Search results for: Deep learning based segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33295

Search results for: Deep learning based segmentation

30235 Lotus Mechanism: Validation of Deployment Mechanism Using Structural and Dynamic Analysis

Authors: Parth Prajapati, A. R. Srinivas

Abstract:

The purpose of this paper is to validate the concept of the Lotus Mechanism using Computer Aided Engineering (CAE) tools considering the statics and dynamics through actual time dependence involving inertial forces acting on the mechanism joints. For a 1.2 m mirror made of hexagonal segments, with simple harnesses and three-point supports, the maximum diameter is 400 mm, minimum segment base thickness is 1.5 mm, and maximum rib height is considered as 12 mm. Manufacturing challenges are explored for the segments using manufacturing research and development approaches to enable use of large lightweight mirrors required for the future space system.

Keywords: dynamics, manufacturing, reflectors, segmentation, statics

Procedia PDF Downloads 378
30234 An Investigation into the Use of an Atomistic, Hermeneutic, Holistic Approach in Education Relating to the Architectural Design Process

Authors: N. Pritchard

Abstract:

Within architectural education, students arrive fore-armed with; their life-experience; knowledge gained from subject-based learning; their brains and more specifically their imaginations. The learning-by-doing that they embark on in studio-based/project-based learning calls for supervision that allows the student to proactively undertake research and experimentation with design solution possibilities. The degree to which this supervision includes direction is subject to debate and differing opinion. It can be argued that if the student is to learn-by-doing, then design decision making within the design process needs to be instigated and owned by the student so that they have the ability to personally reflect on and evaluate those decisions. Within this premise lies the problem that the student's endeavours can become unstructured and unfocused as they work their way into a new and complex activity. A resultant weakness can be that the design activity is compartmented and not holistic or comprehensive, and therefore, the student's reflections are consequently impoverished in terms of providing a positive, informative feedback loop. The construct proffered in this paper is that a supportive 'armature' or 'Heuristic-Framework' can be developed that facilitates a holistic approach and reflective learning. The normal explorations of architectural design comprise: Analysing the site and context, reviewing building precedents, assimilating the briefing information. However, the student can still be compromised by 'not knowing what they need to know'. The long-serving triad 'Firmness, Commodity and Delight' provides a broad-brush framework of considerations to explore and integrate into good design. If this were further atomised in subdivision formed from the disparate aspects of architectural design that need to be considered within the design process, then the student could sieve through the facts more methodically and reflectively in terms of considering their interrelationship conflict and alliances. The words facts and sieve hold the acronym of the aspects that form the Heuristic-Framework: Function, Aesthetics, Context, Tectonics, Spatial, Servicing, Infrastructure, Environmental, Value and Ecological issues. The Heuristic could be used as a Hermeneutic Model with each aspect of design being focused on and considered in abstraction and then considered in its relation to other aspect and the design proposal as a whole. Importantly, the heuristic could be used as a method for gathering information and enhancing the design brief. The more poetic, mysterious, intuitive, unconscious processes should still be able to occur for the student. The Heuristic-Framework should not be seen as comprehensive prescriptive formulaic or inhibiting to the wide exploration of possibilities and solutions within the architectural design process.

Keywords: atomistic, hermeneutic, holistic, approach architectural design studio education

Procedia PDF Downloads 264
30233 e-Learning Security: A Distributed Incident Response Generator

Authors: Bel G Raggad

Abstract:

An e-Learning setting is a distributed computing environment where information resources can be connected to any public network. Public networks are very unsecure which can compromise the reliability of an e-Learning environment. This study is only concerned with the intrusion detection aspect of e-Learning security and how incident responses are planned. The literature reported great advances in intrusion detection system (ids) but neglected to study an important ids weakness: suspected events are detected but an intrusion is not determined because it is not defined in ids databases. We propose an incident response generator (DIRG) that produces incident responses when the working ids system suspects an event that does not correspond to a known intrusion. Data involved in intrusion detection when ample uncertainty is present is often not suitable to formal statistical models including Bayesian. We instead adopt Dempster and Shafer theory to process intrusion data for the unknown event. The DIRG engine transforms data into a belief structure using incident scenarios deduced by the security administrator. Belief values associated with various incident scenarios are then derived and evaluated to choose the most appropriate scenario for which an automatic incident response is generated. This article provides a numerical example demonstrating the working of the DIRG system.

Keywords: decision support system, distributed computing, e-Learning security, incident response, intrusion detection, security risk, statefull inspection

Procedia PDF Downloads 442
30232 [Keynote Speech]: Guiding Teachers to Make Lessons Relevant, Appealing, and Personal (RAP) for Academically-Low-Achieving Students in STEM Subjects

Authors: Nazir Amir

Abstract:

Teaching approaches to present science and mathematics content amongst academically-low-achieving students may need to be different than approaches that are adopted for the more academically-inclined students, primarily due to the different learning needs and learning styles of these students. In crafting out lessons to motivate and engage these students, teachers need to consider the backgrounds of these students and have a good understanding of their interests so that lessons can be presented in ways that appeal to them, and made relevant not just to the world around them, but also to their personal experiences. This presentation highlights how the author worked with a Professional Learning Community (PLC) of teachers in crafting out fun and feasible classroom teaching approaches to present science and mathematics content in ways that are made Relevant, Appealing, and Personal (RAP) to groups of academically-low-achieving students in Singapore. Feedback from the students and observations from their work suggest that they were engaged through the RAP-modes of instruction, and were able to appreciate the role of science and mathematics through a variety of low-cost design-based STEM (Science, Technology, Engineering, and Mathematics) activities. Such results imply that teachers teaching academically-low-achieving students, and those in under-resourced communities, could consider infusing RAP-infused instructions into their lessons in getting students develop positive attitudes towards STEM subjects.

Keywords: STEM Education, STEAM Education, Curriculum Instruction, Academically At-Risk Students, Singapore

Procedia PDF Downloads 306
30231 Perceptual Learning with Hand-Eye Coordination as an Effective Tool for Managing Amblyopia: A Prospective Study

Authors: Anandkumar S. Purohit

Abstract:

Introduction: Amblyopia is a serious condition resulting in monocular impairment of vision. Although traditional treatment improves vision, we attempted the results of perceptual learning in this study. Methods: The prospective cohort study included all patients with amblyopia who were subjected to perceptual learning. The presenting data on vision, stereopsis, and contrast sensitivity were documented in a pretested online format, and the pre‑ and post‑treatment information was compared using descriptive, cross‑tabulation, and comparative methods on SPSS 22. Results: The cohort consisted of 47 patients (23 females and 24 males) with a mean age of 14.11 ± 7.13 years. A significant improvement was detected in visual acuity after the PL sessions, and the median follow‑up period was 17 days. Stereopsis improved significantly in all age groups. Conclusion: PL with hand-eye coordination is an effective method for managing amblyopia. This approach can improve vision in all age groups.

Keywords: amblyopia, perceptual learning, hand-eye coordination, visual acuity, stereopsis, contrast sensitivity, ophthalmology

Procedia PDF Downloads 39
30230 The Influence of Intrinsic Motivation on the Second Language Learners’ Writing Skill: The Case of Third Year Students of English at Constantine 1 University

Authors: Chadia Nasri

Abstract:

Researches in the field of foreign language learning have indicated the importance of the mastery of the four language skills; speaking, listening, writing and reading. As far as writing is concerned, recent studies have shown that this skill is unavoidable for learning a second language successfully. Writing is characterized as a complex system not easy to achieve. Writing has been proved to be affected by a variety of factors, particularly psychological ones; anxiety, intrinsic motivation, aptitude, etc. Intrinsic motivation is said to be the most influential factors in the foreign language learning process and is considered as the key factor for success. To investigate these two aspects; writing and intrinsic motivation, and the positive correlation between them, our hypothesis is designed on the basis that the degree of learners’ intrinsic motivation helps in facilitating their engagement in the writing tasks. Two questionnaires, one for teachers and the other for students, have been carried out to check the validity of the research hypothesis. As for the teachers’ questionnaire, the results have indicated their awareness of the importance of intrinsic motivation in the learning process and the role it plays in the mastery of their students’ writing skill. In addition, teachers have mentioned various procedures aiming at raising their students’ intrinsic motivation to write. The students’ questionnaire, on the other hand, has investigated students’ reasons for learning a foreign language with regard to their attitudes towards writing as an important skill that they need to master. Their answers to the questionnaire together with the marks they got in the second term test they have had in the writing module have been compared to see whether students’ writing proficiency can be determined by the degree of their intrinsic motivation. The comparison of the collected data has shown the positive correlation between both aspects.

Keywords: foreign language learning, intrinsic motivation, motivation, writing proficiency

Procedia PDF Downloads 297
30229 Computerized Cognitive Training and Psychological Resiliency among Adolescents with Learning Disabilities

Authors: Verd Shomrom, Gilat Trabelsi

Abstract:

The goal of the study was to examine the effects of Computerized Cognitive Training (CCT) with and without cognitive mediation on Executive Function (EF) (planning and self- regulation) and on psychological resiliency among adolescents with Attention Deficits Hyperactive Disorder (ADHD) with or without Learning Disabilities (LD). Adolescents diagnosed with Attention Deficit Disorder and / or Learning Disabilities have multidimensional impairments that result from neurological damage. This work explored the possibility of influencing cognitive aspects in the field of Executive Functions (specifically: patterns of planning and self-regulation) among adolescents with a diagnosis of Attention Deficit Disorder and / or Learning Disabilities who study for a 10-12 grades. 46 adolescents with ADHD and/or with LD were randomly applied to experimental and control groups. All the participants were tested (BRC- research version, Resiliency quaternaries) before and after the intervention: mediated/ non-mediated Computerized Cognitive Training (MINDRI). The results indicated significant effects of cognitive modification in the experimental group, between pre and post Phases, in comparison to control group, especially in self- regulation (BRC- research version, Resiliency quaternaries), and on process analysis of Computerized Cognitive Training (MINDRI). The main conclusion was that even short- term mediation synchronized with CCT could greatly enhance the performance of executive functions demands. Theoretical implications for the positive effects of MLE in combination with CCT indicate the ability for cognitive change. The practical implication is the awareness and understanding of efficient intervention processes to enhance EF, learning awareness, resiliency and self-esteem of adolescents in their academic and daily routine.

Keywords: attention deficits hyperactive disorder, computerized cognitive training, executive function, mediated learning experience, learning disabilities

Procedia PDF Downloads 157
30228 Towards a Large Scale Deep Semantically Analyzed Corpus for Arabic: Annotation and Evaluation

Authors: S. Alansary, M. Nagi

Abstract:

This paper presents an approach of conducting semantic annotation of Arabic corpus using the Universal Networking Language (UNL) framework. UNL is intended to be a promising strategy for providing a large collection of semantically annotated texts with formal, deep semantics rather than shallow. The result would constitute a semantic resource (semantic graphs) that is editable and that integrates various phenomena, including predicate-argument structure, scope, tense, thematic roles and rhetorical relations, into a single semantic formalism for knowledge representation. The paper will also present the Interactive Analysis​ tool for automatic semantic annotation (IAN). In addition, the cornerstone of the proposed methodology which are the disambiguation and transformation rules, will be presented. Semantic annotation using UNL has been applied to a corpus of 20,000 Arabic sentences representing the most frequent structures in the Arabic Wikipedia. The representation, at different linguistic levels was illustrated starting from the morphological level passing through the syntactic level till the semantic representation is reached. The output has been evaluated using the F-measure. It is 90% accurate. This demonstrates how powerful the formal environment is, as it enables intelligent text processing and search.

Keywords: semantic analysis, semantic annotation, Arabic, universal networking language

Procedia PDF Downloads 583
30227 Predictive Analytics of Student Performance Determinants

Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi

Abstract:

Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.

Keywords: student performance, supervised machine learning, classification, cross-validation, prediction

Procedia PDF Downloads 131
30226 Teaching College Classes with Virtual Reality

Authors: Penn P. Wu

Abstract:

Recent advances in virtual reality (VR) technologies have made it possible for students to experience a virtual on-the-scene or virtual in-person observation of an educational event. In an experimental class, the author uses VR, particularly 360° videos, to virtually engage students in an event, through a wide spectrum of educational resources, such s a virtual “bystander.” Students were able to observe the event as if they were physically on site, although they could not intervene with the scene. The author will describe the adopted equipment, specification, and cost of building them as well as the quality of VR. The author will discuss (a) feasibility, effectiveness, and efficiency of using VR as a supplemental technology to teach college students and criteria and methodologies used by the authors to evaluate them; (b) barriers and issues of technological implementation; and (c) pedagogical practices learned through this experiment. The author also attempts to explore (a) how VR could provide an interactive virtual in-person learning experience; (b) how VR can possibly change traditional college education and online education; (c) how educators and balance six critical factors: cost, time, technology, quality, result, and content.

Keywords: learning with VR, virtual experience of learning, virtual in-person learning, virtual reality for education

Procedia PDF Downloads 310
30225 The Good Form of a Sustainable Creative Learning City Based on “The Theory of a Good City Form“ by Kevin Lynch

Authors: Fatemeh Moosavi, Tumelo Franck Nkoshwane

Abstract:

Peter Drucker the renowned management guru once said, “The best way to predict the future is to create it.” Mr. Drucker is also the man who placed human capital as the most vital resource of any institution. As such any institution bent on creating a better future, requires a competent human capital, one that is able to execute with efficiency and effectiveness the objective a society aspires to. Technology today is accelerating the rate at which many societies transition to knowledge based societies. In this accelerated paradigm, it is imperative that those in leadership establish a platform capable of sustaining the planned future; intellectual capital. The capitalist economy going into the future will not just be sustained by dollars and cents, but by individuals who possess the creativity to enterprise, innovate and create wealth from ideas. This calls for cities of the future, to have this premise at the heart of their future plan, if the objective of designing sustainable and liveable future cities will be realised. The knowledge economy, now transitioning to the creative economy, requires cities of the future to be ‘gardens’ of inspiration, to be places where knowledge, creativity, and innovation can thrive as these instruments are becoming critical assets for creating wealth in the new economic system. Developing nations must accept that learning is a lifelong process that requires keeping abreast with change and should invest in teaching people how to keep learning. The need to continuously update one’s knowledge, turn these cities into vibrant societies, where new ideas create knowledge and in turn enriches the quality of life of the residents. Cities of the future must have as one of their objectives, the ability to motivate their citizens to learn, share knowledge, evaluate the knowledge and use it to create wealth for a just society. The five functional factors suggested by Kevin Lynch;-vitality, meaning/sense, adaptability, access, control, and monitoring should form the basis on which policy makers and urban designers base their plans for future cities. The authors of this paper believe that developing nations “creative economy clusters”, cities where creative industries drive the need for constant new knowledge creating sustainable learning creative cities. Obviously the form, shape and size of these districts should be cognisant of the environmental, cultural and economic characteristics of each locale. Gaborone city in the republic of Botswana is presented as the case study for this paper.

Keywords: learning city, sustainable creative city, creative industry, good city form

Procedia PDF Downloads 314
30224 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection

Authors: Yulan Wu

Abstract:

With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.

Keywords: fake news, deep learning, natural language processing, multiple domains

Procedia PDF Downloads 106
30223 Learning from Inclusive Education of Exceptional and Normal Children in Primary School for Architectural Design

Authors: T. Pastraporn, J. Panida, P. Gasamapong, N. Jintana

Abstract:

The study of inclusive educational environment of exceptional and normal children at the regional centre for special education aimed to establish guidelines for creating an environment for inclusive education. Buildings utilization of thirty-five elementary schools providing inclusive educational program in Bangkok were analyzed to study the following aspects: 1) The environment of exceptional and normal students’ inclusive classes at the regional centre for special education 2) The patterns of the environment suited to the exceptional and normal students’ inclusive classes 3) Environmental management policies for the inclusive classes of exceptional and normal students. Information was gathered from surveys, observations, questionnaires, document analysis, interviews, and non-experimental research. The findings showed that the usable spaces in school buildings were designated to enhance the three kinds of social learning experience: 1) Support class control 2) Help developing students’ personality consisting of physical, verbal and emotional expressions that are socially accepted 3) Recognition and learning, which are needed for the increasing of learning experience, were caused by having an interaction with the environment. Thus, the school buildings’ space designation positively affected the environmental management of exceptional and normal students’ inclusive classes.

Keywords: learning environment, inclusive education, school buildings, exceptional and normal children

Procedia PDF Downloads 336
30222 Creating Inclusive Information Services: Librarians’ Design-Thinking Approach to Helping Students Succeed in the Digital Age

Authors: Yi Ding

Abstract:

With the rapid development of educational technologies, higher education institutions are facing the challenge of creating an inclusive learning environment for students from diverse backgrounds. Academic libraries, the hubs of research, instruction, and innovation at higher educational institutions, are facing the same challenge. While academic librarians worldwide have been working hard to provide services for emerging information technology such as information literacy education, online learning support, and scholarly communication advocacy, the problem of digital exclusion remains a difficult one at higher education institutions. Information services provided by academic libraries can result in the digital exclusion of students from diverse backgrounds, such as students with various digital readiness levels, students with disabilities, as well as English-as-a-Second-Language learners. This research study shows how academic librarians can design digital learning objects that are cognizant of differences in learner traits and student profiles through the lens of design thinking. By demonstrating how the design process of digital learning objects can take into consideration users’ needs, experiences, and engagement with different technologies, this research study explains design principles of accessibility, connectivity, and scalability in creating inclusive digital learning objects as shown in various case studies. Equipped with the mindset and techniques to be mindful of diverse student learning traits and profiles when designing information services, academic libraries can improve the digital inclusion and ultimately student success at higher education institutions.

Keywords: academic librarians, digital inclusion, information services, digital learning objects, student success

Procedia PDF Downloads 217
30221 Derivation of Trigonometric Identities and Solutions through Baudhayan Numbers

Authors: Rakesh Bhatia

Abstract:

Students often face significant challenges in understanding and applying trigonometric identities, primarily due to the overwhelming need to memorize numerous formulas. This often leads to confusion, frustration, and difficulty in effectively using these formulas across diverse types of problems. Traditional methods of learning trigonometry demand considerable time and effort, which can further hinder comprehension and application. Vedic Mathematics offers an innovative and simplified approach to overcoming these challenges. This paper explores how Baudhayan Numbers, can be used to derive trigonometric identities and simplify calculations related to height and distance. Unlike conventional approaches, this method minimizes the need for extensive paper-based calculations, promoting a conceptual understanding. Using Vedic Mathematics Sutras such as Anurupyena and Vilokanam, this approach enables the derivation of over 100 trigonometric identities through a single, unified approach. The simplicity and efficiency of this technique not only make learning trigonometry more accessible but also foster computational thinking. Beyond academics, the practical applications of this method extend to engineering fields such as bridge design and construction, where precise trigonometric calculations are critical. This exploration underscores the potential of Vedic Mathematics to revolutionize the learning and application of trigonometry by offering a streamlined, intuitive, and versatile framework.

Keywords: baudhayan numbers, anurupyena, vilokanam, sutras

Procedia PDF Downloads 17
30220 The Effect of Mobile Technology Use in Education: A Meta-Analysis Study

Authors: Şirin Küçük, Ayşe Kök, İsmail Şahin

Abstract:

Mobile devices are very popular and useful tools for assisting people in daily life. With the advancement of mobile technologies, the issue of mobile learning has been widely investigated in education. Many researches consider that it is important to integrate pedagogical and technical strengths of mobile technology into learning environments. For this reason, the purpose of this research is to examine the effect of mobile technology use in education with meta-analysis method. Meta-analysis is a statistical technique which combines the findings of independent studies in a specific subject. In this respect, the articles will be examined by searching the databases for researches which are conducted between 2005 and 2014. It is expected that the results of this research will contribute to future research related to mobile technology use in education.

Keywords: mobile learning, meta-analysis, mobile technology, education

Procedia PDF Downloads 723
30219 Identification of Clinical Characteristics from Persistent Homology Applied to Tumor Imaging

Authors: Eashwar V. Somasundaram, Raoul R. Wadhwa, Jacob G. Scott

Abstract:

The use of radiomics in measuring geometric properties of tumor images such as size, surface area, and volume has been invaluable in assessing cancer diagnosis, treatment, and prognosis. In addition to analyzing geometric properties, radiomics would benefit from measuring topological properties using persistent homology. Intuitively, features uncovered by persistent homology may correlate to tumor structural features. One example is necrotic cavities (corresponding to 2D topological features), which are markers of very aggressive tumors. We develop a data pipeline in R that clusters tumors images based on persistent homology is used to identify meaningful clinical distinctions between tumors and possibly new relationships not captured by established clinical categorizations. A preliminary analysis was performed on 16 Magnetic Resonance Imaging (MRI) breast tissue segments downloaded from the 'Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis' (I-SPY TRIAL or ISPY1) collection in The Cancer Imaging Archive. Each segment represents a patient’s breast tumor prior to treatment. The ISPY1 dataset also provided the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status data. A persistent homology matrix up to 2-dimensional features was calculated for each of the MRI segmentation. Wasserstein distances were then calculated between all pairwise tumor image persistent homology matrices to create a distance matrix for each feature dimension. Since Wasserstein distances were calculated for 0, 1, and 2-dimensional features, three hierarchal clusters were constructed. The adjusted Rand Index was used to see how well the clusters corresponded to the ER/PR/HER2 status of the tumors. Triple-negative cancers (negative status for all three receptors) significantly clustered together in the 2-dimensional features dendrogram (Adjusted Rand Index of .35, p = .031). It is known that having a triple-negative breast tumor is associated with aggressive tumor growth and poor prognosis when compared to non-triple negative breast tumors. The aggressive tumor growth associated with triple-negative tumors may have a unique structure in an MRI segmentation, which persistent homology is able to identify. This preliminary analysis shows promising results in the use of persistent homology on tumor imaging to assess the severity of breast tumors. The next step is to apply this pipeline to other tumor segment images from The Cancer Imaging Archive at different sites such as the lung, kidney, and brain. In addition, whether other clinical parameters, such as overall survival, tumor stage, and tumor genotype data are captured well in persistent homology clusters will be assessed. If analyzing tumor MRI segments using persistent homology consistently identifies clinical relationships, this could enable clinicians to use persistent homology data as a noninvasive way to inform clinical decision making in oncology.

Keywords: cancer biology, oncology, persistent homology, radiomics, topological data analysis, tumor imaging

Procedia PDF Downloads 138
30218 The Impact of Professional Development in the Area of Technology Enhanced Learning on Higher Education Teaching Practices Across Atlantic Technological University - Research Methodology and Preliminary Findings

Authors: Annette Cosgrove, Carina Ginty, Tony Hall, Cornelia Connolly

Abstract:

The objectives of this research study is to examine the impact of professional development in Technology Enhanced Learning (TEL) and the digitization of learning in teaching communities across multiple higher education sites in the ATU (Atlantic Technological University *) ( 2020-2025), including the proposal of an evidence-based digital teaching model for use in a future pandemic. The research strategy undertaken for this study is a multi-site study using mixed methods. Qualitative & quantitative methods are being used in the study to collect data. A pilot study was carried out initially, feedback was collected and the research instrument was edited to reflect this feedback before being administered. The purpose of the staff questionnaire is to evaluate the impact of professional development in the area of TEL, and to capture the practitioner's views on the perceived impact on their teaching practice in the higher education sector across ATU (West of Ireland – 5 Higher education locations ). The phenomenon being explored is ‘ the impact of professional development in the area of technology-enhanced learning and on teaching practice in a higher education institution. The research methodology chosen for this study is an Action based Research Study. The researcher has chosen this approach as it is a prime strategy for developing educational theory and enhancing educational practice. This study includes quantitative and qualitative methods to elicit data that will quantify the impact that continuous professional development in the area of digital teaching practice and technologies has on the practitioner’s teaching practice in higher education. The research instruments/data collection tools for this study include a lecturer survey with a targeted TEL Practice group ( Pre and post covid experience) and semi-structured interviews with lecturers. This research is currently being conducted across the ATU multi-site campus and targeting Higher education lecturers that have completed formal CPD in the area of digital teaching. ATU, a West of Ireland university, is the focus of the study. The research questionnaire has been deployed, with 75 respondents to date across the ATU - the primary questionnaire and semi-formal interviews are ongoing currently – the purpose being to evaluate the impact of formal professional development in the area of TEL and its perceived impact on the practitioners teaching practice in the area of digital teaching and learning. This paper will present initial findings, reflections and data from this ongoing research study.

Keywords: TEL, technology, digital, education

Procedia PDF Downloads 85
30217 SiamMask++: More Accurate Object Tracking through Layer Wise Aggregation in Visual Object Tracking

Authors: Hyunbin Choi, Jihyeon Noh, Changwon Lim

Abstract:

In this paper, we propose SiamMask++, an architecture that performs layer-wise aggregation and depth-wise cross-correlation and introduce multi-RPN module and multi-MASK module to improve EAO (Expected Average Overlap), a representative performance evaluation metric for Visual Object Tracking (VOT) challenge. The proposed architecture, SiamMask++, has two versions, namely, bi_SiamMask++, which satisfies the real time (56fps) on systems equipped with GPUs (Titan XP), and rf_SiamMask++, which combines mask refinement modules for EAO improvements. Tests are performed on VOT2016, VOT2018 and VOT2019, the representative datasets of Visual Object Tracking tasks labeled as rotated bounding boxes. SiamMask++ perform better than SiamMask on all the three datasets tested. SiamMask++ is achieved performance of 62.6% accuracy, 26.2% robustness and 39.8% EAO, especially on the VOT2018 dataset. Compared to SiamMask, this is an improvement of 4.18%, 37.17%, 23.99%, respectively. In addition, we do an experimental in-depth analysis of how much the introduction of features and multi modules extracted from the backbone affects the performance of our model in the VOT task.

Keywords: visual object tracking, video, deep learning, layer wise aggregation, Siamese network

Procedia PDF Downloads 167
30216 The Effect of an Al Andalus Fused Curriculum Model on the Learning Outcomes of Elementary School Students

Authors: Sobhy Fathy A. Hashesh

Abstract:

The study was carried out in the Elementary Classes of Andalus Private Schools, girls section using control and experimental groups formed by Random Assignment Strategy. The study aimed at investigating the effect of Al-Andalus Fused Curriculum (AFC) model of learning and the effect of separate subjects’ approach on the development of students’ conceptual learning and skills acquiring. The society of the study composed of Al-Andalus Private Schools, elementary school students, Girls Section (N=240), while the sample of the study composed of two randomly assigned groups (N=28) with one experimental group and one control group. The study followed the quantitative and qualitative approaches in collecting and analyzing data to investigate the study hypotheses. Results of the study revealed that there were significant statistical differences between students’ conceptual learning and skills acquiring for the favor of the experimental group. The study recommended applying this model on different educational variables and on other age groups to generate more data leading to more educational results for the favor of students’ learning outcomes.

Keywords: AFC, STEAM, lego education, Al-Andalus fused curriculum, mechatronics

Procedia PDF Downloads 218
30215 Self-Supervised Attributed Graph Clustering with Dual Contrastive Loss Constraints

Authors: Lijuan Zhou, Mengqi Wu, Changyong Niu

Abstract:

Attributed graph clustering can utilize the graph topology and node attributes to uncover hidden community structures and patterns in complex networks, aiding in the understanding and analysis of complex systems. Utilizing contrastive learning for attributed graph clustering can effectively exploit meaningful implicit relationships between data. However, existing attributed graph clustering methods based on contrastive learning suffer from the following drawbacks: 1) Complex data augmentation increases computational cost, and inappropriate data augmentation may lead to semantic drift. 2) The selection of positive and negative samples neglects the intrinsic cluster structure learned from graph topology and node attributes. Therefore, this paper proposes a method called self-supervised Attributed Graph Clustering with Dual Contrastive Loss constraints (AGC-DCL). Firstly, Siamese Multilayer Perceptron (MLP) encoders are employed to generate two views separately to avoid complex data augmentation. Secondly, the neighborhood contrastive loss is introduced to constrain node representation using local topological structure while effectively embedding attribute information through attribute reconstruction. Additionally, clustering-oriented contrastive loss is applied to fully utilize clustering information in global semantics for discriminative node representations, regarding the cluster centers from two views as negative samples to fully leverage effective clustering information from different views. Comparative clustering results with existing attributed graph clustering algorithms on six datasets demonstrate the superiority of the proposed method.

Keywords: attributed graph clustering, contrastive learning, clustering-oriented, self-supervised learning

Procedia PDF Downloads 63
30214 The Impact of Varying the Detector and Modulation Types on Inter Satellite Link (ISL) Realizing the Allowable High Data Rate

Authors: Asmaa Zaki M., Ahmed Abd El Aziz, Heba A. Fayed, Moustafa H. Aly

Abstract:

ISLs are the most popular choice for deep space communications because these links are attractive alternatives to present day microwave links. This paper explored the allowable high data rate in this link over different orbits, which is affected by variation in modulation scheme and detector type. Moreover, the objective of this paper is to optimize and analyze the performance of ISL in terms of Q-factor and Minimum Bit Error Rate (Min-BER) based on different detectors comprising some parameters.

Keywords: free space optics (FSO), field of view (FOV), inter satellite link (ISL), optical wireless communication (OWC)

Procedia PDF Downloads 401
30213 Lean Comic GAN (LC-GAN): a Light-Weight GAN Architecture Leveraging Factorized Convolution and Teacher Forcing Distillation Style Loss Aimed to Capture Two Dimensional Animated Filtered Still Shots Using Mobile Phone Camera and Edge Devices

Authors: Kaustav Mukherjee

Abstract:

In this paper we propose a Neural Style Transfer solution whereby we have created a Lightweight Separable Convolution Kernel Based GAN Architecture (SC-GAN) which will very useful for designing filter for Mobile Phone Cameras and also Edge Devices which will convert any image to its 2D ANIMATED COMIC STYLE Movies like HEMAN, SUPERMAN, JUNGLE-BOOK. This will help the 2D animation artist by relieving to create new characters from real life person's images without having to go for endless hours of manual labour drawing each and every pose of a cartoon. It can even be used to create scenes from real life images.This will reduce a huge amount of turn around time to make 2D animated movies and decrease cost in terms of manpower and time. In addition to that being extreme light-weight it can be used as camera filters capable of taking Comic Style Shots using mobile phone camera or edge device cameras like Raspberry Pi 4,NVIDIA Jetson NANO etc. Existing Methods like CartoonGAN with the model size close to 170 MB is too heavy weight for mobile phones and edge devices due to their scarcity in resources. Compared to the current state of the art our proposed method which has a total model size of 31 MB which clearly makes it ideal and ultra-efficient for designing of camera filters on low resource devices like mobile phones, tablets and edge devices running OS or RTOS. .Owing to use of high resolution input and usage of bigger convolution kernel size it produces richer resolution Comic-Style Pictures implementation with 6 times lesser number of parameters and with just 25 extra epoch trained on a dataset of less than 1000 which breaks the myth that all GAN need mammoth amount of data. Our network reduces the density of the Gan architecture by using Depthwise Separable Convolution which does the convolution operation on each of the RGB channels separately then we use a Point-Wise Convolution to bring back the network into required channel number using 1 by 1 kernel.This reduces the number of parameters substantially and makes it extreme light-weight and suitable for mobile phones and edge devices. The architecture mentioned in the present paper make use of Parameterised Batch Normalization Goodfellow etc al. (Deep Learning OPTIMIZATION FOR TRAINING DEEP MODELS page 320) which makes the network to use the advantage of Batch Norm for easier training while maintaining the non-linear feature capture by inducing the learnable parameters

Keywords: comic stylisation from camera image using GAN, creating 2D animated movie style custom stickers from images, depth-wise separable convolutional neural network for light-weight GAN architecture for EDGE devices, GAN architecture for 2D animated cartoonizing neural style, neural style transfer for edge, model distilation, perceptual loss

Procedia PDF Downloads 137
30212 Comprehensive Review of Adversarial Machine Learning in PDF Malware

Authors: Preston Nabors, Nasseh Tabrizi

Abstract:

Portable Document Format (PDF) files have gained significant popularity for sharing and distributing documents due to their universal compatibility. However, the widespread use of PDF files has made them attractive targets for cybercriminals, who exploit vulnerabilities to deliver malware and compromise the security of end-user systems. This paper reviews notable contributions in PDF malware detection, including static, dynamic, signature-based, and hybrid analysis. It presents a comprehensive examination of PDF malware detection techniques, focusing on the emerging threat of adversarial sampling and the need for robust defense mechanisms. The paper highlights the vulnerability of machine learning classifiers to evasion attacks. It explores adversarial sampling techniques in PDF malware detection to produce mimicry and reverse mimicry evasion attacks, which aim to bypass detection systems. Improvements for future research are identified, including accessible methods, applying adversarial sampling techniques to malicious payloads, evaluating other models, evaluating the importance of features to malware, implementing adversarial defense techniques, and conducting comprehensive examination across various scenarios. By addressing these opportunities, researchers can enhance PDF malware detection and develop more resilient defense mechanisms against adversarial attacks.

Keywords: adversarial attacks, adversarial defense, adversarial machine learning, intrusion detection, PDF malware, malware detection, malware detection evasion

Procedia PDF Downloads 44
30211 Immersive Block Scheduling in Higher Education: A Case Study in Curriculum Reform and Increased Student Success

Authors: Thomas Roche, Erica Wilson, Elizabeth Goode

Abstract:

Universities across the globe are considering how to effect meaningful change in their higher education (HE) delivery in the face of increasingly diverse student cohorts and shifting student learning preferences. This paper reports on a descriptive case study of whole-of-institution curriculum reform at one regional Australian university, where more traditional 13-week semesters were replaced with a 6-week immersive block model drawing on active learning pedagogy. Based on a synthesis of literature in best practice HE pedagogy and principles, the case study draws on student performance data and senior management staff interviews (N = 5) to outline the key changes necessary for successful HE transformation to deliver increased student pass rates and retention. The findings from this case study indicate that an institutional transformation to an immersive block model requires both a considered change in institutional policy and process as well as the appropriate resourcing of roles, governance committees, technical solutions, and, importantly, communities of practice. Implications for practice at higher education institutions considering reforming their curriculum model are also discussed.

Keywords: student retention, immersive scheduling, block model, curriculum reform, active learning, higher education pedagogy, higher education policy

Procedia PDF Downloads 79
30210 A Step Magnitude Haptic Feedback Device and Platform for Better Way to Review Kinesthetic Vibrotactile 3D Design in Professional Training

Authors: Biki Sarmah, Priyanko Raj Mudiar

Abstract:

In the modern world of remotely interactive virtual reality-based learning and teaching, including professional skill-building training and acquisition practices, as well as data acquisition and robotic systems, the revolutionary application or implementation of field-programmable neurostimulator aids and first-hand interactive sensitisation techniques into 3D holographic audio-visual platforms have been a coveted dream of many scholars, professionals, scientists, and students. Integration of 'kinaesthetic vibrotactile haptic perception' along with an actuated step magnitude contact profiloscopy in augmented reality-based learning platforms and professional training can be implemented by using an extremely calculated and well-coordinated image telemetry including remote data mining and control technique. A real-time, computer-aided (PLC-SCADA) field calibration based algorithm must be designed for the purpose. But most importantly, in order to actually realise, as well as to 'interact' with some 3D holographic models displayed over a remote screen using remote laser image telemetry and control, all spatio-physical parameters like cardinal alignment, gyroscopic compensation, as well as surface profile and thermal compositions, must be implemented using zero-order type 1 actuators (or transducers) because they provide zero hystereses, zero backlashes, low deadtime as well as providing a linear, absolutely controllable, intrinsically observable and smooth performance with the least amount of error compensation while ensuring the best ergonomic comfort ever possible for the users.

Keywords: haptic feedback, kinaesthetic vibrotactile 3D design, medical simulation training, piezo diaphragm based actuator

Procedia PDF Downloads 170
30209 Effectiveness of Technology Enhanced Learning in Orthodontic Teaching

Authors: Mohammed Shaath

Abstract:

Aims Technological advancements in teaching and learning have made significant improvements over the past decade and have been incorporated in institutions to aid the learner’s experience. This review aims to assess whether Technology Enhanced Learning (TEL) pedagogy is more effective at improving students’ attitude and knowledge retention in orthodontic training than traditional methods. Methodology The searches comprised Systematic Reviews (SRs) related to the comparison of TEL and traditional teaching methods from the following databases: PubMed, SCOPUS, Medline, and Embase. One researcher performed the screening, data extraction, and analysis and assessed the risk of bias and quality using A Measurement Tool to Assess Systematic Reviews 2 (AMSTAR-2). Kirkpatrick’s 4-level evaluation model was used to evaluate the educational values. Results A sum of 34 SRs was identified after the removal of duplications and irrelevant SRs; 4 fit the inclusion criteria. On Level 1, students showed positivity to TEL methods, although acknowledging that the harder the platforms to use, the less favourable. Nonetheless, the students still showed high levels of acceptability. Level 2 showed there is no significant overall advantage of increased knowledge when it comes to TEL methods. One SR showed that certain aspects of study within orthodontics deliver a statistical improvement with TEL. Level 3 was the least reported on. Results showed that if left without time restrictions, TEL methods may be advantageous. Level 4 shows that both methods are equally as effective, but TEL has the potential to overtake traditional methods in the future as a form of active, student-centered approach. Conclusion TEL has a high level of acceptability and potential to improve learning in orthodontics. Current reviews have potential to be improved, but the biggest aspect that needs to be addressed is the primary study, which shows a lower level of evidence and heterogeneity in their results. As it stands, the replacement of traditional methods with TEL cannot be fully supported in an evidence-based manner. The potential of TEL methods has been recognized and is already starting to show some evidence of the ability to be more effective in some aspects of learning to cater for a more technology savvy generation.

Keywords: TEL, orthodontic, teaching, traditional

Procedia PDF Downloads 47
30208 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data

Authors: Ruchika Malhotra, Megha Khanna

Abstract:

The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.

Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics

Procedia PDF Downloads 420
30207 Identification of Biological Pathways Causative for Breast Cancer Using Unsupervised Machine Learning

Authors: Karthik Mittal

Abstract:

This study performs an unsupervised machine learning analysis to find clusters of related SNPs which highlight biological pathways that are important for the biological mechanisms of breast cancer. Studying genetic variations in isolation is illogical because these genetic variations are known to modulate protein production and function; the downstream effects of these modifications on biological outcomes are highly interconnected. After extracting the SNPs and their effect on different types of breast cancer using the MRBase library, two unsupervised machine learning clustering algorithms were implemented on the genetic variants: a k-means clustering algorithm and a hierarchical clustering algorithm; furthermore, principal component analysis was executed to visually represent the data. These algorithms specifically used the SNP’s beta value on the three different types of breast cancer tested in this project (estrogen-receptor positive breast cancer, estrogen-receptor negative breast cancer, and breast cancer in general) to perform this clustering. Two significant genetic pathways validated the clustering produced by this project: the MAPK signaling pathway and the connection between the BRCA2 gene and the ESR1 gene. This study provides the first proof of concept showing the importance of unsupervised machine learning in interpreting GWAS summary statistics.

Keywords: breast cancer, computational biology, unsupervised machine learning, k-means, PCA

Procedia PDF Downloads 149
30206 Smartphone-Based Human Activity Recognition by Machine Learning Methods

Authors: Yanting Cao, Kazumitsu Nawata

Abstract:

As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.

Keywords: smart sensors, human activity recognition, artificial intelligence, SVM

Procedia PDF Downloads 146