Search results for: window-based regression
204 Enhanced Furfural Extraction from Aqueous Media Using Neoteric Hydrophobic Solvents
Authors: Ahmad S. Darwish, Tarek Lemaoui, Hanifa Taher, Inas M. AlNashef, Fawzi Banat
Abstract:
This research reports a systematic top-down approach for designing neoteric hydrophobic solvents –particularly, deep eutectic solvents (DES) and ionic liquids (IL)– as furfural extractants from aqueous media for the application of sustainable biomass conversion. The first stage of the framework entailed screening 32 neoteric solvents to determine their efficacy against toluene as the application’s conventional benchmark for comparison. The selection criteria for the best solvents encompassed not only their efficiency in extracting furfural but also low viscosity and minimal toxicity levels. Additionally, for the DESs, their natural origins, availability, and biodegradability were also taken into account. From the screening pool, two neoteric solvents were selected: thymol:decanoic acid 1:1 (Thy:DecA) and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P₁₄,₆,₆,₆][NTf₂]. These solvents outperformed the toluene benchmark, achieving efficiencies of 94.1% and 97.1% respectively, compared to toluene’s 81.2%, while also possessing the desired properties. These solvents were then characterized thoroughly in terms of their physical properties, thermal properties, critical properties, and cross-contamination solubilities. The selected neoteric solvents were then extensively tested under various operating conditions, and an exceptional stable performance was exhibited, maintaining high efficiency across a broad range of temperatures (15–100 °C), pH levels (1–13), and furfural concentrations (0.1–2.0 wt%) with a remarkable equilibrium time of only 2 minutes, and most notably, demonstrated high efficiencies even at low solvent-to-feed ratios. The durability of the neoteric solvents was also validated to be stable over multiple extraction-regeneration cycles, with limited leachability to the aqueous phase (≈0.1%). Moreover, the extraction performance of the solvents was then modeled through machine learning, specifically multiple non-linear regression (MNLR) and artificial neural networks (ANN). The models demonstrated high accuracy, indicated by their low absolute average relative deviations with values of 2.74% and 2.28% for Thy:DecA and [P₁₄,₆,₆,₆][NTf₂], respectively, using MNLR, and 0.10% for Thy:DecA and 0.41% for [P₁₄,₆,₆,₆][NTf₂] using ANN, highlighting the significantly enhanced predictive accuracy of the ANN. The neoteric solvents presented herein offer noteworthy advantages over traditional organic solvents, including their high efficiency in both extraction and regeneration processes, their stability and minimal leachability, making them particularly suitable for applications involving aqueous media. Moreover, these solvents are more environmentally friendly, incorporating renewable and sustainable components like thymol and decanoic acid. This exceptional efficacy of the newly developed neoteric solvents signifies a significant advancement, providing a green and sustainable alternative for furfural production from biowaste.Keywords: sustainable biomass conversion, furfural extraction, ionic liquids, deep eutectic solvents
Procedia PDF Downloads 71203 Knowledge Management and Administrative Effectiveness of Non-teaching Staff in Federal Universities in the South-West, Nigeria
Authors: Nathaniel Oladimeji Dixon, Adekemi Dorcas Fadun
Abstract:
Educational managers have observed a downward trend in the administrative effectiveness of non-teaching staff in federal universities in South-west Nigeria. This is evident in the low-quality service delivery of administrators and unaccomplished institutional goals and missions of higher education. Scholars have thus indicated the need for the deployment and adoption of a practice that encourages information collection and sharing among stakeholders with a view to improving service delivery and outcomes. This study examined the extent to which knowledge management correlated with the administrative effectiveness of non-teaching staff in federal universities in South-west Nigeria. The study adopted the survey design. Three federal universities (the University of Ibadan, Federal University of Agriculture, Abeokuta, and Obafemi Awolowo University) were purposively selected because administrative ineffectiveness was more pronounced among non-teaching staff in government-owned universities, and these federal universities were long established. The proportional and stratified random sampling was adopted to select 1156 non-teaching staff across the three universities along the three existing layers of the non-teaching staff: secretarial (senior=311; junior=224), non-secretarial (senior=147; junior=241) and technicians (senior=130; junior=103). Knowledge Management Practices Questionnaire with four sub-scales: knowledge creation (α=0.72), knowledge utilization (α=0.76), knowledge sharing (α=0.79) and knowledge transfer (α=0.83); and Administrative Effectiveness Questionnaire with four sub-scales: communication (α=0.84), decision implementation (α=0.75), service delivery (α=0.81) and interpersonal relationship (α=0.78) were used for data collection. Data were analyzed using descriptive statistics, Pearson product-moment correlation and multiple regression at 0.05 level of significance, while qualitative data were content analyzed. About 59.8% of the non-teaching staff exhibited a low level of knowledge management. The indices of administrative effectiveness of non-teaching staff were rated as follows: service delivery (82.0%), communication (78.0%), decision implementation (71.0%) and interpersonal relationship (68.0%). Knowledge management had significant relationships with the indices of administrative effectiveness: service delivery (r=0.82), communication (r=0.81), decision implementation (r=0.80) and interpersonal relationship (r=0.47). Knowledge management had a significant joint prediction on administrative effectiveness (F (4;1151)= 0.79, R=0.86), accounting for 73.0% of its variance. Knowledge sharing (β=0.38), knowledge transfer (β=0.26), knowledge utilization (β=0.22), and knowledge creation (β=0.06) had relatively significant contributions to administrative effectiveness. Lack of team spirit and withdrawal syndrome is the major perceived constraints to knowledge management practices among the non-teaching staff. Knowledge management positively influenced the administrative effectiveness of the non-teaching staff in federal universities in South-west Nigeria. There is a need to ensure that the non-teaching staff imbibe team spirit and embrace teamwork with a view to eliminating their withdrawal syndromes. Besides, knowledge management practices should be deployed into the administrative procedures of the university system.Keywords: knowledge management, administrative effectiveness of non-teaching staff, federal universities in the south-west of nigeria., knowledge creation, knowledge utilization, effective communication, decision implementation
Procedia PDF Downloads 104202 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series
Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold
Abstract:
To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network
Procedia PDF Downloads 141201 The Impact of Team Heterogeneity and Team Reflexivity on Entrepreneurial Decision -Making - Empirical Study in China
Authors: Chang Liu, Rui Xing, Liyan Tang, Guohong Wang
Abstract:
Entrepreneurial actions are based on entrepreneurial decisions. The quality of decisions influences entrepreneurial activities and subsequent new venture performance. Uncertainty of surroundings put heightened demands on the team as a whole, and each team member. Diverse team composition provides rich information, which a team can draw when making complex decisions. However, team heterogeneity may cause emotional conflicts, which is adverse to team outcomes. Thus, the effects of team heterogeneity on team outcomes are complex. Although team heterogeneity is an essential factor influencing entrepreneurial decision-making, there is a lack of empirical analysis on under what conditions team heterogeneity plays a positive role in promoting decision-making quality. Entrepreneurial teams always struggle with complex tasks. How a team shapes its teamwork is key in resolving constant issues. As a collective regulatory process, team reflexivity is characterized by continuous joint evaluation and discussion of team goals, strategies, and processes, and adapt them to current or anticipated circumstances. It enables diversified information to be shared and overtly discussed. Instead of hostile interpretation of opposite opinions team members take them as useful insights from different perspectives. Team reflexivity leads to better integration of expertise to avoid the interference of negative emotions and conflict. Therefore, we propose that team reflexivity is a conditional factor that influences the impact of team heterogeneity on high-quality entrepreneurial decisions. In this study, we identify team heterogeneity as a crucial determinant of entrepreneurial decision quality. Integrating the literature on decision-making and team heterogeneity, we investigate the relationship between team heterogeneity and entrepreneurial decision-making quality, treating team reflexivity as a moderator. We tested our hypotheses using the hierarchical regression method and the data gathered from 63 teams and 205 individual members from 45 new firms in China's first-tier cities such as Beijing, Shanghai, and Shenzhen. This research found that both teams' education heterogeneity and teams' functional background heterogeneity were significantly positively related to entrepreneurial decision-making quality, and the positive relation was stronger in teams with a high level of team reflexivity. While teams' specialization of education heterogeneity was negatively related to decision-making quality, and the negative relationship was weaker in teams with a high level of team reflexivity. We offer two contributions to decision-making and entrepreneurial team literatures. Firstly, our study enriches the understanding of the role of entrepreneurial team heterogeneity in entrepreneurial decision-making quality. Different from previous entrepreneurial decision-making literatures, which focus more on decision-making modes of entrepreneurs and the top management team, this study is a significant attempt to highlight that entrepreneurial team heterogeneity makes a unique contribution to generating high-quality entrepreneurial decisions. Secondly, this study introduced team reflexivity as the moderating variable, to explore the boundary conditions under which the entrepreneurial team heterogeneity play their roles.Keywords: decision-making quality, entrepreneurial teams, education heterogeneity, functional background heterogeneity, specialization of education heterogeneity
Procedia PDF Downloads 119200 Beyond Sexual Objectification: Moderation Analysis of Trauma and Overexcitability Dynamics in Women
Authors: Ritika Chaturvedi
Abstract:
Introduction: Sexual objectification, characterized by the reduction of an individual to a mere object of sexual desire, remains a pervasive societal issue with profound repercussions on individual well-being. Such experiences, often rooted in systemic and cultural norms, have long-lasting implications for mental and emotional health. This study aims to explore the intricate relationship between experiences of sexual objectification and insidious trauma, further investigating the potential moderating effects of overexcitability as proposed by Dabrowski's theory of positive disintegration. Methodology: The research involved a comprehensive cohort of 204 women, spanning ages from 18 to 65 years. Participants were tasked with completing self-administered questionnaires designed to capture their experiences with sexual objectification. Additionally, the questionnaire assessed symptoms indicative of insidious trauma and explored overexcitability across five distinct domains: emotional, intellectual, psychomotor, sensory, and imaginational. Employing advanced statistical techniques, including multiple regression and moderation analysis, the study sought to decipher the intricate interplay among these variables. Findings: The study's results revealed a compelling positive correlation between experiences of sexual objectification and the onset of symptoms indicative of insidious trauma. This correlation underscores the profound and detrimental effects of sexual objectification on an individual's psychological well-being. Interestingly, the moderation analyses introduced a nuanced understanding, highlighting the differential roles of various overexcitability. Specifically, emotional, intellectual, and sensual overexcitability were found to exacerbate trauma symptomatology. In contrast, psychomotor overexcitability emerged as a protective factor, demonstrating a mitigating influence on the relationship between sexual objectification and trauma. Implications: The study's findings hold significant implications for a diverse array of stakeholders, encompassing mental health practitioners, educators, policymakers, and advocacy groups. The identified moderating effects of overexcitability emphasize the need for tailored interventions that consider individual differences in coping and resilience mechanisms. By recognizing the pivotal role of overexcitability in modulating the traumatic consequences of sexual objectification, this research advocates for the development of more nuanced and targeted support frameworks. Moreover, the study underscores the importance of continued research endeavors to unravel the intricate mechanisms and dynamics underpinning these relationships. Such endeavors are crucial for fostering the evolution of informed, evidence-based interventions and strategies aimed at mitigating the adverse effects of sexual objectification and promoting holistic well-being.Keywords: sexual objectification, insidious trauma, emotional overexcitability, intellectual overexcitability, sensual overexcitability, psychomotor overexcitability, imaginational overexcitability
Procedia PDF Downloads 56199 Differences in Preschool Educators' and Parents' Interactive Behavior during a Cooperative Task with Children
Authors: Marina Fuertes
Abstract:
Introduction: In everyday life experiences, children are solicited to cooperate with others. Often they perform cooperative tasks with their parents (e.g., setting the table for dinner) or in school. These tasks are very significant since children may learn to turn taking in interactions, to participate as well to accept others participation, to trust, to respect, to negotiate, to self-regulate their emotions, etc. Indeed, cooperative tasks contribute to children social, motor, cognitive and linguistic development. Therefore, it is important to study what learning, social and affective experiences are provided to children during these tasks. In this study, we included parents and preschool educators. Parents and educators are both significant: educative, interactive and affective figures. Rarely parents and educators behavior have been compared in studies about cooperative tasks. Parents and educators have different but complementary styles of interaction and communication. Aims: Therefore, this study aims to compare parents and educators' (of both genders) interactive behavior (cooperativity, empathy, ability to challenge the child, reciprocity, elaboration) during a play/individualized situation involving a cooperative task. Moreover, to compare parents and educators' behavior with girls and boys. Method: A quasi-experimental study with 45 dyads educators-children and 45 dyads with parents and their children. In this study, participated children between 3 and 5 years old and with age appropriate development. Adults and children were videotaped using a variety of materials (e.g., pencils, wood, wool) and tools (e.g., scissors, hammer) to produce together something of their choice during 20-minutes. Each dyad (one adult and one child) was observed and videotaped independently. Adults and children agreed and consented to participate. Experimental conditions were suitable, pleasant and age appropriated. Results: Findings indicate that parents and teachers offer different learning experiences. Teachers were more likely to challenged children to explore new concepts and to accept children ideas. In turn, parents gave more support to children actions and were more likely to use their own example to teach children. Multiple regression analysis indicates that parent versus educator status predicts their behavior. Gender of both children and adults affected the results. Adults acted differently with girls and boys (e.g., adults worked more cooperatively with girls than boys). Male participants supported more girls participation rather than boys while female adults allowed boys to make more decisions than girls. Discussion: Taking our results and past studies, we learn that different qualitative interactions and learning experiences are offered by parents, educators according to parents and children gender. Thus, the same child needs to learn different cooperative strategies according to their interactive patterns and specific context. Yet, cooperative play and individualized activities with children generate learning opportunities and benefits children participation and involvement.Keywords: early childhood education, parenting, gender, cooperative tasks, adult-child interaction
Procedia PDF Downloads 326198 Healthcare Associated Infections in an Intensive Care Unit in Tunisia: Incidence and Risk Factors
Authors: Nabiha Bouafia, Asma Ben Cheikh, Asma Ammar, Olfa Ezzi, Mohamed Mahjoub, Khaoula Meddeb, Imed Chouchene, Hamadi Boussarsar, Mansour Njah
Abstract:
Background: Hospital acquired infections (HAI) cause significant morbidity, mortality, length of stay and hospital costs, especially in the intensive care unit (ICU), because of the debilitated immune systems of their patients and exposure to invasive devices. The aims of this study were to determine the rate and the risk factors of HAI in an ICU of a university hospital in Tunisia. Materials/Methods: A prospective study was conducted in the 8-bed adult medical ICU of a University Hospital (Sousse Tunisia) during 14 months from September 15th, 2015 to November 15th, 2016. Patients admitted for more than 48h were included. Their surveillance was stopped after the discharge from ICU or death. HAIs were defined according to standard Centers for Disease Control and Prevention criteria. Risk factors were analyzed by conditional stepwise logistic regression. The p-value of < 0.05 was considered significant. Results: During the study, 192 patients had admitted for more than 48 hours. Their mean age was 59.3± 18.20 years and 57.1% were male. Acute respiratory failure was the main reason of admission (72%). The mean SAPS II score calculated at admission was 32.5 ± 14 (range: 6 - 78). The exposure to the mechanical ventilation (MV) and the central venous catheter were observed in 169 (88 %) and 144 (75 %) patients, respectively. Seventy-three patients (38.02%) developed 94 HAIs. The incidence density of HAIs was 41.53 per 1000 patient day. Mortality rate in patients with HAIs was 65.8 %( n= 48). Regarding the type of infection, Ventilator Associated Pneumoniae (VAP) and central venous catheter Associated Infections (CVC AI) were the most frequent with Incidence density: 14.88/1000 days of MV for VAP and 20.02/1000 CVC days for CVC AI. There were 5 Peripheral Venous Catheter Associated Infections, 2 urinary tract infections, and 21 other HAIs. Gram-negative bacteria were the most common germs identified in HAIs: Multidrug resistant Acinetobacter Baumanii (45%) and Klebsiella pneumoniae (10.96%) were the most frequently isolated. Univariate analysis showed that transfer from another hospital department (p= 0.001), intubation (p < 10-4), tracheostomy (p < 10-4), age (p=0.028), grade of acute respiratory failure (p=0.01), duration of sedation (p < 10-4), number of CVC (p < 10-4), length of mechanical ventilation (p < 10-4) and length of stay (p < 10-4), were associated to high risk of HAIS in ICU. Multivariate analysis reveals that independent risk factors for HAIs are: transfer from another hospital department: OR=13.44, IC 95% [3.9, 44.2], p < 10-4, duration of sedation: OR= 1.18, IC 95% [1.049, 1.325], p=0.006, high number of CVC: OR=2.78, IC 95% [1.73, 4.487], p < 10-4, and length of stay in ICU: OR= 1.14, IC 95% [1.066,1.22], p < 10-4. Conclusion: Prevention of nosocomial infections in ICUs is a priority of health care systems all around the world. Yet, their control requires an understanding of epidemiological data collected in these units.Keywords: healthcare associated infections, incidence, intensive care unit, risk factors
Procedia PDF Downloads 369197 Knowledge of Sexually Transmitted Infections and Socio-Demographic Factors Affecting High Risk Sex among Unmarried Youths in Nigeria
Authors: Obasanjo Afolabi Bolarinwa
Abstract:
This study assesses the levels of knowledge of sexually transmitted infections among unmarried youths in Nigeria; examines the pattern of high risk sex among unmarried youths in Nigeria; investigate the socio-demographic factors (age, place of residence, religion, level of education, wealth index and employment status) affecting the practice of high-risk sexual behaviour and ascertain the relationships between knowledge of sexually transmitted infections and practice of high risk sex. The goal of the study is to identify the factors associated with the practice of high risk sex among youth. These were with a view to identifying critical actions needed to reduce high risk sexual behaviour among youths. The study employed secondary data. The data for the study were extracted from the 2013 Nigeria Demographic and Health Survey (NDHS). The 2013 NDHS collected information from 38,948 Women ages 15-49 years and 17,359 men ages 15-49. A total of 7,744 female and 6,027 male respondents were utilized in the study. In order to adjust for the effect of oversampling of the population, the weighting factor provided by Measure DHS was applied. The data were analysed using frequency distribution and logistic regression. The results show that both male (92.2%) and female (93.6%) have accurate knowledge of sexually transmitted infections. The study also revealed that prevalence of high risk sexual behavior is high among Nigerian youths; this is evident as 77.7% (female) and 78.4% (male) are engaging in high risk sexual behavior. The bivariate analysis shows that age of respondent (χ2=294.2; p < 0.05), religion (χ2=136.64; p < 0.05), wealth index (χ2=17.38; p < 0.05), level of education (χ2=34.73; p < 0.05) and employment status (χ2=94.54; p < 0.05) were individual factors significantly associated with high risk sexual behaviour among male while age of respondent (χ2=327.07; p < 0.05), place of residence (χ2=6.71; p < 0.05), religion (χ2=81.04; p < 0.05), wealth index (χ2=7.41; p < 0.05), level of education (χ2=18.12; p < 0.05) and employment status (χ2=51.02; p < 0.05) were individual factors significantly associated with high risk sexual behaviour among female. Furthermore, the study shows that there is a relationship between knowledge of sexually transmitted infections and high risk sex among male (χ2=38.32; p < 0.05) and female (χ2=18.37; p < 0.05). At multivariate level, the study revealed that individual characteristics such as age, religion, place of residence, wealth index, levels of education and employment status were statistically significantly related with high risk sexual behaviour among male and female (p < 0.05). Lastly, the study shows that knowledge of sexually transmitted infection was significantly related to high risk sexual behaviour among youths (p < 0.05). The study concludes that there is a high level of knowledge of sexually transmitted infections among unmarried youths in Nigeria. The practice of high risk sex is high among unmarried youths but higher among male youths. The prevalence of high risk sexual activity is higher for males when they are at disadvantage and higher for females when they are at advantage. Socio-demographic factors like age of respondents, religion, wealth index, place of residence, employment status and highest level of education are factors influencing high risk sexual behaviour among youths.Keywords: high risk sex, wealth index, sexual behaviour, knowledge
Procedia PDF Downloads 254196 Coupling Strategy for Multi-Scale Simulations in Micro-Channels
Authors: Dahia Chibouti, Benoit Trouette, Eric Chenier
Abstract:
With the development of micro-electro-mechanical systems (MEMS), understanding fluid flow and heat transfer at the micrometer scale is crucial. In the case where the flow characteristic length scale is narrowed to around ten times the mean free path of gas molecules, the classical fluid mechanics and energy equations are still valid in the bulk flow, but particular attention must be paid to the gas/solid interface boundary conditions. Indeed, in the vicinity of the wall, on a thickness of about the mean free path of the molecules, called the Knudsen layer, the gas molecules are no longer in local thermodynamic equilibrium. Therefore, macroscopic models based on the continuity of velocity, temperature and heat flux jump conditions must be applied at the fluid/solid interface to take this non-equilibrium into account. Although these macroscopic models are widely used, the assumptions on which they depend are not necessarily verified in realistic cases. In order to get rid of these assumptions, simulations at the molecular scale are carried out to study how molecule interaction with walls can change the fluid flow and heat transfers at the vicinity of the walls. The developed approach is based on a kind of heterogeneous multi-scale method: micro-domains overlap the continuous domain, and coupling is carried out through exchanges of information between both the molecular and the continuum approaches. In practice, molecular dynamics describes the fluid flow and heat transfers in micro-domains while the Navier-Stokes and energy equations are used at larger scales. In this framework, two kinds of micro-simulation are performed: i) in bulk, to obtain the thermo-physical properties (viscosity, conductivity, ...) as well as the equation of state of the fluid, ii) close to the walls to identify the relationships between the slip velocity and the shear stress or between the temperature jump and the normal temperature gradient. The coupling strategy relies on an implicit formulation of the quantities extracted from micro-domains. Indeed, using the results of the molecular simulations, a Bayesian regression is performed in order to build continuous laws giving both the behavior of the physical properties, the equation of state and the slip relationships, as well as their uncertainties. These latter allow to set up a learning strategy to optimize the number of micro simulations. In the present contribution, the first results regarding this coupling associated with the learning strategy are illustrated through parametric studies of convergence criteria, choice of basis functions and noise of input data. Anisothermic flows of a Lennard Jones fluid in micro-channels are finally presented.Keywords: multi-scale, microfluidics, micro-channel, hybrid approach, coupling
Procedia PDF Downloads 168195 Applying Miniaturized near Infrared Technology for Commingled and Microplastic Waste Analysis
Authors: Monika Rani, Claudio Marchesi, Stefania Federici, Laura E. Depero
Abstract:
Degradation of the aquatic environment by plastic litter, especially microplastics (MPs), i.e., any water-insoluble solid plastic particle with the longest dimension in the range 1µm and 1000 µm (=1 mm) size, is an unfortunate indication of the advancement of the Anthropocene age on Earth. Microplastics formed due to natural weathering processes are termed as secondary microplastics, while when these are synthesized in industries, they are called primary microplastics. Their presence from the highest peaks to the deepest points in oceans explored and their resistance to biological and chemical decay has adversely affected the environment, especially marine life. Even though the presence of MPs in the marine environment is well-reported, a legitimate and authentic analytical technique to sample, analyze, and quantify the MPs is still under progress and testing stages. Among the characterization techniques, vibrational spectroscopic techniques are largely adopted in the field of polymers. And the ongoing miniaturization of these methods is on the way to revolutionize the plastic recycling industry. In this scenario, the capability and the feasibility of a miniaturized near-infrared (MicroNIR) spectroscopy combined with chemometrics tools for qualitative and quantitative analysis of urban plastic waste collected from a recycling plant and microplastic mixture fragmented in the lab were investigated. Based on the Resin Identification Code, 250 plastic samples were used for macroplastic analysis and to set up a library of polymers. Subsequently, MicroNIR spectra were analysed through the application of multivariate modelling. Principal Components Analysis (PCA) was used as an unsupervised tool to find trends within the data. After the exploratory PCA analysis, a supervised classification tool was applied in order to distinguish the different plastic classes, and a database containing the NIR spectra of polymers was made. For the microplastic analysis, the three most abundant polymers in the plastic litter, PE, PP, PS, were mechanically fragmented in the laboratory to micron size. The distinctive arrangement of blends of these three microplastics was prepared in line with a designed ternary composition plot. After the PCA exploratory analysis, a quantitative model Partial Least Squares Regression (PLSR) allowed to predict the percentage of microplastics in the mixtures. With a complete dataset of 63 compositions, PLS was calibrated with 42 data-points. The model was used to predict the composition of 21 unknown mixtures of the test set. The advantage of the consolidated NIR Chemometric approach lies in the quick evaluation of whether the sample is macro or micro, contaminated, coloured or not, and with no sample pre-treatment. The technique can be utilized with bigger example volumes and even considers an on-site evaluation and in this manner satisfies the need for a high-throughput strategy.Keywords: chemometrics, microNIR, microplastics, urban plastic waste
Procedia PDF Downloads 165194 Urban Park Characteristics Defining Avian Community Structure
Authors: Deepti Kumari, Upamanyu Hore
Abstract:
Cities are an example of a human-modified environment with few fragments of urban green spaces, which are widely considered for urban biodiversity. The study aims to address the avifaunal diversity in urban parks based on the park size and their urbanization intensity. Also, understanding the key factors affecting species composition and structure as birds are a good indicator of a healthy ecosystem, and they are sensitive to changes in the environment. A 50 m-long line-transect method is used to survey birds in 39 urban parks in Delhi, India. Habitat variables, including vegetation (percentage of non-native trees, percentage of native trees, top canopy cover, sub-canopy cover, diameter at breast height, ground vegetation cover, shrub height) were measured using the quadrat method along the transect, and disturbance variables (distance from water, distance from road, distance from settlement, park area, visitor rate, and urbanization intensity) were measured using ArcGIS and google earth. We analyzed species data for diversity and richness. We explored the relation of species diversity and richness to habitat variables using the multi-model inference approach. Diversity and richness are found significant in different park sizes and their urbanization intensity. Medium size park supports more diversity, whereas large size park has more richness. However, diversity and richness both declined with increasing urbanization intensity. The result of CCA revealed that species composition in urban parks was positively associated with tree diameter at breast height and distance from the settlement. On the model selection approach, disturbance variables, especially distance from road, urbanization intensity, and visitors are the best predictors for the species richness of birds in urban parks. In comparison, multiple regression analysis between habitat variables and bird diversity suggested that native tree species in the park may explain the diversity pattern of birds in urban parks. Feeding guilds such as insectivores, omnivores, carnivores, granivores, and frugivores showed a significant relation with vegetation variables, while carnivores and scavenger bird species mainly responded with disturbance variables. The study highlights the importance of park size in urban areas and their urbanization intensity. It also indicates that distance from the settlement, distance from the road, urbanization intensity, visitors, diameter at breast height, and native tree species can be important determining factors for bird richness and diversity in urban parks. The study also concludes that the response of feeding guilds to vegetation and disturbance in urban parks varies. Therefore, we recommend that park size and surrounding urban matrix should be considered in order to increase bird diversity and richness in urban areas for designing and planning.Keywords: diversity, feeding guild, urban park, urbanization intensity
Procedia PDF Downloads 123193 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs
Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.
Abstract:
Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification
Procedia PDF Downloads 128192 Nutritional Status of Children in a Rural Food Environment, Haryana: A Paradox for the Policy Action
Authors: Neha Gupta, Sonika Verma, Seema Puri, Nikhil Tandon, Narendra K. Arora
Abstract:
The concurrent increasing prevalence of underweight and overweight/obesity among children with changing lifestyle and the rapid transitioning society has necessitated the need for a unifying/multi-level approach to understand the determinants of the problem. The present community-based cross-sectional research study was conducted to assess the associations between lifestyle behavior and food environment of the child at household, neighborhood, and school with the BMI of children (6-12 year old) (n=612) residing in three rural clusters of Palwal district, Haryana. The study used innovative and robust methods for assessing the lifestyle and various components of food environment in the study. The three rural clusters selected for the study were located at three different locations according to their access to highways in the SOMAARTH surveillance site. These clusters were significantly different from each other in terms of their socio-demographic and socio-economic profile, living conditions, environmental hygiene, health seeking behavior and retail density. Despite of being different, the quality of living conditions and environmental hygiene was poor across three clusters. The children had higher intakes of dietary energy and sugars; one-fifth share of the energy being derived from unhealthy foods, engagement in high levels of physical activity and significantly different food environment at home, neighborhood and school level. However, despite having a high energy intake, 22.5% of the recruited children were thin/severe thin, and 3% were overweight/obese as per their BMI-for-age categories. The analysis was done using multi-variate logistic regression at three-tier hierarchy including individual, household and community level. The factors significantly explained the variability in governing the risk of getting thin/severe thin among children in rural area (p-value: 0.0001; Adjusted R2: 0.156) included age (>10years) (OR: 2.1; 95% CI: 1.0-4.4), the interaction between minority category and poor SES of the household (OR: 4.4; 95% CI: 1.6-12.1), availability of sweets (OR: 0.9; 95% CI: 0.8-0.99) and cereals (OR: 0.9; 95% CI: 0.8-1.0) in the household and poor street condition (proxy indicator of the hygiene and cleanliness in the neighborhood) (OR: 0.3; 95% CI: 0.1-1.1). The homogeneity of other factors at neighborhood and school level food environment diluted the heterogeneity in the lifestyles and home environment of the recruited children and their households. However, it is evident that when various individual factors interplay at multiple levels amplifies the risk of undernutrition in a rural community. Conclusion: These rural areas in Haryana are undergoing developmental, economic and societal transition. In correspondence, no improvements in the nutritional status of children have happened. Easy access to the unhealthy foods has become a paradox.Keywords: transition, food environment, lifestyle, undernutrition, overnutrition
Procedia PDF Downloads 181191 Investigating the Relationship between Job Satisfaction, Role Identity, and Turnover Intention for Nurses in Outpatient Department
Authors: Su Hui Tsai, Weir Sen Lin, Rhay Hung Weng
Abstract:
There are numerous outpatient departments at hospitals with enormous amounts of outpatients. Although the work of outpatient nursing staff does not include the ward, emergency and critical care units that involve patient life-threatening conditions, the work is cumbersome and requires facing and dealing with a large number of outpatients in a short period of time. Therefore, nursing staff often do not feel satisfied with their work and cannot identify with their professional role, leading to intentions to leave their job. Thus, the main purpose of this study is to explore the correlation between the job satisfaction and role identity of nursing staff with turnover intention. This research was conducted using a questionnaire, and the subjects were outpatient nursing staff in three regional hospitals in Southern Taiwan. A total of 175 questionnaires were distributed, and 166 valid questionnaires were returned. After collecting the data, the reliability and validity of the study variables were confirmed by confirmatory factor analysis. The influence of role identity and job satisfaction on nursing staff’s turnover intention was analyzed by descriptive analysis, one-way ANOVA, Pearson correlation analysis and multiple regression analysis. Results showed that 'role identity' had significant differences in different types of marriages. Job satisfaction of 'grasp of environment' had significant differences in different levels of education. Job satisfaction of 'professional growth' and 'shifts and days off' showed significant differences in different types of marriages. 'Role identity' and 'job satisfaction' were negatively correlated with turnover intention respectively. Job satisfaction of 'salary and benefits' and 'grasp of environment' were significant predictors of role identity. The higher the job satisfaction of 'salary and benefits' and 'grasp of environment', the higher the role identity. Job satisfaction of 'patient and family interaction' were significant predictors of turnover intention. The lower the job satisfaction of 'patient and family interaction', the higher the turnover intention. This study found that outpatient nursing staff had the lowest satisfaction towards salary structure. It is recommended that bonuses, promotion opportunities and other incentives be established to increase the role identity of outpatient nursing staff. The results showed that the higher the job satisfaction of 'salary and benefits' and 'grasp of environment', the higher the role identity. It is recommended that regular evaluations be conducted to reward nursing staff with excellent service and invite nursing staff to share their work experiences and thoughts, to enhance nursing staff’s expectation and identification of their occupational role, as well as instilling the concept of organizational service and organizational expectations of emotional display. The results showed that the lower the job satisfaction of 'patient and family interaction', the higher the turnover intention. It is recommended that interpersonal communication and workplace violence prevention educational training courses be organized to enhance the communication and interaction of nursing staff with patients and their families.Keywords: outpatient, job satisfaction, turnover, intention
Procedia PDF Downloads 146190 Assessing the Impact of Physical Inactivity on Dialysis Adequacy and Functional Health in Peritoneal Dialysis Patients
Authors: Mohammad Ali Tabibi, Farzad Nazemi, Nasrin Salimian
Abstract:
Background: Peritoneal dialysis (PD) is a prevalent renal replacement therapy for patients with end-stage renal disease. Despite its benefits, PD patients often experience reduced physical activity and physical function, which can negatively impact dialysis adequacy and overall health outcomes. Despite the known benefits of maintaining physical activity in chronic disease management, the specific interplay between physical inactivity, physical function, and dialysis adequacy in PD patients remains underexplored. Understanding this relationship is essential for developing targeted interventions to enhance patient care and outcomes in this vulnerable population. This study aims to assess the impact of physical inactivity on dialysis adequacy and functional health in PD patients. Methods: This cross-sectional study included 135 peritoneal dialysis patients from multiple dialysis centers. Physical inactivity was measured using the International Physical Activity Questionnaire (IPAQ), while physical function was assessed using the Short Physical Performance Battery (SPPB). Dialysis adequacy was evaluated using the Kt/V ratio. Additional variables such as demographic data, comorbidities, and laboratory parameters were collected to control for potential confounders. Statistical analyses were performed to determine the relationships between physical inactivity, physical function, and dialysis adequacy. Results: The study cohort comprised 70 males and 65 females with a mean age of 55.4 ± 13.2 years. A significant proportion of the patients (65%) were categorized as physically inactive based on IPAQ scores. Inactive patients demonstrated significantly lower SPPB scores (mean 6.2 ± 2.1) compared to their more active counterparts (mean 8.5 ± 1.8, p < 0.001). Dialysis adequacy, as measured by Kt/V, was found to be suboptimal (Kt/V < 1.7) in 48% of the patients. There was a significant positive correlation between physical function scores and Kt/V values (r = 0.45, p < 0.01), indicating that better physical function is associated with higher dialysis adequacy. Also, there was a significant negative correlation between physical inactivity and physical function (r = -0.55, p < 0.01). Additionally, physically inactive patients had lower Kt/V ratios compared to their active counterparts (1.3 ± 0.3 vs. 1.8 ± 0.4, p < 0.05). Multivariate regression analysis revealed that physical inactivity was an independent predictor of reduced dialysis adequacy (β = -0.32, p < 0.01) and poorer physical function (β = -0.41, p < 0.01) after adjusting for age, sex, comorbidities, and dialysis vintage. Conclusion: This study underscores the critical role of physical activity and physical function in maintaining adequate dialysis in peritoneal dialysis patients. These findings highlight the need for targeted interventions to promote physical activity in this population to improve their overall health outcomes. Future research should focus on developing and evaluating exercise programs tailored for PD patients to enhance their physical function and dialysis adequacy. The findings suggest that interventions aimed at increasing physical activity and improving physical function may enhance dialysis adequacy and overall health outcomes in this population. Further research is warranted to explore the mechanisms underlying these associations and to develop targeted strategies for enhancing patient care.Keywords: inactivity, physical function, peritoneal dialysis, dialysis adequacy
Procedia PDF Downloads 36189 Inpatient Glycemic Management Strategies and Their Association with Clinical Outcomes in Hospitalized SARS-CoV-2 Patients
Authors: Thao Nguyen, Maximiliano Hyon, Sany Rajagukguk, Anna Melkonyan
Abstract:
Introduction: Type 2 Diabetes is a well-established risk factor for severe SARS-CoV-2 infection. Uncontrolled hyperglycemia in patients with established or newly diagnosed diabetes is associated with poor outcomes, including increased mortality and hospital length of stay. Objectives: Our study aims to compare three different glycemic management strategies and their association with clinical outcomes in patients hospitalized for moderate to severe SARS-CoV-2 infection. Identifying optimal glycemic management strategies will improve the quality of patient care and improve their outcomes. Method: This is a retrospective observational study on patients hospitalized at Adventist Health White Memorial with severe SARS-CoV-2 infection from 11/1/2020 to 02/28/2021. The following inclusion criteria were used: positive SARS-CoV-2 PCR test, age >18 yrs old, diabetes or random glucose >200 mg/dL on admission, oxygen requirement >4L/min, and treatment with glucocorticoids. Our exclusion criteria included: ICU admission within 24 hours, discharge within five days, death within five days, and pregnancy. The patients were divided into three glycemic management groups: Group 1, managed solely by the Primary Team, Group 2, by Pharmacy; and Group 3, by Endocrinologist. Primary outcomes were average glucose on Day 5, change in glucose between Days 3 and 5, and average insulin dose on Day 5 among groups. Secondary outcomes would be upgraded to ICU, inpatient mortality, and hospital length of stay. For statistics, we used IBM® SPSS, version 28, 2022. Results: Most studied patients were Hispanic, older than 60, and obese (BMI >30). It was the first CV-19 surge with the Delta variant in an unvaccinated population. Mortality was markedly high (> 40%) with longer LOS (> 13 days) and a high ICU transfer rate (18%). Most patients had markedly elevated inflammatory markers (CRP, Ferritin, and D-Dimer). These, in combination with glucocorticoids, resulted in severe hyperglycemia that was difficult to control. Average glucose on Day 5 was not significantly different between groups primary vs. pharmacy vs. endocrine (220.5 ± 63.4 vs. 240.9 ± 71.1 vs. 208.6 ± 61.7 ; P = 0.105). Change in glucose from days 3 to 5 was not significantly different between groups but trended towards favoring the endocrinologist group (-26.6±73.6 vs. 3.8±69.5 vs. -32.2±84.1; P= 0.052). TDD insulin was not significantly different between groups but trended towards higher TDD for the endocrinologist group (34.6 ± 26.1 vs. 35.2 ± 26.4 vs. 50.5 ± 50.9; P=0.054). The endocrinologist group used significantly more preprandial insulin compared to other groups (91.7% vs. 39.1% vs. 65.9% ; P < 0.001). The pharmacy used more basal insulin than other groups (95.1% vs. 79.5% vs. 79.2; P = 0.047). There were no differences among groups in the clinical outcomes: LOS, ICU upgrade, or mortality. Multivariate regression analysis controlled for age, sex, BMI, HbA1c level, renal function, liver function, CRP, d-dimer, and ferritin showed no difference in outcomes among groups. Conclusion: Given high-risk factors in our population, despite efforts from the glycemic management teams, it’s unsurprising no differences in clinical outcomes in mortality and length of stay.Keywords: glycemic management, strategies, hospitalized, SARS-CoV-2, outcomes
Procedia PDF Downloads 449188 The Role of Macroeconomic Condition and Volatility in Credit Risk: An Empirical Analysis of Credit Default Swap Index Spread on Structural Models in U.S. Market during Post-Crisis Period
Authors: Xu Wang
Abstract:
This research builds linear regressions of U.S. macroeconomic condition and volatility measures in the investment grade and high yield Credit Default Swap index spreads using monthly data from March 2009 to July 2016, to study the relationship between different dimensions of macroeconomy and overall credit risk quality. The most significant contribution of this research is systematically examining individual and joint effects of macroeconomic condition and volatility on CDX spreads by including macroeconomic time series that captures different dimensions of the U.S. economy. The industrial production index growth, non-farm payroll growth, consumer price index growth, 3-month treasury rate and consumer sentiment are introduced to capture the condition of real economic activity, employment, inflation, monetary policy and risk aversion respectively. The conditional variance of the macroeconomic series is constructed using ARMA-GARCH model and is used to measure macroeconomic volatility. The linear regression model is conducted to capture relationships between monthly average CDX spreads and macroeconomic variables. The Newey–West estimator is used to control for autocorrelation and heteroskedasticity in error terms. Furthermore, the sensitivity factor analysis and standardized coefficients analysis are conducted to compare the sensitivity of CDX spreads to different macroeconomic variables and to compare relative effects of macroeconomic condition versus macroeconomic uncertainty respectively. This research shows that macroeconomic condition can have a negative effect on CDX spread while macroeconomic volatility has a positive effect on determining CDX spread. Macroeconomic condition and volatility variables can jointly explain more than 70% of the whole variation of the CDX spread. In addition, sensitivity factor analysis shows that the CDX spread is the most sensitive to Consumer Sentiment index. Finally, the standardized coefficients analysis shows that both macroeconomic condition and volatility variables are important in determining CDX spread but macroeconomic condition category of variables have more relative importance in determining CDX spread than macroeconomic volatility category of variables. This research shows that the CDX spread can reflect the individual and joint effects of macroeconomic condition and volatility, which suggests that individual investors or government should carefully regard CDX spread as a measure of overall credit risk because the CDX spread is influenced by macroeconomy. In addition, the significance of macroeconomic condition and volatility variables, such as Non-farm Payroll growth rate and Industrial Production Index growth volatility suggests that the government, should pay more attention to the overall credit quality in the market when macroecnomy is low or volatile.Keywords: autoregressive moving average model, credit spread puzzle, credit default swap spread, generalized autoregressive conditional heteroskedasticity model, macroeconomic conditions, macroeconomic uncertainty
Procedia PDF Downloads 167187 Identifying Biomarker Response Patterns to Vitamin D Supplementation in Type 2 Diabetes Using K-means Clustering: A Meta-Analytic Approach to Glycemic and Lipid Profile Modulation
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
Background and Aims: This meta-analysis aimed to evaluate the effect of vitamin D supplementation on key metabolic and cardiovascular parameters, such as glycated hemoglobin (HbA1C), fasting blood sugar (FBS), low-density lipoprotein (LDL), high-density lipoprotein (HDL), systolic blood pressure (SBP), and total vitamin D levels in patients with Type 2 diabetes mellitus (T2DM). Methods: A systematic search was performed across databases, including PubMed, Scopus, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov, from January 1990 to January 2024. A total of 4,177 relevant studies were initially identified. Using an unsupervised K-means clustering algorithm, publications were grouped based on common text features. Maximum entropy classification was then applied to filter studies that matched a pre-identified training set of 139 potentially relevant articles. These selected studies were manually screened for relevance. A parallel manual selection of all initially searched studies was conducted for validation. The final inclusion of studies was based on full-text evaluation, quality assessment, and meta-regression models using random effects. Sensitivity analysis and publication bias assessments were also performed to ensure robustness. Results: The unsupervised K-means clustering algorithm grouped the patients based on their responses to vitamin D supplementation, using key biomarkers such as HbA1C, FBS, LDL, HDL, SBP, and total vitamin D levels. Two primary clusters emerged: one representing patients who experienced significant improvements in these markers and another showing minimal or no change. Patients in the cluster associated with significant improvement exhibited lower HbA1C, FBS, and LDL levels after vitamin D supplementation, while HDL and total vitamin D levels increased. The analysis showed that vitamin D supplementation was particularly effective in reducing HbA1C, FBS, and LDL within this cluster. Furthermore, BMI, weight gain, and disease duration were identified as factors that influenced cluster assignment, with patients having lower BMI and shorter disease duration being more likely to belong to the improvement cluster. Conclusion: The findings of this machine learning-assisted meta-analysis confirm that vitamin D supplementation can significantly improve glycemic control and reduce the risk of cardiovascular complications in T2DM patients. The use of automated screening techniques streamlined the process, ensuring the comprehensive evaluation of a large body of evidence while maintaining the validity of traditional manual review processes.Keywords: HbA1C, T2DM, SBP, FBS
Procedia PDF Downloads 17186 Determinants of Walking among Middle-Aged and Older Overweight and Obese Adults: Demographic, Health, and Socio-Environmental Factors
Authors: Samuel N. Forjuoh, Marcia G. Ory, Jaewoong Won, Samuel D. Towne, Suojin Wang, Chanam Lee
Abstract:
The public health burden of obesity is well established as is the influence of physical activity (PA) on the health and wellness of individuals who are obese. This study examined the influence of selected demographic, health, and socioenvironmental factors on the walking behaviors of middle-aged and older overweight and obese adults. Online and paper surveys were administered to community-dwelling overweight and obese adults aged ≥ 50 years residing in four cities in central Texas and seen by a family physician in the primary care clinic from October 2013 to June 2014. Descriptive statistics were used to characterize participants’ anthropometric and demographic data as well as their health conditions and walking, socioenvironmental, and more broadly defined PA behaviors. Then Pearson chi-square tests were used to assess differences between participants who reported walking the recommended ≥ 150 minutes for any purpose in a typical week as a proxy to meeting the U.S. Centers for Disease Control and Prevention’s PA guidelines and those who did not. Finally, logistic regression was used to predict walking the recommended ≥ 150 minutes for any purpose, controlling for covariates. The analysis was conducted in 2016. Of the total sample (n=253, survey response rate of 6.8%), the majority were non-Hispanic white (81.7%), married (74.5%), male (53.5%), and reported an annual household income of ≥ $50,000 (65.7%). Approximately, half were employed (49.6%), or had at least a college degree (51.8%). Slightly more than 1 in 5 (n=57, 22.5%) reported walking the recommended ≥150 minutes for any purpose in a typical week. The strongest predictors of walking the recommended ≥ 150 minutes for any purpose in a typical week in adjusted analysis were related to education and a high favorable perception of the neighborhood environment. Compared to those with a high school diploma or some college, participants with at least a college degree were five times as likely to walk the recommended ≥ 150 minutes for any purpose (OR=5.55, 95% CI=1.79-17.25). Walking the recommended ≥ 150 minutes for any purpose was significantly associated with participants who disagreed that there were many distracted drivers (e.g., on the cell phone while driving) in their neighborhood (OR=4.08, 95% CI=1.47-11.36) and those who agreed that there are sidewalks or protected walkways (e.g., walking trails) in their neighborhood (OR=3.55, 95% CI=1.10-11.49). Those employed were less likely to walk the recommended ≥ 150 minutes for any purpose compared to those unemployed (OR=0.31, 95% CI=0.11-0.85) as were those who reported some difficulty walking for a quarter of a mile (OR=0.19, 95% CI=0.05-0.77). Other socio-environmental factors such as having care-giver responsibilities for elders, someone to walk with, or a dog in the household as well as Walk Score™ were not significantly associated with walking the recommended ≥ 150 minutes for any purpose in a typical week. Neighborhood perception appears to be an important factor associated with the walking behaviors of middle-aged and older overweight and obese individuals. Enhancing the neighborhood environment (e.g., providing walking trails) may promote walking among these individuals.Keywords: determinants of walking, obesity, older adults, physical activity
Procedia PDF Downloads 260185 A Quantitative Analysis of Rural to Urban Migration in Morocco
Authors: Donald Wright
Abstract:
The ultimate goal of this study is to reinvigorate the philosophical underpinnings the study of urbanization with scientific data with the goal of circumventing what seems an inevitable future clash between rural and urban populations. To that end urban infrastructure must be sustainable economically, politically and ecologically over the course of several generations as cities continue to grow with the incorporation of climate refugees. Our research will provide data concerning the projected increase in population over the coming two decades in Morocco, and the population will shift from rural areas to urban centers during that period of time. As a result, urban infrastructure will need to be adapted, developed or built to fit the demand of future internal migrations from rural to urban centers in Morocco. This paper will also examine how past experiences of internally displaced people give insight into the challenges faced by future migrants and, beyond the gathering of data, how people react to internal migration. This study employs four different sets of research tools. First, a large part of this study is archival, which involves compiling the relevant literature on the topic and its complex history. This step also includes gathering data bout migrations in Morocco from public data sources. Once the datasets are collected, the next part of the project involves populating the attribute fields and preprocessing the data to make it understandable and usable by machine learning algorithms. In tandem with the mathematical interpretation of data and projected migrations, this study benefits from a theoretical understanding of the critical apparatus existing around urban development of the 20th and 21st centuries that give us insight into past infrastructure development and the rationale behind it. Once the data is ready to be analyzed, different machine learning algorithms will be experimented (k-clustering, support vector regression, random forest analysis) and the results compared for visualization of the data. The final computational part of this study involves analyzing the data and determining what we can learn from it. This paper helps us to understand future trends of population movements within and between regions of North Africa, which will have an impact on various sectors such as urban development, food distribution and water purification, not to mention the creation of public policy in the countries of this region. One of the strengths of this project is the multi-pronged and cross-disciplinary methodology to the research question, which enables an interchange of knowledge and experiences to facilitate innovative solutions to this complex problem. Multiple and diverse intersecting viewpoints allow an exchange of methodological models that provide fresh and informed interpretations of otherwise objective data.Keywords: climate change, machine learning, migration, Morocco, urban development
Procedia PDF Downloads 156184 Beyond Objectification: Moderation Analysis of Trauma and Overexcitability Dynamics in Women
Authors: Ritika Chaturvedi
Abstract:
Introduction: Sexual objectification, characterized by the reduction of an individual to a mere object of sexual desire, remains a pervasive societal issue with profound repercussions on individual well-being. Such experiences, often rooted in systemic and cultural norms, have long-lasting implications for mental and emotional health. This study aims to explore the intricate relationship between experiences of sexual objectification and insidious trauma, further investigating the potential moderating effects of overexcitabilities as proposed by Dabrowski's theory of positive disintegration. Methodology: The research involved a comprehensive cohort of 204 women, spanning ages from 18 to 65 years. Participants were tasked with completing self-administered questionnaires designed to capture their experiences with sexual objectification. Additionally, the questionnaire assessed symptoms indicative of insidious trauma and explored overexcitabilities across five distinct domains: emotional, intellectual, psychomotor, sensory, and imaginational. Employing advanced statistical techniques, including multiple regression and moderation analysis, the study sought to decipher the intricate interplay among these variables. Findings: The study's results revealed a compelling positive correlation between experiences of sexual objectification and the onset of symptoms indicative of insidious trauma. This correlation underscores the profound and detrimental effects of sexual objectification on an individual's psychological well-being. Interestingly, the moderation analyses introduced a nuanced understanding, highlighting the differential roles of various overexcitabilities. Specifically, emotional, intellectual, and sensual overexcitabilities were found to exacerbate trauma symptomatology. In contrast, psychomotor overexcitability emerged as a protective factor, demonstrating a mitigating influence on the relationship between sexual objectification and trauma. Implications: The study's findings hold significant implications for a diverse array of stakeholders, encompassing mental health practitioners, educators, policymakers, and advocacy groups. The identified moderating effects of overexcitabilities emphasize the need for tailored interventions that consider individual differences in coping and resilience mechanisms. By recognizing the pivotal role of overexcitabilities in modulating the traumatic consequences of sexual objectification, this research advocates for the development of more nuanced and targeted support frameworks. Moreover, the study underscores the importance of continued research endeavors to unravel the intricate mechanisms and dynamics underpinning these relationships. Such endeavors are crucial for fostering the evolution of informed, evidence-based interventions and strategies aimed at mitigating the adverse effects of sexual objectification and promoting holistic well-being.Keywords: sexual objectification, insidious trauma, emotional overexcitability, intellectual overexcitability, sensual overexcitability, psychomotor overexcitability, imaginational overexcitability
Procedia PDF Downloads 47183 Statistical Comparison of Ensemble Based Storm Surge Forecasting Models
Authors: Amin Salighehdar, Ziwen Ye, Mingzhe Liu, Ionut Florescu, Alan F. Blumberg
Abstract:
Storm surge is an abnormal water level caused by a storm. Accurate prediction of a storm surge is a challenging problem. Researchers developed various ensemble modeling techniques to combine several individual forecasts to produce an overall presumably better forecast. There exist some simple ensemble modeling techniques in literature. For instance, Model Output Statistics (MOS), and running mean-bias removal are widely used techniques in storm surge prediction domain. However, these methods have some drawbacks. For instance, MOS is based on multiple linear regression and it needs a long period of training data. To overcome the shortcomings of these simple methods, researchers propose some advanced methods. For instance, ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast. This application creates a better forecast of sea level using a combination of several instances of the Bayesian Model Averaging (BMA). An ensemble dressing method is based on identifying best member forecast and using it for prediction. Our contribution in this paper can be summarized as follows. First, we investigate whether the ensemble models perform better than any single forecast. Therefore, we need to identify the single best forecast. We present a methodology based on a simple Bayesian selection method to select the best single forecast. Second, we present several new and simple ways to construct ensemble models. We use correlation and standard deviation as weights in combining different forecast models. Third, we use these ensembles and compare with several existing models in literature to forecast storm surge level. We then investigate whether developing a complex ensemble model is indeed needed. To achieve this goal, we use a simple average (one of the simplest and widely used ensemble model) as benchmark. Predicting the peak level of Surge during a storm as well as the precise time at which this peak level takes place is crucial, thus we develop a statistical platform to compare the performance of various ensemble methods. This statistical analysis is based on root mean square error of the ensemble forecast during the testing period and on the magnitude and timing of the forecasted peak surge compared to the actual time and peak. In this work, we analyze four hurricanes: hurricanes Irene and Lee in 2011, hurricane Sandy in 2012, and hurricane Joaquin in 2015. Since hurricane Irene developed at the end of August 2011 and hurricane Lee started just after Irene at the beginning of September 2011, in this study we consider them as a single contiguous hurricane event. The data set used for this study is generated by the New York Harbor Observing and Prediction System (NYHOPS). We find that even the simplest possible way of creating an ensemble produces results superior to any single forecast. We also show that the ensemble models we propose generally have better performance compared to the simple average ensemble technique.Keywords: Bayesian learning, ensemble model, statistical analysis, storm surge prediction
Procedia PDF Downloads 309182 Predictors of Sexually Transmitted Infection of Korean Adolescent Females: Analysis of Pooled Data from Korean Nationwide Survey
Authors: Jaeyoung Lee, Minji Je
Abstract:
Objectives: In adolescence, adolescents are curious about sex, but sexual experience before becoming an adult can cause the risk of high probability of sexually transmitted infection. Therefore, it is very important to prevent sexually transmitted infections so that adolescents can grow in healthy and upright way. Adolescent females, especially, have sexual behavior distinguished from that of male adolescents. Protecting female adolescents’ reproductive health is even more important since it is directly related to the childbirth of the next generation. This study, thus, investigated the predictors of sexually transmitted infection in adolescent females with sexual experiences based on the National Health Statistics in Korea. Methods: This study was conducted based on the National Health Statistics in Korea. The 11th Korea Youth Behavior Web-based Survey in 2016 was conducted in the type of anonymous self-reported survey in order to find out the health behavior of adolescents. The target recruitment group was middle and high school students nationwide as of April 2016, and 65,528 students from a total of 800 middle and high schools participated. The study was conducted in 537 female high school students (Grades 10–12) among them. The collected data were analyzed as complex sampling design using SPSS statistics 22. The strata, cluster, weight, and finite population correction provided by Korea Center for Disease Control & Prevention (KCDC) were reflected to constitute complex sample design files, which were used in the statistical analysis. The analysis methods included Rao-Scott chi-square test, complex samples general linear model, and complex samples multiple logistic regression analysis. Results: Out of 537 female adolescents, 11.9% (53 adolescents) had experiences of venereal infection. The predictors for venereal infection of the subjects were ‘age at first intercourse’ and ‘sexual intercourse after drinking’. The sexually transmitted infection of the subjects was decreased by 0.31 times (p=.006, 95%CI=0.13-0.71) for middle school students and 0.13 times (p<.001, 95%CI=0.05-0.32) for high school students whereas the age of the first sexual experience was under elementary school age. In addition, the sexually transmitted infection of the subjects was 3.54 times (p < .001, 95%CI=1.76-7.14) increased when they have experience of sexual relation after drinking alcohol, compared to those without the experience of sexual relation after drinking alcohol. Conclusions: The female adolescents had high probability of sexually transmitted infection if their age for the first sexual experience was low. Therefore, the female adolescents who start sexual experience earlier shall have practical sex education appropriate for their developmental stage. In addition, since the sexually transmitted infection increases, if they have sexual relations after drinking alcohol, the consideration for prevention of alcohol use or intervention of sex education shall be required. When health education intervention is conducted for health promotion for female adolescents in the future, it is necessary to reflect the result of this study.Keywords: adolescent, coitus, female, sexually transmitted diseases
Procedia PDF Downloads 192181 Association of Depression with Physical Inactivity and Time Watching Television: A Cross-Sectional Study with the Brazilian Population PNS, 2013
Authors: Margareth Guimaraes Lima, Marilisa Berti A. Barros, Deborah Carvalho Malta
Abstract:
The relationship between physical activity (PA) and depression has been investigated, in both, observational and clinical studies: PA can integrate the treatments for depression; the physical inactivity (PI) may contribute to increase depression symptoms; and on the other hand, emotional problems can decrease PA. The main of this study was analyze the association among leisure and transportation PI and time watching television (TV) according to depression (minor and major), evaluated with the Patient Health Questionnaire (PHQ-9). The association was also analyzed by gender. This is a cross-sectional study. Data were obtained from the National Health Survey 2013 (PNS), performed with representative sample of the Brazilian adult population, in 2013. The PNS collected information from 60,202 individuals, aged 18 years or more. The independent variable were: leisure time physical inactivity (LTPI), considering inactive or insufficiently actives (categories were linked for analyzes), those who do not performed a minimum of 150 or 74 minutes of moderate or vigorous LTPA, respectively, by week; transportation physical inactivity (TPI), individuals who did not reached 150 minutes, by week, travelling by bicycle or on foot to work or other activities; daily time watching TV > 5 hours. The principal independent variable was depression, identified by PHQ-9. Individuals were classified with major depression, with > 5 symptoms, more than seven days, but one of the symptoms was “depressive mood” or “lack of interest or pleasure”. The others had minor depression. The variables used to adjustment were gender, age, schooling and chronic disease. The prevalence of LTPI, TPI and TV time were estimated according to depression, and differences were tested with Chi-Square test. Adjusted prevalence ratios were estimated using multiple Poisson regression models. The analyzes also had stratification by gender. Mean age of the studied population was 42.9 years old (CI95%:42.6-43.2) and 52.9% were women. 77.5% and 68.1% were inactive or insufficiently active in leisure and transportation, respectively and 13.3% spent time watching TV 5 > hours. 6% and 4.1% of the Brazilian population were diagnosed with minor or major depression. LTPI prevalence was 5% and 9% higher among individuals with minor and major depression, respectively, comparing with no depression. The prevalence of TPI was 7% higher in those with major depression. Considering larger time watching TV, the prevalence was 45% and 74% higher among those with minor and major depression, respectively. Analyzing by gender, the associations were greater in men than women and TPI was note be associated, in women. The study detected the higher prevalence of leisure time physical inactivity and, especially, time spent watching TV, among individuals with major and minor depression, after to adjust for a number of potential confounding factors. TPI was only associated with major disorders and among men. Considering the cross-sectional design of the research, these associations can point out the importance of the mental problems control of the population to increase PA and decrease the sedentary lifestyle; on the other hand, the study highlight the need of interventions by encouraging people with depression, to practice PA, even to transportation.Keywords: depression, physical activity, PHQ-9, sedentary lifestyle
Procedia PDF Downloads 156180 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation
Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma
Abstract:
Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling
Procedia PDF Downloads 143179 A Comparison of Methods for Estimating Dichotomous Treatment Effects: A Simulation Study
Authors: Jacqueline Y. Thompson, Sam Watson, Lee Middleton, Karla Hemming
Abstract:
Introduction: The odds ratio (estimated via logistic regression) is a well-established and common approach for estimating covariate-adjusted binary treatment effects when comparing a treatment and control group with dichotomous outcomes. Its popularity is primarily because of its stability and robustness to model misspecification. However, the situation is different for the relative risk and risk difference, which are arguably easier to interpret and better suited to specific designs such as non-inferiority studies. So far, there is no equivalent, widely acceptable approach to estimate an adjusted relative risk and risk difference when conducting clinical trials. This is partly due to the lack of a comprehensive evaluation of available candidate methods. Methods/Approach: A simulation study is designed to evaluate the performance of relevant candidate methods to estimate relative risks to represent conditional and marginal estimation approaches. We consider the log-binomial, generalised linear models (GLM) with iteratively weighted least-squares (IWLS) and model-based standard errors (SE); log-binomial GLM with convex optimisation and model-based SEs; log-binomial GLM with convex optimisation and permutation tests; modified-Poisson GLM IWLS and robust SEs; log-binomial generalised estimation equations (GEE) and robust SEs; marginal standardisation and delta method SEs; and marginal standardisation and permutation test SEs. Independent and identically distributed datasets are simulated from a randomised controlled trial to evaluate these candidate methods. Simulations are replicated 10000 times for each scenario across all possible combinations of sample sizes (200, 1000, and 5000), outcomes (10%, 50%, and 80%), and covariates (ranging from -0.05 to 0.7) representing weak, moderate or strong relationships. Treatment effects (ranging from 0, -0.5, 1; on the log-scale) will consider null (H0) and alternative (H1) hypotheses to evaluate coverage and power in realistic scenarios. Performance measures (bias, mean square error (MSE), relative efficiency, and convergence rates) are evaluated across scenarios covering a range of sample sizes, event rates, covariate prognostic strength, and model misspecifications. Potential Results, Relevance & Impact: There are several methods for estimating unadjusted and adjusted relative risks. However, it is unclear which method(s) is the most efficient, preserves type-I error rate, is robust to model misspecification, or is the most powerful when adjusting for non-prognostic and prognostic covariates. GEE estimations may be biased when the outcome distributions are not from marginal binary data. Also, it seems that marginal standardisation and convex optimisation may perform better than GLM IWLS log-binomial.Keywords: binary outcomes, statistical methods, clinical trials, simulation study
Procedia PDF Downloads 115178 Waste Analysis and Classification Study (WACS) in Ecotourism Sites of Samal Island, Philippines Towards a Circular Economy Perspective
Authors: Reeden Bicomong
Abstract:
Ecotourism activities, though geared towards conservation efforts, still put pressures against the natural state of the environment. Influx of visitors that goes beyond carrying capacity of the ecotourism site, the wastes generated, greenhouse gas emissions, are just few of the potential negative impacts of a not well-managed ecotourism activities. According to Girard and Nocca (2017) tourism produces many negative impacts because it is configured according to the model of linear economy, operating on a linear model of take, make and dispose (Ellen MacArthur Foundation 2015). With the influx of tourists in an ecotourism area, more wastes are generated, and if unregulated, natural state of the environment will be at risk. It is in this light that a study on waste analysis and classification study in five different ecotourism sites of Samal Island, Philippines was conducted. The major objective of the study was to analyze the amount and content of wastes generated from ecotourism sites in Samal Island, Philippines and make recommendations based on the circular economy perspective. Five ecotourism sites in Samal Island, Philippines was identified such as Hagimit Falls, Sanipaan Vanishing Shoal, Taklobo Giant Clams, Monfort Bat Cave, and Tagbaobo Community Based Ecotourism. Ocular inspection of each ecotourism site was conducted. Likewise, key informant interview of ecotourism operators and staff was done. Wastes generated from these ecotourism sites were analyzed and characterized to come up with recommendations that are based on the concept of circular economy. Wastes generated were classified into biodegradables, recyclables, residuals and special wastes. Regression analysis was conducted to determine if increase in number of visitors would equate to increase in the amount of wastes generated. Ocular inspection indicated that all of the five ecotourism sites have their own system of waste collection. All of the sites inspected were found to be conducting waste separation at source since there are different types of garbage bins for all of the four classification of wastes such as biodegradables, recyclables, residuals and special wastes. Furthermore, all five ecotourism sites practice composting of biodegradable wastes and recycling of recyclables. Therefore, only residuals are being collected by the municipal waste collectors. Key informant interview revealed that all five ecotourism sites offer mostly nature based activities such as swimming, diving, site seeing, bat watching, rice farming experiences and community living. Among the five ecotourism sites, Sanipaan Vanishing Shoal has the highest average number of visitors in a weekly basis. At the same time, in the wastes assessment study conducted, Sanipaan has the highest amount of wastes generated. Further results of wastes analysis revealed that biodegradables constitute majority of the wastes generated in all of the five selected ecotourism sites. Meanwhile, special wastes proved to be the least generated as there was no amount of this type was observed during the three consecutive weeks WACS was conducted.Keywords: Circular economy, ecotourism, sustainable development, WACS
Procedia PDF Downloads 224177 Impact of Maternal Nationality on Caesarean Section Rate Variation in a High-income Country
Authors: Saheed Shittu, Lolwa Alansari, Fahed Nattouf, Tawa Olukade, Naji Abdallah, Tamara Alshdafat, Sarra Amdouni
Abstract:
Cesarean sections (CS), a highly regarded surgical intervention for improving fetal-maternal outcomes and serving as an integral part of emergency obstetric services, are not without complications. Although CS has many advantages, it poses significant risks to both mother and child and increases healthcare expenditures in the long run. The escalating global prevalence of CS, coupled with variations in rates among immigrant populations, has prompted an inquiry into the correlation between CS rates and the nationalities of women undergoing deliveries at Al-Wakra Hospital (AWH), Qatar's second-largest public maternity hospital. This inquiry is motivated by the notable CS rate of 36%, deemed high in comparison to the 34% recorded across other Hamad Medical Corporation (HMC) maternity divisions This is Qatar's first comprehensive investigation of Caesarean section rates and nationalities. A retrospective cross-sectional study was conducted, and data for all births delivered in 2019 were retrieved from the hospital's electronic medical records. The CS rate, the crude rate, and adjusted risks of Caesarean delivery for mothers from each nationality were determined. The common indications for CS were analysed based on nationality. The association between nationality and Caesarean rates was examined using binomial logistic regression analysis considering Qatari women as a standard reference group. The correlation between the CS rate in the country of nationality and the observed CS rate in Qatar was also examined using Pearson's correlation. This study included 4,816 births from 69 different nationalities. CS was performed in 1767 women, equating to 36.5%. The nationalities with the highest CS rates were Egyptian (49.6%), Lebanese (45.5%), Filipino and Indian (both 42.2%). Qatari women recorded a CS rate of 33.4%. The major indication for elective CS was previous multiple CS (39.9%) and one prior CS, where the patient declined vaginal birth after the cesarean (VBAC) option (26.8%). A distinct pattern was noticed: elective CS was predominantly performed on Arab women, whereas emergency CS was common among women of Asian and Sub-Saharan African nationalities. Moreover, a significant correlation was found between the CS rates in Qatar and the women's countries of origin. Also, a high CS rate was linked to instances of previous CS. As a result of these insights, strategic interventions were successfully implemented at the facility to mitigate unwarranted CS, resulting in a notable reduction in CS rate from 36.5% in 2019 to 34% in 2022. This proves the efficacy of the meticulously researched approach. The focus has now shifted to reducing primary CS rates and facilitating well-informed decisions regarding childbirth methods.Keywords: maternal nationality, caesarean section rate variation, migrants, high-income country
Procedia PDF Downloads 71176 The Psychological and Subjective Well-being of Ethiopian adults: Correlates, Explanations, and Cross-Cultural Constructions
Authors: Kassahun Tilahun
Abstract:
The purpose of the study was two-fold: to examine the socio-demographic and psychological predictors of well-being and formulate a socio-culturally sound approach explaining the meaning and experience of psychological well-being among Ethiopian adults. Ryan and Deci’s Self-Determination Theory was duly considered as a theoretical framework of the study. The study followed a sequential explanatory mixed method design. Both quantitative and qualitative data were obtained, via scales and open-ended questionnaires, from 438 civil servants working in Addis Ababa. 30 interviews were also conducted to gain further information. An in-depth analysis of the reliability and validity of instruments was made before employing them to the main study. The results showed that adults were better off in both their scores of psychological and subjective well-being. Besides, adults’ well-being was found to be quite a function of their gender, age, marital status, educational level and household income. Males had a healthier psychological well-being status than females, where as females were better in their subjective well-being. A significant difference in psychological well-being was also observed between emerging and young adults, in favor of the young; and between cohabitated and married adults, married being advantageous. A significant difference in subjective well-being measures was also noticed among single, cohabitated and married adults, in favor of the married adults in all measures. The finding revealed that happiness level of adults decrease as their educational status increases while the reverse is true to psychological well-being. Besides, as adults’ household income boosts, so do their psychological well-being and satisfaction in life. The regression analysis also produced significant independent contributions of household income to overall well-being of adults. As such, subjective well-being was significantly predicted by dummy variable of sex and marital status. Likewise, the agreeableness, conscientiousness, neuroticism and openness dimensions of personality were notable significant predictors of adults’ psychological well-being where as extraversion and agreeableness were significant predictors of their subjective well-being. Religiosity was also a significant predictor of adults’ psychological well-being. Besides, adults’ well-being was significantly predicted by the interaction between conscientiousness and religiosity. From goal pursuit dimensions, attainment of extrinsic life goals was a significant predictor of both psychological and subjective well-being. Importance and attainment of intrinsic life goals also significantly predicts adults’ psychological well-being. Finally, the subjective well-being of adults was significantly predicted by environmental mastery, positive relations with others, self-acceptance and overall psychological well-being scores of adults. The thematic analysis identified five major categories of themes, which are essential in explaining the psychological well-being of Ethiopian adults. These were; socio-cultural harmony, social cohesion, security, competence and accomplishment, and the self. Detailed discussion on the rational for including these themes was made and appropriate implications were proposed. Researchers are encouraged to expand the findings of this research and in turn develop a suitable approach taping the psychological well-being of adults living in countries like Ethiopia.Keywords: psychological well-being, subjective well-being, adulthood, Ethiopia
Procedia PDF Downloads 538175 Determination of Physical Properties of Crude Oil Distillates by Near-Infrared Spectroscopy and Multivariate Calibration
Authors: Ayten Ekin Meşe, Selahattin Şentürk, Melike Duvanoğlu
Abstract:
Petroleum refineries are a highly complex process industry with continuous production and high operating costs. Physical separation of crude oil starts with the crude oil distillation unit, continues with various conversion and purification units, and passes through many stages until obtaining the final product. To meet the desired product specification, process parameters are strictly followed. To be able to ensure the quality of distillates, routine analyses are performed in quality control laboratories based on appropriate international standards such as American Society for Testing and Materials (ASTM) standard methods and European Standard (EN) methods. The cut point of distillates in the crude distillation unit is very crucial for the efficiency of the upcoming processes. In order to maximize the process efficiency, the determination of the quality of distillates should be as fast as possible, reliable, and cost-effective. In this sense, an alternative study was carried out on the crude oil distillation unit that serves the entire refinery process. In this work, studies were conducted with three different crude oil distillates which are Light Straight Run Naphtha (LSRN), Heavy Straight Run Naphtha (HSRN), and Kerosene. These products are named after separation by the number of carbons it contains. LSRN consists of five to six carbon-containing hydrocarbons, HSRN consist of six to ten, and kerosene consists of sixteen to twenty-two carbon-containing hydrocarbons. Physical properties of three different crude distillation unit products (LSRN, HSRN, and Kerosene) were determined using Near-Infrared Spectroscopy with multivariate calibration. The absorbance spectra of the petroleum samples were obtained in the range from 10000 cm⁻¹ to 4000 cm⁻¹, employing a quartz transmittance flow through cell with a 2 mm light path and a resolution of 2 cm⁻¹. A total of 400 samples were collected for each petroleum sample for almost four years. Several different crude oil grades were processed during sample collection times. Extended Multiplicative Signal Correction (EMSC) and Savitzky-Golay (SG) preprocessing techniques were applied to FT-NIR spectra of samples to eliminate baseline shifts and suppress unwanted variation. Two different multivariate calibration approaches (Partial Least Squares Regression, PLS and Genetic Inverse Least Squares, GILS) and an ensemble model were applied to preprocessed FT-NIR spectra. Predictive performance of each multivariate calibration technique and preprocessing techniques were compared, and the best models were chosen according to the reproducibility of ASTM reference methods. This work demonstrates the developed models can be used for routine analysis instead of conventional analytical methods with over 90% accuracy.Keywords: crude distillation unit, multivariate calibration, near infrared spectroscopy, data preprocessing, refinery
Procedia PDF Downloads 132