a competitive sport is attracting attention. But, in many cases, action in the screen does not match the real motion of operation. Inclusiveness of player motion is needed to increase reality and excitement for sports games. Therefore, in this study, the authors propose a method to recognize player motion by using the motion capture technology and develop a virtual basketball game. The virtual basketball game consists of a screen with nine targets, players, depth sensors, and no ball. The players pretend a two-handed basketball shot without a ball aiming at one of the nine targets on the screen. Time-series data of three-dimensional coordinates of player joints are captured by the depth sensor. 20 joints data are measured for each player to estimate the shooting motion in real-time. The trajectory of the thrown virtual ball is calculated based on the time-series data and hitting on the target is judged as success or failure. The virtual basketball game can be played by 2 to 4 players as a competitive game among the players. The developed game was exhibited to the public for evaluation on the authors' university open campus days. 339 visitors participated in the exhibition and enjoyed the virtual basketball game over the two days. A questionnaire survey on the developed game was conducted for the visitors who experienced the game. As a result of the survey, about 97.3% of the players found the game interesting regardless of whether they had experienced actual basketball before or not. In addition, it is found that women are easy to comfort for shooting motion. The virtual game with motion capture technology has the potential to become a universal entertainment between e-sports and actual sports.

Keywords: basketball, motion capture, questionnaire survey, video ga

Procedia PDF Downloads 129
1270 Real-Time Scheduling and Control of Supply Chain Networks: Challenges and Graph-Based Solution Approach

Authors: Jens Ehm

Abstract:

Manufacturing in supply chains requires an efficient organisation of production and transport processes in order to guarantee the supply of all partners within the chain with the material that is needed for the reliable fulfilment of tasks. If one partner is not able to supply products for a certain period, these products might be missing as the working material for the customer to perform the next manufacturing step, potentially as supply for further manufacturing steps. This way, local disruptions can influence the whole supply chain. In order to avoid material shortages, an efficient scheduling of tasks is necessary. However, the occurrence of unexpected disruptions cannot be eliminated, so that a modification of the schedule should be arranged as fast as possible. This paper discusses the challenges for the implementation of real-time scheduling and control methods and presents a graph-based approach that enables the integrated scheduling of production and transport processes for multiple supply chain partners and offers the potential for quick adaptations to parts of the initial schedule.

Keywords: production, logistics, integrated scheduling, real-time scheduling

Procedia PDF Downloads 379
1269 Recurrent Neural Networks with Deep Hierarchical Mixed Structures for Chinese Document Classification

Authors: Zhaoxin Luo, Michael Zhu

Abstract:

In natural languages, there are always complex semantic hierarchies. Obtaining the feature representation based on these complex semantic hierarchies becomes the key to the success of the model. Several RNN models have recently been proposed to use latent indicators to obtain the hierarchical structure of documents. However, the model that only uses a single-layer latent indicator cannot achieve the true hierarchical structure of the language, especially a complex language like Chinese. In this paper, we propose a deep layered model that stacks arbitrarily many RNN layers equipped with latent indicators. After using EM and training it hierarchically, our model solves the computational problem of stacking RNN layers and makes it possible to stack arbitrarily many RNN layers. Our deep hierarchical model not only achieves comparable results to large pre-trained models on the Chinese short text classification problem but also achieves state of art results on the Chinese long text classification problem.

Keywords: nature language processing, recurrent neural network, hierarchical structure, document classification, Chinese

Procedia PDF Downloads 72
1268 A Preliminary Kinematic Comparison of Vive and Vicon Systems for the Accurate Tracking of Lumbar Motion

Authors: Yaghoubi N., Moore Z., Van Der Veen S. M., Pidcoe P. E., Thomas J. S., Dexheimer B.

Abstract:

Optoelectronic 3D motion capture systems, such as the Vicon kinematic system, are widely utilized in biomedical research to track joint motion. These systems are considered powerful and accurate measurement tools with <2 mm average error. However, these systems are costly and may be difficult to implement and utilize in a clinical setting. 3D virtual reality (VR) is gaining popularity as an affordable and accessible tool to investigate motor control and perception in a controlled, immersive environment. The HTC Vive VR system includes puck-style trackers that seamlessly integrate into its VR environments. These affordable, wireless, lightweight trackers may be more feasible for clinical kinematic data collection. However, the accuracy of HTC Vive Trackers (3.0), when compared to optoelectronic 3D motion capture systems, remains unclear. In this preliminary study, we compared the HTC Vive Tracker system to a Vicon kinematic system in a simulated lumbar flexion task. A 6-DOF robot arm (SCORBOT ER VII, Eshed Robotec/RoboGroup, Rosh Ha’Ayin, Israel) completed various reaching movements to mimic increasing levels of hip flexion (15°, 30°, 45°). Light reflective markers, along with one HTC Vive Tracker (3.0), were placed on the rigid segment separating the elbow and shoulder of the robot. We compared position measures simultaneously collected from both systems. Our preliminary analysis shows no significant differences between the Vicon motion capture system and the HTC Vive tracker in the Z axis, regardless of hip flexion. In the X axis, we found no significant differences between the two systems at 15 degrees of hip flexion but minimal differences at 30 and 45 degrees, ranging from .047 cm ± .02 SE (p = .03) at 30 degrees hip flexion to .194 cm ± .024 SE (p < .0001) at 45 degrees of hip flexion. In the Y axis, we found a minimal difference for 15 degrees of hip flexion only (.743 cm ± .275 SE; p = .007). This preliminary analysis shows that the HTC Vive Tracker may be an appropriate, affordable option for gross motor motion capture when the Vicon system is not available, such as in clinical settings. Further research is needed to compare these two motion capture systems in different body poses and for different body segments.

Keywords: lumbar, vivetracker, viconsystem, 3dmotion, ROM

Procedia PDF Downloads 104
1267 Stop Texting While Learning: A Meta-Analysis of Social Networks Use and Academic Performances

Authors: Proud Arunrangsiwed, Sarinya Kongtieng

Abstract:

Teachers and university lecturers face an unsolved problem, which is students’ multitasking behaviors during class time, such as texting or playing a game. It is important to examine the most powerful predictor that can result in students’ educational performances. Meta-analysis was used to analyze the research articles, which were published with the keywords, multitasking, class performance, and texting. We selected 14 research articles published during 2008-2013 from online databases, and four articles met the predetermined inclusion criteria. Effect size of each pair of variables was used as the dependent variable. The findings revealed that the students’ expectancy and value on SNSs usages is the best significant predictor of their educational performances, followed by their motivation and ability in using SNSs, prior educational performances, usage behaviors of SNSs in class, and their personal characteristics, respectively. Future study should conduct a longitudinal design to better understand the effect of multitasking in the classroom.

Keywords: meta-regression analysis, social networking sites, academic Performances, multitasking, motivation

Procedia PDF Downloads 282