Search results for: sharp single index model
20186 Bivariate Analyses of Factors That May Influence HIV Testing among Women Living in the Democratic Republic of the Congo
Authors: Danielle A. Walker, Kyle L. Johnson, Patrick J. Fox, Jacen S. Moore
Abstract:
The HIV Continuum of Care has become a universal model to provide context for the process of HIV testing, linkage to care, treatment, and viral suppression. HIV testing is the first step in moving toward community viral suppression. Countries with a lower socioeconomic status experience the lowest rates of testing and access to care. The Democratic Republic of the Congo is located in the heart of sub-Saharan Africa, where testing and access to care are low and women experience higher HIV prevalence compared to men. In the Democratic Republic of the Congo there is only a 21.6% HIV testing rate among women. Because a critical gap exists between a woman’s risk of contracting HIV and the decision to be tested, this study was conducted to obtain a better understanding of the relationship between factors that could influence HIV testing among women. The datasets analyzed were from the 2013-14 Democratic Republic of the Congo Demographic and Health Survey Program. The data was subset for women with an age range of 18-49 years. All missing cases were removed and one variable was recoded. The total sample size analyzed was 14,982 women. The results showed that there did not seem to be a difference in HIV testing by mean age. Out of 11 religious categories (Catholic, Protestant, Armee de salut, Kimbanguiste, Other Christians, Muslim, Bundu dia kongo, Vuvamu, Animist, no religion, and other), those who identified as Other Christians had the highest testing rate of 25.9% and those identified as Vuvamu had a 0% testing rate (p<0.001). There was a significant difference in testing by religion. Only 0.7% of women surveyed identified as having no religious affiliation. This suggests partnerships with key community and religious leaders could be a tool to increase testing. Over 60% of women who had never been tested for HIV did not know where to be tested. This highlights the need to educate communities on where testing facilities can be located. Almost 80% of women who believed HIV could be transmitted by supernatural means and/or witchcraft had never been tested before (p=0.08). Cultural beliefs could influence risk perception and testing decisions. Consequently, misconceptions need to be considered when implementing HIV testing and prevention programs. Location by province, years of education, and wealth index were also analyzed to control for socioeconomic status. Kinshasa had the highest testing rate of 54.2% of women living there, and both Equateur and Kasai-Occidental had less than a 10% testing rate (p<0.001). As the education level increased up to 12 years, testing increased (p<0.001). Women within the highest quintile of the wealth index had a 56.1% testing rate, and women within the lowest quintile had a 6.5% testing rate (p<0.001). This study concludes that further research is needed to identify culturally competent methods to increase HIV education programs, build partnerships with key community leaders, and improve knowledge on access to care.Keywords: Democratic Republic of the Congo, cultural beliefs, education, HIV testing
Procedia PDF Downloads 28720185 Fish Diversity of Two Lacustrine Wetlands of the Upper Benue Basin, Nigeria
Authors: D. L. David, J. A. Wahedi, Q. T. Zaku
Abstract:
A study was conducted at River Mayo Ranewo and River Lau, Taraba State Nigeria. The two rivers empty into the Upper Benue Basin. A survey of visual encounter was conducted within the two wetlands from June to August, 2014. The fish record was based entirely on landings of fishermen, number of canoes that land fish was counted, types of nets and baits used on each sampling day. Fishes were sorted into taxonomic groups, identified to family/ species level, counted and weighed in groups by species. Other aquatic organisms captured by the fishermen were scallops, turtles and frogs. The relative species abundance was determined by dividing the number of species from a site by the total number of species from all tributaries/sites. The fish were preserved in 2% formaldehyde solution and taken to the laboratory, were identified through keys of identification to African fishes and field guides. Shannon-Wieiner index of species diversity indicated that the diversity was highest at River Mayo Ranewo than River Lau. Results showed that at River Mayo Ranewo, the family Mochokidae recorded the highest (23.15%), followed by Mormyridae (22.64%) and the least was the family Lepidosirenidae (0.04%). While at River Lau, the family Mochokidae recorded the highest occurrence of (24.1%), followed by Bagridae (20.20%), and then Mormyridae, which also was the second highest in River Lau, with 18.46% occurrence. There was no occurrence of Malapteruridae and Osteoglossidae (0%) in River Lau, but the least occurrence was the family Gymnarchidae (0.04%). According to the result from the t-test, the fish composition was not significantly different (p≤0.05).Keywords: Diversity Index, Lau, Mayo Ranewo, Wetlands
Procedia PDF Downloads 36220184 Electricity Demand Modeling and Forecasting in Singapore
Authors: Xian Li, Qing-Guo Wang, Jiangshuai Huang, Jidong Liu, Ming Yu, Tan Kok Poh
Abstract:
In power industry, accurate electricity demand forecasting for a certain leading time is important for system operation and control, etc. In this paper, we investigate the modeling and forecasting of Singapore’s electricity demand. Several standard models, such as HWT exponential smoothing model, the ARMA model and the ANNs model have been proposed based on historical demand data. We applied them to Singapore electricity market and proposed three refinements based on simulation to improve the modeling accuracy. Compared with existing models, our refined model can produce better forecasting accuracy. It is demonstrated in the simulation that by adding forecasting error into the forecasting equation, the modeling accuracy could be improved greatly.Keywords: power industry, electricity demand, modeling, forecasting
Procedia PDF Downloads 64020183 Mooring Analysis of Duct-Type Tidal Current Power System in Shallow Water
Authors: Chul H. Jo, Do Y. Kim, Bong K. Cho, Myeong J. Kim
Abstract:
The exhaustion of oil and the environmental pollution from the use of fossil fuel are increasing. Tidal current power (TCP) has been proposed as an alternative energy source because of its predictability and reliability. By applying a duct and single point mooring (SPM) system, a TCP device can amplify the generating power and keep its position properly. Because the generating power is proportional to cube of the current stream velocity, amplifying the current speed by applying a duct to a TCP system is an effective way to improve the efficiency of the power device. An SPM system can be applied at any water depth and is highly cost effective. Simple installation and maintenance procedures are also merits of an SPM system. In this study, we designed an SPM system for a duct-type TCP device for use in shallow water. Motions of the duct are investigated to obtain the response amplitude operator (RAO) as the magnitude of the transfer function. Parameters affecting the stability of the SPM system such as the fairlead departure angle, current velocity, and the number of clamp weights are analyzed and/or optimized. Wadam and OrcaFlex commercial software is used to design the mooring line.Keywords: mooring design, parametric analysis, RAO (Response Amplitude Operator), SPM (Single Point Mooring)
Procedia PDF Downloads 28920182 Saltwater Intrusion Studies in the Cai River in the Khanh Hoa Province, Vietnam
Authors: B. Van Kessel, P. T. Kockelkorn, T. R. Speelman, T. C. Wierikx, C. Mai Van, T. A. Bogaard
Abstract:
Saltwater intrusion is a common problem in estuaries around the world, as it could hinder the freshwater supply of coastal zones. This problem is likely to grow due to climate change and sea-level rise. The influence of these factors on the saltwater intrusion was investigated for the Cai River in the Khanh Hoa province in Vietnam. In addition, the Cai River has high seasonal fluctuations in discharge, leading to increased saltwater intrusion during the dry season. Sea level rise, river discharge changes, river mouth widening and a proposed saltwater intrusion prevention dam can have influences on the saltwater intrusion but have not been quantified for the Cai River estuary. This research used both an analytical and numerical model to investigate the effect of the aforementioned factors. The analytical model was based on a model proposed by Savenije and was calibrated using limited in situ data. The numerical model was a 3D hydrodynamic model made using the Delft3D4 software. The analytical model and numerical model agreed with in situ data, mostly for tidally average data. Both models indicated a roughly similar dependence on discharge, also agreeing that this parameter had the most severe influence on the modeled saltwater intrusion. Especially for discharges below 10 m/s3, the saltwater was predicted to reach further than 10 km. In the models, both sea-level rise and river widening mainly resulted in salinity increments up to 3 kg/m3 in the middle part of the river. The predicted sea-level rise in 2070 was simulated to lead to an increase of 0.5 km in saltwater intrusion length. Furthermore, the effect of the saltwater intrusion dam seemed significant in the model used, but only for the highest position of the gate.Keywords: Cai River, hydraulic models, river discharge, saltwater intrusion, tidal barriers
Procedia PDF Downloads 11220181 Quantum Statistical Machine Learning and Quantum Time Series
Authors: Omar Alzeley, Sergey Utev
Abstract:
Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series
Procedia PDF Downloads 46920180 Low Dose In-Line Electron Holography for 3D Atomic Resolution Tomography of Soft Materials
Authors: F. R. Chen, C. Kisielowski, D. Van Dyck
Abstract:
In principle, the latest generation aberration-corrected transmission electron microscopes (TEMs) could achieve sub-Å resolution, but there is bottleneck that hinders the final step towards revealing 3D structure. Firstly, in order to achieve a resolution around 1 Å with single atom sensitivity, the electron dose rate needs to be sufficiently large (10⁴-10⁵eÅ⁻² s⁻¹). With such large dose rate, the electron beam can induce surfaces alterations or even bulk modifications, in particular, for electron beam sensitive (soft) materials such as nm size particles, organic materials, proteins or macro-molecules. We will demonstrate methodology of low dose electron holography for observing 3D structure for soft materials such as single Oleic acid molecules at atomic resolution. The main improvement of this new type of electron holography is based on two concepts. Firstly, the total electron dose is distributed over many images obtained at different defocus values from which the electron hologram is then reconstructed. Secondly, in contrast to the current tomographic methods that require projections from several directions, the 3D structural information of the nano-object is then extracted from this one hologram obtained from only one viewing direction.Keywords: low dose electron microscopy, in-line electron holography, atomic resolution tomography, soft materials
Procedia PDF Downloads 19220179 Methodology for Obtaining Static Alignment Model
Authors: Lely A. Luengas, Pedro R. Vizcaya, Giovanni Sánchez
Abstract:
In this paper, a methodology is presented to obtain the Static Alignment Model for any transtibial amputee person. The proposed methodology starts from experimental data collected on the Hospital Militar Central, Bogotá, Colombia. The effects of transtibial prosthesis malalignment on amputees were measured in terms of joint angles, center of pressure (COP) and weight distribution. Some statistical tools are used to obtain the model parameters. Mathematical predictive models of prosthetic alignment were created. The proposed models are validated in amputees and finding promising results for the prosthesis Static Alignment. Static alignment process is unique to each subject; nevertheless the proposed methodology can be used in each transtibial amputee.Keywords: information theory, prediction model, prosthetic alignment, transtibial prosthesis
Procedia PDF Downloads 25720178 Evaluation of Sequential Polymer Flooding in Multi-Layered Heterogeneous Reservoir
Authors: Panupong Lohrattanarungrot, Falan Srisuriyachai
Abstract:
Polymer flooding is a well-known technique used for controlling mobility ratio in heterogeneous reservoirs, leading to improvement of sweep efficiency as well as wellbore profile. However, low injectivity of viscous polymer solution attenuates oil recovery rate and consecutively adds extra operating cost. An attempt of this study is to improve injectivity of polymer solution while maintaining recovery factor, enhancing effectiveness of polymer flooding method. This study is performed by using reservoir simulation program to modify conventional single polymer slug into sequential polymer flooding, emphasizing on increasing of injectivity and also reduction of polymer amount. Selection of operating conditions for single slug polymer including pre-injected water, polymer concentration and polymer slug size is firstly performed for a layered-heterogeneous reservoir with Lorenz coefficient (Lk) of 0.32. A selected single slug polymer flooding scheme is modified into sequential polymer flooding with reduction of polymer concentration in two different modes: Constant polymer mass and reduction of polymer mass. Effects of Residual Resistance Factor (RRF) is also evaluated. From simulation results, it is observed that first polymer slug with the highest concentration has the main function to buffer between displacing phase and reservoir oil. Moreover, part of polymer from this slug is also sacrificed for adsorption. Reduction of polymer concentration in the following slug prevents bypassing due to unfavorable mobility ratio. At the same time, following slugs with lower viscosity can be injected easily through formation, improving injectivity of the whole process. A sequential polymer flooding with reduction of polymer mass shows great benefit by reducing total production time and amount of polymer consumed up to 10% without any downside effect. The only advantage of using constant polymer mass is slightly increment of recovery factor (up to 1.4%) while total production time is almost the same. Increasing of residual resistance factor of polymer solution yields a benefit on mobility control by reducing effective permeability to water. Nevertheless, higher adsorption results in low injectivity, extending total production time. Modifying single polymer slug into sequence of reduced polymer concentration yields major benefits on reducing production time as well as polymer mass. With certain design of polymer flooding scheme, recovery factor can even be further increased. This study shows that application of sequential polymer flooding can be certainly applied to reservoir with high value of heterogeneity since it requires nothing complex for real implementation but just a proper design of polymer slug size and concentration.Keywords: polymer flooding, sequential, heterogeneous reservoir, residual resistance factor
Procedia PDF Downloads 47620177 Design and Implementation of Low-code Model-building Methods
Authors: Zhilin Wang, Zhihao Zheng, Linxin Liu
Abstract:
This study proposes a low-code model-building approach that aims to simplify the development and deployment of artificial intelligence (AI) models. With an intuitive way to drag and drop and connect components, users can easily build complex models and integrate multiple algorithms for training. After the training is completed, the system automatically generates a callable model service API. This method not only lowers the technical threshold of AI development and improves development efficiency but also enhances the flexibility of algorithm integration and simplifies the deployment process of models. The core strength of this method lies in its ease of use and efficiency. Users do not need to have a deep programming background and can complete the design and implementation of complex models with a simple drag-and-drop operation. This feature greatly expands the scope of AI technology, allowing more non-technical people to participate in the development of AI models. At the same time, the method performs well in algorithm integration, supporting many different types of algorithms to work together, which further improves the performance and applicability of the model. In the experimental part, we performed several performance tests on the method. The results show that compared with traditional model construction methods, this method can make more efficient use, save computing resources, and greatly shorten the model training time. In addition, the system-generated model service interface has been optimized for high availability and scalability, which can adapt to the needs of different application scenarios.Keywords: low-code, model building, artificial intelligence, algorithm integration, model deployment
Procedia PDF Downloads 2920176 Finite Element Modeling of Mass Transfer Phenomenon and Optimization of Process Parameters for Drying of Paddy in a Hybrid Solar Dryer
Authors: Aprajeeta Jha, Punyadarshini P. Tripathy
Abstract:
Drying technologies for various food processing operations shares an inevitable linkage with energy, cost and environmental sustainability. Hence, solar drying of food grains has become imperative choice to combat duo challenges of meeting high energy demand for drying and to address climate change scenario. But performance and reliability of solar dryers depend hugely on sunshine period, climatic conditions, therefore, offer a limited control over drying conditions and have lower efficiencies. Solar drying technology, supported by Photovoltaic (PV) power plant and hybrid type solar air collector can potentially overpower the disadvantages of solar dryers. For development of such robust hybrid dryers; to ensure quality and shelf-life of paddy grains the optimization of process parameter becomes extremely critical. Investigation of the moisture distribution profile within the grains becomes necessary in order to avoid over drying or under drying of food grains in hybrid solar dryer. Computational simulations based on finite element modeling can serve as potential tool in providing a better insight of moisture migration during drying process. Hence, present work aims at optimizing the process parameters and to develop a 3-dimensional (3D) finite element model (FEM) for predicting moisture profile in paddy during solar drying. COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Furthermore, optimization of process parameters (power level, air velocity and moisture content) was done using response surface methodology in design expert software. 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed and validated with experimental data. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Furthermore, optimized process parameters for drying paddy were found to be 700 W, 2.75 m/s at 13% (wb) with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product. PV-integrated hybrid solar dryers can be employed as potential and cutting edge drying technology alternative for sustainable energy and food security.Keywords: finite element modeling, moisture migration, paddy grain, process optimization, PV integrated hybrid solar dryer
Procedia PDF Downloads 15020175 Effect of Sand Particle Distribution in Oil and Gas Pipeline Erosion
Authors: Christopher Deekia Nwimae, Nigel Simms, Liyun Lao
Abstract:
Erosion in pipe bends caused by particles is a major obstacle in the oil and gas fields and might cause the breakdown of production equipment. This work studied the effects imposed by flow velocity and impact of solid particles diameter in an elbow; erosion rate was verified with experimental data using the computational fluid dynamics (CFD) approach. Two-way coupled Euler-Lagrange and discrete phase model was employed to calculate the air/solid particle flow in an elbow. One erosion model and three-particle rebound models were used to predict the erosion rate on the 90° elbows. The generic erosion model was used in the CFD-based erosion model, and after comparing it with experimental data, results showed agreement with the CFD-based predictions as observed.Keywords: erosion, prediction, elbow, computational fluid dynamics
Procedia PDF Downloads 15720174 A Survey of Recognizing of Daily Living Activities in Multi-User Smart Home Environments
Authors: Kulsoom S. Bughio, Naeem K. Janjua, Gordana Dermody, Leslie F. Sikos, Shamsul Islam
Abstract:
The advancement in information and communication technologies (ICT) and wireless sensor networks have played a pivotal role in the design and development of real-time healthcare solutions, mainly targeting the elderly living in health-assistive smart homes. Such smart homes are equipped with sensor technologies to detect and record activities of daily living (ADL). This survey reviews and evaluates existing approaches and techniques based on real-time sensor-based modeling and reasoning in single-user and multi-user environments. It classifies the approaches into three main categories: learning-based, knowledge-based, and hybrid, and evaluates how they handle temporal relations, granularity, and uncertainty. The survey also highlights open challenges across various disciplines (including computer and information sciences and health sciences) to encourage interdisciplinary research for the detection and recognition of ADLs and discusses future directions.Keywords: daily living activities, smart homes, single-user environment, multi-user environment
Procedia PDF Downloads 14120173 Prolonged Ileus in Traumatic Pelvic Ring Injury Patients Who Underwent Arterial Angio-Embolization: A Retrospective Study
Authors: Suk Kyoon Song, Myung-Rae Cho
Abstract:
Purpose: Paralytic ileus occurs in up to 18% of patients with pelvic bone fractures. The aim of this study is to determine if massive bleeding requiring arterial angioembolization is related to the duration of ileus in patients with traumatic pelvic ring injuries. Methods: This retrospective study included 25 patients who underwent arterial angioembolization for traumatic pelvic ring injuries. Data were collected from prospectively maintained databases of two independent hospitals. Results: Demographic characteristics (such as age, sex, body mass index, and Charlson Comorbidity Index), cause of trauma, and severity of pelvic injuries were similar in the non-prolonged and prolonged ileus groups. As expected, the prolonged ileus group had a significantly longer duration of ileus than the non-prolonged ileus group (8.0 ± 4.2 days vs. 1.2 ± 0.4 days, respectively, P < 0.001). The mortality rate was higher in the prolonged ileus group (20% vs. 0%), but it was not significantly different (P = 0.13). Interestingly, the prolonged ileus group received significantly higher amounts of packed red blood cell (PRBC) transfusions (6.1 ± 2.1 units vs. 3.8 ± 2.5 units; P = 0.02). The amount of PRBC transfusions was associated with a greater risk of prolonged ileus development (P = 0.03, OR = 2.04, 95% CI = 1.08-3.88). Conclusion: This study supports the idea that the duration of the ileus is related to the amount of bleeding caused by the traumatic pelvic ring injury. In order to prevent further complications, conservative treatments of the ileus should be considered.Keywords: pelvic ring injury, bleeding, ileus, arterial angioembolization
Procedia PDF Downloads 12120172 Evaluation of Heavy Metal Concentrations of Stem and Seed of Juncus acutus for Grazing Animals and Birds in Kızılırmak Delta
Authors: N. Cetinkaya, F. Erdem
Abstract:
Juncus acutus (Juncaceae) is a perennial wetland plant and it is commonly known as spiny rush or sharp rush. It is the most abundant plant in Kizilirmak grassland, Samsun, Turkey. Heavy metals are significant environmental contaminants in delta and their toxicity is an increasing problem for animals whose natural habitat is delta. The objective of this study was to evaluate heavy metal concentrations mainly As, Cd, Sb, Ba, Pb and Hg in stem and seed of Juncus acutus for grazing animals and birds in delta. The Juncus acutus stem and seed samples were collected from Kizilirmak Delta in July, August and September. Heavy metal concentrations of collected samples were analyzed by Inductively Coupled Plasma – Mass Spectrometer (ICP-MS). The obtained mean values of three months for As, Cd, Sb, Ba, Pb and Hg of stem and seed samples of Juncus acutus were 0.11 and 0.23 mg/kg; 0.07 and 0.11 mg/kg; 0.02 and 0.02 mg/kg; 5.26 and 1.75 mg/kg; 0.05 and not detectable in July respectively. Hg was not detected in both stem and seed of Juncus acutus, Pb concentration was determined only in stem of Juncus acutus but not in seed. There were no significant differences between the values of three months for As, Cd, Sb, Ba, Pb and Hg of stem and seed samples of Juncus acutus. The obtained As, Cd, Sb, Ba, Pb and Hg results of stem and seed of Juncus acutus show that seed and stem of Juncus acutus may be safely consumed for grazing animals and birds regarding to heavy metals contamination in Kizilirmak Delta.Keywords: heavy metals, Juncus acutus, Kizilirmak Delta, wetland
Procedia PDF Downloads 13920171 Modeling the International Economic Relations Development: The Prospects for Regional and Global Economic Integration
Authors: M. G. Shilina
Abstract:
The interstate economic interaction phenomenon is complex. ‘Economic integration’, as one of its types, can be explored through the prism of international law, the theories of the world economy, politics and international relations. The most objective study of the phenomenon requires a comprehensive multifactoral approach. In new geopolitical realities, the problems of coexistence and possible interconnection of various mechanisms of interstate economic interaction are actively discussed. Currently, the Eurasian continent states support the direction to economic integration. At the same time, the existing international economic law fragmentation in Eurasia is seen as the important problem. The Eurasian space is characterized by a various types of interstate relations: international agreements (multilateral and bilateral), and a large number of cooperation formats (from discussion platforms to organizations aimed at deep integration). For their harmonization, it is necessary to have a clear vision to the phased international economic relations regulation options. In the conditions of rapid development of international economic relations, the modeling (including prognostic) can be optimally used as the main scientific method for presenting the phenomenon. On the basis of this method, it is possible to form the current situation vision and the best options for further action. In order to determine the most objective version of the integration development, the combination of several approaches were used. The normative legal approach- the descriptive method of legal modeling- was taken as the basis for the analysis. A set of legal methods was supplemented by the international relations science prognostic methods. The key elements of the model are the international economic organizations and states' associations existing in the Eurasian space (the Eurasian Economic Union (EAEU), the European Union (EU), the Shanghai Cooperation Organization (SCO), Chinese project ‘One belt-one road’ (OBOR), the Commonwealth of Independent States (CIS), BRICS, etc.). A general term for the elements of the model is proposed - the interstate interaction mechanisms (IIM). The aim of building a model of current and future Eurasian economic integration is to show optimal options for joint economic development of the states and IIMs. The long-term goal of this development is the new economic and political space, so-called the ‘Great Eurasian Community’. The process of achievement this long-term goal consists of successive steps. Modeling the integration architecture and dividing the interaction into stages led us to the following conclusion: the SCO is able to transform Eurasia into a single economic space. Gradual implementation of the complex phased model, in which the SCO+ plays a key role, will allow building an effective economic integration for all its participants, to create an economically strong community. The model can have practical value for politicians, lawyers, economists and other participants involved in the economic integration process. A clear, systematic structure can serve as a basis for further governmental action.Keywords: economic integration, The Eurasian Economic Union, The European Union, The Shanghai Cooperation Organization, The Silk Road Economic Belt
Procedia PDF Downloads 15020170 A Robust Optimization Model for Multi-Objective Closed-Loop Supply Chain
Authors: Mohammad Y. Badiee, Saeed Golestani, Mir Saman Pishvaee
Abstract:
In recent years consumers and governments have been pushing companies to design their activities in such a way as to reduce negative environmental impacts by producing renewable product or threat free disposal policy more and more. It is therefore important to focus more accurate to the optimization of various aspect of total supply chain. Modeling a supply chain can be a challenging process due to the fact that there are a large number of factors that need to be considered in the model. The use of multi-objective optimization can lead to overcome those problems since more information is used when designing the model. Uncertainty is inevitable in real world. Considering uncertainty on parameters in addition to use multi-objectives are ways to give more flexibility to the decision making process since the process can take into account much more constraints and requirements. In this paper we demonstrate a stochastic scenario based robust model to cope with uncertainty in a closed-loop multi-objective supply chain. By applying the proposed model in a real world case, the power of proposed model in handling data uncertainty is shown.Keywords: supply chain management, closed-loop supply chain, multi-objective optimization, goal programming, uncertainty, robust optimization
Procedia PDF Downloads 41620169 Generalized Additive Model Approach for the Chilean Hake Population in a Bio-Economic Context
Authors: Selin Guney, Andres Riquelme
Abstract:
The traditional bio-economic method for fisheries modeling uses some estimate of the growth parameters and the system carrying capacity from a biological model for the population dynamics (usually a logistic population growth model) which is then analyzed as a traditional production function. The stock dynamic is transformed into a revenue function and then compared with the extraction costs to estimate the maximum economic yield. In this paper, the logistic population growth model for the population is combined with a forecast of the abundance and location of the stock by using a generalized additive model approach. The paper focuses on the Chilean hake population. This method allows for the incorporation of climatic variables and the interaction with other marine species, which in turn will increase the reliability of the estimates and generate better extraction paths for different conservation objectives, such as the maximum biological yield or the maximum economic yield.Keywords: bio-economic, fisheries, GAM, production
Procedia PDF Downloads 25220168 Predictive Factors of Prognosis in Acute Stroke Patients Receiving Traditional Chinese Medicine Therapy: A Retrospective Study
Authors: Shaoyi Lu
Abstract:
Background: Traditional Chinese medicine has been used to treat stroke, which is a major cause of morbidity and mortality. There is, however, no clear agreement about the optimal timing, population, efficacy, and predictive prognosis factors of traditional Chinese medicine supplemental therapy. Method: In this study, we used a retrospective analysis with data collection from stroke patients in Stroke Registry In Chang Gung Healthcare System (SRICHS). Stroke patients who received traditional Chinese medicine consultation in neurology ward of Keelung Chang Gung Memorial Hospital from Jan 2010 to Dec 2014 were enrolled. Clinical profiles including the neurologic deficit, activities of daily living and other basic characteristics were analyzed. Through propensity score matching, we compared the NIHSS and Barthel index before and after the hospitalization, and applied with subgroup analysis, and adjusted by multivariate regression method. Results: Totally 115 stroke patients were enrolled with experiment group in 23 and control group in 92. The most important factor for prognosis prediction were the scores of National Institutes of Health Stroke Scale and Barthel index right before the hospitalization. Traditional Chinese medicine intervention had no statistically significant influence on the neurological deficit of acute stroke patients, and mild negative influence on daily activity performance of acute hemorrhagic stroke patient. Conclusion: Efficacy of traditional Chinese medicine as a supplemental therapy for acute stroke patients was controversial. The reason for this phenomenon might be complex and require more research to comprehend. Key words: traditional Chinese medicine, acupuncture, Stroke, NIH stroke scale, Barthel index, predictive factor. Method: In this study, we used a retrospective analysis with data collection from stroke patients in Stroke Registry In Chang Gung Healthcare System (SRICHS). Stroke patients who received traditional Chinese medicine consultation in neurology ward of Keelung Chang Gung Memorial Hospital from Jan 2010 to Dec 2014 were enrolled. Clinical profiles including the neurologic deficit, activities of daily living and other basic characteristics were analyzed. Through propensity score matching, we compared the NIHSS and Barthel index before and after the hospitalization, and applied with subgroup analysis, and adjusted by multivariate regression method. Results: Totally 115 stroke patients were enrolled with experiment group in 23 and control group in 92. The most important factor for prognosis prediction were the scores of National Institutes of Health Stroke Scale and Barthel index right before the hospitalization. Traditional Chinese medicine intervention had no statistically significant influence on the neurological deficit of acute stroke patients, and mild negative influence on daily activity performance of acute hemorrhagic stroke patient. Conclusion: Efficacy of traditional Chinese medicine as a supplemental therapy for acute stroke patients was controversial. The reason for this phenomenon might be complex and require more research to comprehend.Keywords: traditional Chinese medicine, complementary and alternative medicine, stroke, acupuncture
Procedia PDF Downloads 36020167 The Use of Remotely Sensed Data to Extract Wetlands Area in the Cultural Park of Ahaggar, South of Algeria
Authors: Y. Fekir, K. Mederbal, M. A. Hammadouche, D. Anteur
Abstract:
The cultural park of the Ahaggar, occupying a large area of Algeria, is characterized by a rich wetlands area to be preserved and managed both in time and space. The management of a large area, by its complexity, needs large amounts of data, which for the most part, are spatially localized (DEM, satellite images and socio-economic information...), where the use of conventional and traditional methods is quite difficult. The remote sensing, by its efficiency in environmental applications, became an indispensable solution for this kind of studies. Remote sensing imaging data have been very useful in the last decade in very interesting applications. They can aid in several domains such as the detection and identification of diverse wetland surface targets, topographical details, and geological features... In this work, we try to extract automatically wetlands area using multispectral remotely sensed data on-board the Earth Observing 1 (EO-1) and Landsat satellite. Both are high-resolution multispectral imager with a 30 m resolution. The instrument images an interesting surface area. We have used images acquired over the several area of interesting in the National Park of Ahaggar in the south of Algeria. An Extraction Algorithm is applied on the several spectral index obtained from combination of different spectral bands to extract wetlands fraction occupation of land use. The obtained results show an accuracy to distinguish wetlands area from the other lad use themes using a fine exploitation on spectral index.Keywords: multispectral data, EO1, landsat, wetlands, Ahaggar, Algeria
Procedia PDF Downloads 37720166 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling
Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed
Abstract:
The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.Keywords: streamflow, neural network, optimisation, algorithm
Procedia PDF Downloads 15220165 The Impact of Sustainable Farm Management on Paddy Farmers’ Livelihood: The Case of Malaysia
Authors: Roslina Kamaruddin
Abstract:
The paddy farmer’s performance and ability to improve productivity for increased incomes is driven by their level of farm management practices. Knowledge on the nature and level of sustainable farm management (SFM) practice provides opportunities for supporting the competitive advantages of paddy farmers to sustainably break away from the poverty cycle. Little attention has been given to measuring the performance and impact of SFM for the improvement of paddy farmer's livelihood in Malaysia. Without understanding SFM, it is difficult to make policies and provide targeted, impactful support to paddy farmers. The objective of this study is to assess the level of SFM among paddy farmers by calculating the Sustainable Farm Management Index (SFMI) using the Rice Check (RC) guideline established by the Department of Agriculture. The structured questionnaire was designed to capture the nine elements of farming practices based on the RC and was then distributed to 788 paddy farmers in Malaysia's main granary areas, namely MADA, KADA, and BLS. Each practice was given a score to determine whether the guidelines were followed. The index ranges from 0 to 100, with 0 being unsustainable and 100 being highly sustainable. A multiple regression analysis was employed as well to estimate the effects of SFM adoption on farmer livelihoods. The findings show that adopting SFM has a positive and significant effect on farmers' livelihoods. The paper, therefore, recommends that farmers should be educated on the importance of sustainable farming practices as this is essential for the sustainable livelihood development of poor farmers who rely on government subsidies.Keywords: sustainable farm management, paddy farming, rice check, granary areas, farmers livelihood
Procedia PDF Downloads 9920164 Covid Encephalopathy and New-Onset Seizures in the Context of a Prior Brain Abnormality: A Case Report
Authors: Omar Sorour, Michael Leahy, Thomas Irvine, Vladimir Koren
Abstract:
Introduction: Covid encephalitis is a rare yet dangerous complication, particularly affecting the older and immunocompromised. Symptoms range from confusion to delirium, coma, and seizures. Although neurological manifestations have become more well-characterized in COVID patients, little is known about whether priorneurological abnormalities may predispose patients to COVID encephalopathy. Case Description: A 73 y.o. male with a CT and MRI-confirmed stable, prior 9 mm cavernoma in the right frontal lobe and no past history of seizures was hospitalized with generalized weakness, abdominal pain, nausea, and shortness of breath with subsequent COVID pneumonia. Three days after the initial presentation, the patient developed a spontaneous generalized tonic-clonic seizure consistent with presumed COVID encephalitis, along with somnolence and confusion. A day later, the patient had two other seizure episodes. Follow-up EEG suggested an inter-ictal epileptic focus with sharp waves corresponding to roughly the same location as the patient’s pre-existing cavernoma. The patient’s seizures stopped shortly thereafter, while his encephalopathy continued for days. Conclusion: We illustrate that a pre-existing anatomic cortical abnormality may act as a potential nidus for new-onset seizure activity in the context of suggested COVID encephalopathy. Future studies may further demonstrate that manifestations of COVIDencephalopathy in certain patients may be more predictable than initially assumed.Keywords: cavernoma, covid, encephalopathy, seizures
Procedia PDF Downloads 17120163 Environmental Assessment of Single-Industry Towns in Kazakhstan in the Context of Sustainable Development Goals
Authors: Almira Daulbayeva, Zhauhar Yessenkulova, Rassima Salimbayeva
Abstract:
In this article, the regularities of the modern spatial and temporal distribution of main pollutants in the air space of single-industry towns are considered, and the level of pollutant emissions into the atmospheric air by urban areas of the Karaganda region is determined. We selected such cities as Temirtau, Abay, Saran, and Balkhash. Ecological and hygienic assessment of atmospheric air pollution in these cities for 2020 - 2023 and the beginning of 2024 was carried out on the materials of annual Information Bulletins on the state of the environment of the Republic of Kazakhstan, bulletins ‘On the state of atmospheric air in Karaganda region’. The general assessment of atmospheric air pollution in the territory was high, especially in 2020 and 2021, and corresponded to the level of ‘tense’. According to the results of the analysis of atmospheric air pollution, it was revealed that enterprises of thermal power engineering and mining industry (mines, enrichment plants, metallurgical production of ‘ArcelorMittal’ JSC) carry out emission of significant amounts of pollutants, particulate matter, and heavy metals into the atmosphere. The total number of ingredients present in the atmosphere of the city exceeds dozens, many of which belong to the first and second categories of hazard. The main pollutants were sulphur dioxide, carbon oxides, and nitrogen dioxide, as well as suspended solids. We have also considered and studied some types of major diseases of the population living in the region in different conditions in recent years. According to the results of the study, the cities with the highest rates and levels of morbidity were identified: Temirtau, Shakhtinsk, Abay, located in Karaganda region, where the main industrial facilities are concentrated, emitting harmful pollutants from ‘Corporation Kazakhmys’ LLP, ‘Arcelor Mittal’ JSC, Balkhash Mining and Metallurgical Combine.Keywords: atmospheric air, pollutants, single-industry towns, Karaganda region, morbidity, sustainable development
Procedia PDF Downloads 2220162 Urban Vegetative Planning for Ambient Ozone Pollution: An Eco-Management Approach
Authors: M. Anji Reddy, R. Uma Devi
Abstract:
Environmental planning for urban development is very much needed to reduce air pollution through the enhancement of vegetative cover in the cities like Hyderabad. This can be mainly based on the selection of appropriate native plant species as bioindicators to assess the impact of ambient Ozone. In the present study, tolerant species are suggested aimed to reduce the magnitude of ambient ozone concentrations which not only increase eco-friendly vegetation but also moderate air pollution. Hyderabad city is divided into 5 zones based on Land Use/Land Cover category further each zone divided into residential, traffic, industrial, and peri-urban areas. Highest ambient ozone levels are recorded in Industrial areas followed by traffic areas in the entire study area ( > 180 µg/m3). Biomonitoring of selected sixteen local urban plant species with the help of Air Pollution Tolerance Index (APTI) showed its susceptibility to air pollution. Statistical regression models in between the tolerant plant species and ambient ozone levels suggested five plant species namely Azardirachta indica A. Juss which have a high tolerant response to ambient ozone followed by Delonix regia Hook. along with Millingtonia hortensis L.f., Alestonia Scholaries L., and Samania saman Jacq. in the industrial and traffic areas of the study area to mitigate ambient Ozone pollution and also to improve urban greenery.Keywords: air pollution tolerance index, bio-indicators, eco-friendly vegetation, urban greenery
Procedia PDF Downloads 45420161 Exploring Acceptance of Artificial Intelligence Software Solution Amongst Healthcare Personnel: A Case in a Private Medical Centre
Authors: Sandra So, Mohd Roslan Ismail, Safurah Jaafar
Abstract:
With the rapid proliferation of data in healthcare has provided an opportune platform creation of Artificial Intelligence (AI). AI has brought a paradigm shift for healthcare professionals, promising improvement in delivery and quality. This study aims to determine the perception of healthcare personnel on perceived ease of use, perceived usefulness, and subjective norm toward attitude for artificial intelligence acceptance. A cross-sectional single institutional study of employees’ perception of adopting AI in the hospital was conducted. The survey was conducted using a questionnaire adapted from Technology Acceptance Model and a four-point Likert scale was used. There were 96 or 75.5% of the total population responded. This study has shown the significant relationship and the importance of ease of use, perceived usefulness, and subjective norm to the acceptance of AI. In the study results, it concluded that the determining factor to the strong acceptance of AI in their practices is mostly those respondents with the most interaction with the patients and clinical management.Keywords: artificial intelligence, machine learning, perceived ease of use, perceived usefulness, subjective norm
Procedia PDF Downloads 22620160 Demographic Profile, Risk Factors and In-hospital Outcomes of Acute Coronary Syndrome (ACS) in Young Population, in Pakistan-Single Center Real World Experience
Authors: Asma Qudrat, Abid Ullah, Rafi Ullah, Ali Raza, Shah Zeb, Syed Ali Shan Ul-Haq, Shahkar Ahmed Shah, Attiya Hameed Khan, Saad Zaheer, Umama Qasim, Kiran Jamal, Zahoor khan
Abstract:
Objectives: Coronary artery disease (CAD) is the major public health issue associated with high mortality and morbidity rate worldwide. Young patients with ACS have unique characteristics with different demographic profiles and risk factors. The precise diagnosis and early risk stratification is important in guiding treatment and predicting the prognosis of young patients with ACS. To evaluate the associated demographics, risk factors, and outcomes profile of ACS in young age patients. Methods: The research follow a retrospective design, the single centre study of patients diagnosis with the first event of ACS in young age (>18 and <40) were included. Data collection included demographic profiles, risk factors, and in-hospital outcomes of young ACS patients. The patient’s data was retrieved through Electronic Medical Records (EMR) of Peshawar Institute of Cardiology (PIC), and all characteristic were assessed. Results: In this study, 77% were male, and 23% were female patients. The risk factors were assessed with CAD and shown significant results (P < 0.01). The most common presentation was STEMI, with (45%) most in ACS young patients. The angiographic pattern showed single vessel disease (SVD) in 49%, double vessel disease (DVD) in 17% and triple vessel disease (TVD) was found in 10%, and Left Artery Disease (LAD) (54%) was present to be the most common involved artery. Conclusion: It is concluded that the male sex was predominant in ACS young age patients. SVD was the common coronary angiographic finding. Risk factors showed significant results towards CAD and common presentations.Keywords: coronary artery disease, Non-ST elevation myocardial infarction, ST elevation myocardial infarction, unstable angina, acute coronary syndrome
Procedia PDF Downloads 16420159 Stabilization Control of the Nonlinear AIDS Model Based on the Theory of Polynomial Fuzzy Control Systems
Authors: Shahrokh Barati
Abstract:
In this paper, we introduced AIDS disease at first, then proposed dynamic model illustrate its progress, after expression of a short history of nonlinear modeling by polynomial phasing systems, we considered the stability conditions of the systems, which contained a huge amount of researches in order to modeling and control of AIDS in dynamic nonlinear form, in this approach using a frame work of control any polynomial phasing modeling system which have been generalized by part of phasing model of T-S, in order to control the system in better way, the stability conditions were achieved based on polynomial functions, then we focused to design the appropriate controller, firstly we considered the equilibrium points of system and their conditions and in order to examine changes in the parameters, we presented polynomial phase model that was the generalized approach rather than previous Takagi Sugeno models, then with using case we evaluated the equations in both open loop and close loop and with helping the controlling feedback, the close loop equations of system were calculated, to simulate nonlinear model of AIDS disease, we used polynomial phasing controller output that was capable to make the parameters of a nonlinear system to follow a sustainable reference model properly.Keywords: polynomial fuzzy, AIDS, nonlinear AIDS model, fuzzy control systems
Procedia PDF Downloads 46820158 Vibration-Based Data-Driven Model for Road Health Monitoring
Authors: Guru Prakash, Revanth Dugalam
Abstract:
A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.Keywords: SVM, data-driven, road health monitoring, pot-hole
Procedia PDF Downloads 8620157 An Integreated Intuitionistic Fuzzy ELECTRE Model for Multi-Criteria Decision-Making
Authors: Babek Erdebilli
Abstract:
The aim of this study is to develop and describe a new methodology for the Multi-Criteria Decision-Making (MCDM) problem using IFE (Elimination Et Choix Traduisant La Realite (ELECTRE) model. The proposed models enable Decision-Makers (DMs) on the assessment and use Intuitionistic Fuzzy Numbers (IFN). A numerical example is provided to demonstrate and clarify the proposed analysis procedure. Also, an empirical experiment is conducted to validation the effectiveness.Keywords: multi-criteria decision-making, IFE, DM’s, fuzzy electre model
Procedia PDF Downloads 651