Search results for: financial market prediction
4721 Scientific Forecasting in International Relations
Authors: Djehich Mohamed Yousri
Abstract:
In this research paper, the future of international relations is believed to have an important place on the theoretical and applied levels because policy makers in the world are in dire need of such analyzes that are useful in drawing up the foreign policies of their countries, and protecting their national security from potential future threats, and in this context, The topic raised a lot of scientific controversy and intellectual debate, especially in terms of the extent of the effectiveness, accuracy, and ability of foresight methods to identify potential futures, and this is what attributed the controversy to the scientific foundations for foreseeing international relations. An arena for intellectual discussion between different thinkers in international relations belonging to different theoretical schools, which confirms to us the conceptual and implied development of prediction in order to reach the scientific level.Keywords: foresight, forecasting, international relations, international relations theory, concept of international relations
Procedia PDF Downloads 2144720 Safe and Scalable Framework for Participation of Nodes in Smart Grid Networks in a P2P Exchange of Short-Term Products
Authors: Maciej Jedrzejczyk, Karolina Marzantowicz
Abstract:
Traditional utility value chain is being transformed during last few years into unbundled markets. Increased distributed generation of energy is one of considerable challenges faced by Smart Grid networks. New sources of energy introduce volatile demand response which has a considerable impact on traditional middlemen in E&U market. The purpose of this research is to search for ways to allow near-real-time electricity markets to transact with surplus energy based on accurate time synchronous measurements. A proposed framework evaluates the use of secure peer-2-peer (P2P) communication and distributed transaction ledgers to provide flat hierarchy, and allow real-time insights into present and forecasted grid operations, as well as state and health of the network. An objective is to achieve dynamic grid operations with more efficient resource usage, higher security of supply and longer grid infrastructure life cycle. Methods used for this study are based on comparative analysis of different distributed ledger technologies in terms of scalability, transaction performance, pluggability with external data sources, data transparency, privacy, end-to-end security and adaptability to various market topologies. An intended output of this research is a design of a framework for safer, more efficient and scalable Smart Grid network which is bridging a gap between traditional components of the energy network and individual energy producers. Results of this study are ready for detailed measurement testing, a likely follow-up in separate studies. New platforms for Smart Grid achieving measurable efficiencies will allow for development of new types of Grid KPI, multi-smart grid branches, markets, and businesses.Keywords: autonomous agents, Distributed computing, distributed ledger technologies, large scale systems, micro grids, peer-to-peer networks, Self-organization, self-stabilization, smart grids
Procedia PDF Downloads 3004719 Effect of Inclusions in the Ultrasonic Fatigue Endurance of Maraging 300 Steel
Authors: G. M. Dominguez Almaraz, J. A. Ruiz Vilchez, M. A. Sanchez Miranda
Abstract:
Ultrasonic fatigue tests have been carried out in the maraging 300 steel. Experimental results show that fatigue endurance under this modality of testing is closely related to the nature and geometrical properties of inclusions present in this alloy. A model was proposed to correlate the ultrasonic fatigue endurance with the nature and geometrical properties of the crack initiation inclusion. Scanning Electron Microscopy analyses were obtained on the fracture surfaces, in order to assess the crack initiation inclusion and to introduce these parameters in the proposed model, with good agreement for the fatigue life prediction.Keywords: inclusions, ultrasonic fatigue, maraging 300 steel, crack initiation
Procedia PDF Downloads 2144718 Monitoring Systemic Risk in the Hedge Fund Sector
Authors: Frank Hespeler, Giuseppe Loiacono
Abstract:
We propose measures for systemic risk generated through intra-sectorial interdependencies in the hedge fund sector. These measures are based on variations in the average cross-effects of funds showing significant interdependency between their individual returns and the moments of the sector’s return distribution. The proposed measures display a high ability to identify periods of financial distress, are robust to modifications in the underlying econometric model and are consistent with intuitive interpretation of the results.Keywords: hedge funds, systemic risk, vector autoregressive model, risk monitoring
Procedia PDF Downloads 3254717 Resistance Analysis for a Trimaran
Authors: C. M. De Marco Muscat-Fenech, A. M. Grech La Rosa
Abstract:
Importance has been given to resistance analysis for various types of vessels; however explicit guidelines applied to multihull vessels have not been clearly defined. The purpose of this investigation is to highlight the importance of the vessel’s layout in terms of three axes positioning, the transverse (separation), the longitudinal (stagger) and the vertical (draught) with respect to resistance analysis. A vessel has the potential to experience less resistance, at a particular range of speeds, for a vast selection of hull positioning. Many potential layouts create opportunities of various design for both the commercial and leisure market.Keywords: multihull, reistance, trimaran, vessels
Procedia PDF Downloads 4784716 Development of a Reduced Multicomponent Jet Fuel Surrogate for Computational Fluid Dynamics Application
Authors: Muhammad Zaman Shakir, Mingfa Yao, Zohaib Iqbal
Abstract:
This study proposed four Jet fuel surrogate (S1, S2 S3, and 4) with careful selection of seven large hydrocarbon fuel components, ranging from C₉-C₁₆ of higher molecular weight and higher boiling point, adapting the standard molecular distribution size of the actual jet fuel. The surrogate was composed of seven components, including n-propyl cyclohexane (C₉H₁₈), n- propylbenzene (C₉H₁₂), n-undecane (C₁₁H₂₄), n- dodecane (C₁₂H₂₆), n-tetradecane (C₁₄H₃₀), n-hexadecane (C₁₆H₃₄) and iso-cetane (iC₁₆H₃₄). The skeletal jet fuel surrogate reaction mechanism was developed by two approaches, firstly based on a decoupling methodology by describing the C₄ -C₁₆ skeletal mechanism for the oxidation of heavy hydrocarbons and a detailed H₂ /CO/C₁ mechanism for prediction of oxidation of small hydrocarbons. The combined skeletal jet fuel surrogate mechanism was compressed into 128 species, and 355 reactions and thereby can be used in computational fluid dynamics (CFD) simulation. The extensive validation was performed for individual single-component including ignition delay time, species concentrations profile and laminar flame speed based on various fundamental experiments under wide operating conditions, and for their blended mixture, among all the surrogate, S1 has been extensively validated against the experimental data in a shock tube, rapid compression machine, jet-stirred reactor, counterflow flame, and premixed laminar flame over wide ranges of temperature (700-1700 K), pressure (8-50 atm), and equivalence ratio (0.5-2.0) to capture the properties target fuel Jet-A, while the rest of three surrogate S2, S3 and S4 has been validated for Shock Tube ignition delay time only to capture the ignition characteristic of target fuel S-8 & GTL, IPK and RP-3 respectively. Based on the newly proposed HyChem model, another four surrogate with similar components and composition, was developed and parallel validations data was used as followed for previously developed surrogate but at high-temperature condition only. After testing the mechanism prediction performance of surrogates developed by the decoupling methodology, the comparison was done with the results of surrogates developed by the HyChem model. It was observed that all of four proposed surrogates in this study showed good agreement with the experimental measurements and the study comes to this conclusion that like the decoupling methodology HyChem model also has a great potential for the development of oxidation mechanism for heavy alkanes because of applicability, simplicity, and compactness.Keywords: computational fluid dynamics, decoupling methodology Hychem, jet fuel, surrogate, skeletal mechanism
Procedia PDF Downloads 1374715 Determinants of Sustainable Supplier Selection: An Exploratory Study of Manufacturing Tunisian’s SMEs
Authors: Ahlem Dhahri, Audrey Becuwe
Abstract:
This study examines the adoption of sustainable purchasing practices among Tunisian SMEs, with a focus on assessing how environmental and social sustainability maturity affects the implementation of sustainable supplier selection (SSS) criteria. Using institutional theory to classify coercive, normative, and mimetic pressures, as well as emerging drivers and barriers, this study explores the institutional factors influencing sustainable purchasing practices and the specific barriers faced by Tunisian SMEs in this area. An exploratory, abductive qualitative research design was adopted for this multiple case study, which involved 19 semi-structured interviews with owners and managers of 17 Tunisian manufacturing SMEs. The Gioia method was used to analyze the data, thus enabling the identification of key themes and relationships directly from the raw data. This approach facilitated a structured interpretation of the institutional factors influencing sustainable purchasing practices, with insights drawn from the participants' perspectives. The study reveals that Tunisian SMEs are at different levels of sustainability maturity, with a significant impact on their procurement practices. SMEs with advanced sustainability maturity integrate both environmental and social criteria into their supplier selection processes, while those with lower maturity levels rely on mostly traditional criteria such as cost, quality, and delivery. Key institutional drivers identified include regulatory pressure, market expectations, and stakeholder influence. Additional emerging drivers—such as certifications and standards, economic incentives, environmental commitment as a core value, and group-wide strategic alignment—also play a critical role in driving sustainable procurement. Conversely, the study reveals significant barriers, including economic constraints, limited awareness, and resource limitations. It also identifies three main categories of emerging barriers: (1) logistical and supply chain constraints, including retailer/intermediary dependency, tariff regulations, and a perceived lack of direct responsibility in B2B supply chains; (2) economic and financial constraints; and (3) operational barriers, such as unilateral environmental responsibility, a product-centric focus and the influence of personal relationships. Providing valuable insights into the role of sustainability maturity in supplier selection, this study is the first to explore sustainable procurement practices in the Tunisian SME context. Integrating an analysis of institutional drivers, including emerging incentives and barriers, provides practical implications for SMEs seeking to improve sustainability in procurement. The results highlight the need for stronger regulatory frameworks and support mechanisms to facilitate the adoption of sustainable practices among SMEs in Tunisia.Keywords: Tunisian SME, sustainable supplier selection, institutional theory, determinant, qualitative study
Procedia PDF Downloads 124714 An Argument for Agile, Lean, and Hybrid Project Management in Museum Conservation Practice: A Qualitative Evaluation of the Morris Collection Conservation Project at the Sainsbury Centre for Visual Arts
Authors: Maria Ledinskaya
Abstract:
This paper is part case study and part literature review. It seeks to introduce Agile, Lean, and Hybrid project management concepts from business, software development, and manufacturing fields to museum conservation by looking at their practical application on a recent conservation project at the Sainsbury Centre for Visual Arts. The author outlines the advantages of leaner and more agile conservation practices in today’s faster, less certain, and more budget-conscious museum climate where traditional project structures are no longer as relevant or effective. The Morris Collection Conservation Project was carried out in 2019-2021 in Norwich, UK, and concerned the remedial conservation of around 150 Abstract Constructivist artworks bequeathed to the Sainsbury Centre by private collectors Michael and Joyce Morris. It was a medium-sized conservation project of moderate complexity, planned and delivered in an environment with multiple known unknowns – unresearched collection, unknown conditions and materials, unconfirmed budget. The project was later impacted by the COVID-19 pandemic, introducing indeterminate lockdowns, budget cuts, staff changes, and the need to accommodate social distancing and remote communications. The author, then a staff conservator at the Sainsbury Centre who acted as project manager on the Morris Project, presents an incremental, iterative, and value-based approach to managing a conservation project in an uncertain environment. The paper examines the project from the point of view of Traditional, Agile, Lean, and Hybrid project management. The author argues that most academic writing on project management in conservation has focussed on a Traditional plan-driven approach – also known as Waterfall project management – which has significant drawbacks in today’s museum environment due to its over-reliance on prediction-based planning and its low tolerance to change. In the last 20 years, alternative Agile, Lean and Hybrid approaches to project management have been widely adopted in software development, manufacturing, and other industries, although their recognition in the museum sector has been slow. Using examples from the Morris Project, the author introduces key principles and tools of Agile, Lean, and Hybrid project management and presents a series of arguments on the effectiveness of these alternative methodologies in museum conservation, including the ethical and practical challenges to their implementation. These project management approaches are discussed in the context of consequentialist, relativist, and utilitarian developments in contemporary conservation ethics. Although not intentionally planned as such, the Morris Project had a number of Agile and Lean features which were instrumental to its successful delivery. These key features are identified as distributed decision-making, a co-located cross-disciplinary team, servant leadership, focus on value-added work, flexible planning done in shorter sprint cycles, light documentation, and emphasis on reducing procedural, financial, and logistical waste. Overall, the author’s findings point in favour of a hybrid model, which combines traditional and alternative project processes and tools to suit the specific needs of the project.Keywords: agile project management, conservation, hybrid project management, lean project management, waterfall project management
Procedia PDF Downloads 714713 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence
Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang
Abstract:
Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics
Procedia PDF Downloads 744712 A Mathematical Equation to Calculate Stock Price of Different Growth Model
Authors: Weiping Liu
Abstract:
This paper presents an equation to calculate stock prices of different growth model. This equation is mathematically derived by using discounted cash flow method. It has the advantages of being very easy to use and very accurate. It can still be used even when the first stage is lengthy. This equation is more generalized because it can be used for all the three popular stock price models. It can be programmed into financial calculator or electronic spreadsheets. In addition, it can be extended to a multistage model. It is more versatile and efficient than the traditional methods.Keywords: stock price, multistage model, different growth model, discounted cash flow method
Procedia PDF Downloads 4064711 Data Presentation of Lane-Changing Events Trajectories Using HighD Dataset
Authors: Basma Khelfa, Antoine Tordeux, Ibrahima Ba
Abstract:
We present a descriptive analysis data of lane-changing events in multi-lane roads. The data are provided from The Highway Drone Dataset (HighD), which are microscopic trajectories in highway. This paper describes and analyses the role of the different parameters and their significance. Thanks to HighD data, we aim to find the most frequent reasons that motivate drivers to change lanes. We used the programming language R for the processing of these data. We analyze the involvement and relationship of different variables of each parameter of the ego vehicle and the four vehicles surrounding it, i.e., distance, speed difference, time gap, and acceleration. This was studied according to the class of the vehicle (car or truck), and according to the maneuver it undertook (overtaking or falling back).Keywords: autonomous driving, physical traffic model, prediction model, statistical learning process
Procedia PDF Downloads 2614710 The Relationship between School Belonging, Self-Efficacy and Academic Achievement in Tabriz High School Students
Authors: F. Pari, E. Fathiazar, T. Hashemi, M. Pari
Abstract:
The present study aimed to examine the role of self-efficacy and school belonging in the academic achievement of Tabriz high school students in grade 11. Therefore, using a random cluster method, 377 subjects were selected from the whole students of Tabriz high schools. They filled in the School Belonging Questionnaire (SBQ) and General Self-Efficacy Scale. Data were analyzed using correlational as well as multiple regression methods. Findings demonstrate self-efficacy and school belonging have significant roles in the prediction of academic achievement. On the other hand, the results suggest that considering the gender variable there is no significant difference between self-efficacy and school belonging. On the whole, cognitive approaches could be effective in the explanation of academic achievement.Keywords: school belonging, self-efficacy, academic achievement, high school
Procedia PDF Downloads 2994709 Predicting Resistance of Commonly Used Antimicrobials in Urinary Tract Infections: A Decision Tree Analysis
Authors: Meera Tandan, Mohan Timilsina, Martin Cormican, Akke Vellinga
Abstract:
Background: In general practice, many infections are treated empirically without microbiological confirmation. Understanding susceptibility of antimicrobials during empirical prescribing can be helpful to reduce inappropriate prescribing. This study aims to apply a prediction model using a decision tree approach to predict the antimicrobial resistance (AMR) of urinary tract infections (UTI) based on non-clinical features of patients over 65 years. Decision tree models are a novel idea to predict the outcome of AMR at an initial stage. Method: Data was extracted from the database of the microbiological laboratory of the University Hospitals Galway on all antimicrobial susceptibility testing (AST) of urine specimens from patients over the age of 65 from January 2011 to December 2014. The primary endpoint was resistance to common antimicrobials (Nitrofurantoin, trimethoprim, ciprofloxacin, co-amoxiclav and amoxicillin) used to treat UTI. A classification and regression tree (CART) model was generated with the outcome ‘resistant infection’. The importance of each predictor (the number of previous samples, age, gender, location (nursing home, hospital, community) and causative agent) on antimicrobial resistance was estimated. Sensitivity, specificity, negative predictive (NPV) and positive predictive (PPV) values were used to evaluate the performance of the model. Seventy-five percent (75%) of the data were used as a training set and validation of the model was performed with the remaining 25% of the dataset. Results: A total of 9805 UTI patients over 65 years had their urine sample submitted for AST at least once over the four years. E.coli, Klebsiella, Proteus species were the most commonly identified pathogens among the UTI patients without catheter whereas Sertia, Staphylococcus aureus; Enterobacter was common with the catheter. The validated CART model shows slight differences in the sensitivity, specificity, PPV and NPV in between the models with and without the causative organisms. The sensitivity, specificity, PPV and NPV for the model with non-clinical predictors was between 74% and 88% depending on the antimicrobial. Conclusion: The CART models developed using non-clinical predictors have good performance when predicting antimicrobial resistance. These models predict which antimicrobial may be the most appropriate based on non-clinical factors. Other CART models, prospective data collection and validation and an increasing number of non-clinical factors will improve model performance. The presented model provides an alternative approach to decision making on antimicrobial prescribing for UTIs in older patients.Keywords: antimicrobial resistance, urinary tract infection, prediction, decision tree
Procedia PDF Downloads 2554708 Utilizing Dowel-Laminated Mass Timber Components in Residential Multifamily Structures: A Case Study
Authors: Theodore Panton
Abstract:
As cities in the United States experience critical housing shortages, mass timber presents the opportunity to address this crisis in housing supply while taking advantage of the carbon-positive benefits of sustainably forested wood fiber. Mass timber, however, currently has a low level of adoption in residential multifamily structures due to the risk-averse nature of change within the construction financing, Architecture / Engineering / Contracting (AEC) communities, as well as various agency approval challenges. This study demonstrates how mass timber can be used within the cost and feasibility parameters of a typical multistory residential structure and ultimately address the need for dense urban housing. This study will utilize The Garden District, a mixed-use market-rate housing project in Woodinville, Washington, as a case study to illuminate the potential of mass timber in this application. The Garden District is currently in final stages of permit approval and will commence construction in 2023. It will be the tallest dowel-laminated timber (DLT) residential structure in the United States when completed. This case study includes economic, technical, and design reference points to demonstrate the relevance of the use of this system and its ability to deliver “triple bottom line” results. In terms of results, the study establishes scalable and repeatable approaches to project design and delivery of mass timber in multifamily residential uses and includes economic data, technical solutions, and a summary of end-user advantages. This study discusses the third party tested systems for satisfying acoustical requirements within dwelling units, a key to resolving the use of mass timber within multistory residential use. Lastly, the study will also compare the mass timber solution with a comparable cold formed steel (CFS) system with a similar program, which indicates a net carbon savings of over three million tons over the life cycle of the building.Keywords: DLT, dowell laminated timber, mass timber, market rate multifamily
Procedia PDF Downloads 1224707 Vision-Based Hand Segmentation Techniques for Human-Computer Interaction
Abstract:
This work is the part of vision based hand gesture recognition system for Natural Human Computer Interface. Hand tracking and segmentation are the primary steps for any hand gesture recognition system. The aim of this paper is to develop robust and efficient hand segmentation algorithm such as an input to another system which attempt to bring the HCI performance nearby the human-human interaction, by modeling an intelligent sign language recognition system based on prediction in the context of dialogue between the system (avatar) and the interlocutor. For the purpose of hand segmentation, an overcoming occlusion approach has been proposed for superior results for detection of hand from an image.Keywords: HCI, sign language recognition, object tracking, hand segmentation
Procedia PDF Downloads 4124706 Data-Driven Surrogate Models for Damage Prediction of Steel Liquid Storage Tanks under Seismic Hazard
Authors: Laura Micheli, Majd Hijazi, Mahmoud Faytarouni
Abstract:
The damage reported by oil and gas industrial facilities revealed the utmost vulnerability of steel liquid storage tanks to seismic events. The failure of steel storage tanks may yield devastating and long-lasting consequences on built and natural environments, including the release of hazardous substances, uncontrolled fires, and soil contamination with hazardous materials. It is, therefore, fundamental to reliably predict the damage that steel liquid storage tanks will likely experience under future seismic hazard events. The seismic performance of steel liquid storage tanks is usually assessed using vulnerability curves obtained from the numerical simulation of a tank under different hazard scenarios. However, the computational demand of high-fidelity numerical simulation models, such as finite element models, makes the vulnerability assessment of liquid storage tanks time-consuming and often impractical. As a solution, this paper presents a surrogate model-based strategy for predicting seismic-induced damage in steel liquid storage tanks. In the proposed strategy, the surrogate model is leveraged to reduce the computational demand of time-consuming numerical simulations. To create the data set for training the surrogate model, field damage data from past earthquakes reconnaissance surveys and reports are collected. Features representative of steel liquid storage tank characteristics (e.g., diameter, height, liquid level, yielding stress) and seismic excitation parameters (e.g., peak ground acceleration, magnitude) are extracted from the field damage data. The collected data are then utilized to train a surrogate model that maps the relationship between tank characteristics, seismic hazard parameters, and seismic-induced damage via a data-driven surrogate model. Different types of surrogate algorithms, including naïve Bayes, k-nearest neighbors, decision tree, and random forest, are investigated, and results in terms of accuracy are reported. The model that yields the most accurate predictions is employed to predict future damage as a function of tank characteristics and seismic hazard intensity level. Results show that the proposed approach can be used to estimate the extent of damage in steel liquid storage tanks, where the use of data-driven surrogates represents a viable alternative to computationally expensive numerical simulation models.Keywords: damage prediction , data-driven model, seismic performance, steel liquid storage tanks, surrogate model
Procedia PDF Downloads 1434705 Forecasting the Volatility of Geophysical Time Series with Stochastic Volatility Models
Authors: Maria C. Mariani, Md Al Masum Bhuiyan, Osei K. Tweneboah, Hector G. Huizar
Abstract:
This work is devoted to the study of modeling geophysical time series. A stochastic technique with time-varying parameters is used to forecast the volatility of data arising in geophysics. In this study, the volatility is defined as a logarithmic first-order autoregressive process. We observe that the inclusion of log-volatility into the time-varying parameter estimation significantly improves forecasting which is facilitated via maximum likelihood estimation. This allows us to conclude that the estimation algorithm for the corresponding one-step-ahead suggested volatility (with ±2 standard prediction errors) is very feasible since it possesses good convergence properties.Keywords: Augmented Dickey Fuller Test, geophysical time series, maximum likelihood estimation, stochastic volatility model
Procedia PDF Downloads 3154704 Computational Fluid Dynamics (CFD) Modeling of Local with a Hot Temperature in Sahara
Authors: Selma Bouasria, Mahi Abdelkader, Abbès Azzi, Herouz Keltoum
Abstract:
This paper reports concept was used into the computational fluid dynamics (CFD) code cfx through user-defined functions to assess ventilation efficiency inside (forced-ventilation local). CFX is a simulation tool which uses powerful computer and applied mathematics, to model fluid flow situations for the prediction of heat, mass and momentum transfer and optimal design in various heat transfer and fluid flow processes to evaluate thermal comfort in a room ventilated (highly-glazed). The quality of the solutions obtained from CFD simulations is an effective tool for predicting the behavior and performance indoor thermo-aéraulique comfort.Keywords: ventilation, thermal comfort, CFD, indoor environment, solar air heater
Procedia PDF Downloads 6344703 Agri-Food Transparency and Traceability: A Marketing Tool to Satisfy Consumer Awareness Needs
Authors: Angelo Corallo, Maria Elena Latino, Marta Menegoli
Abstract:
The link between man and food plays, in the social and economic system, a central role where cultural and multidisciplinary aspects intertwine: food is not only nutrition, but also communication, culture, politics, environment, science, ethics, fashion. This multi-dimensionality has many implications in the food economy. In recent years, the consumer became more conscious about his food choices, involving a consistent change in consumption models. This change concerns several aspects: awareness of food system issues, employment of socially and environmentally conscious decision-making, food choices based on different characteristics than nutritional ones i.e. origin of food, how it’s produced, and who’s producing it. In this frame the ‘consumption choices’ and the ‘interests of the citizen’ become one part of the others. The figure of the ‘Citizen Consumer’ is born, a responsible and ethically motivated individual to change his lifestyle, achieving the goal of sustainable consumption. Simultaneously the branding, that before was guarantee of the product quality, today is questioned. In order to meet these needs, Agri-Food companies are developing specific product lines that follow two main philosophies: ‘Back to basics’ and ‘Less is more’. However, the issue of ethical behavior does not seem to find an adequate on market offer. Most likely due to a lack of attention on the communication strategy used, very often based on market logic and rarely on ethical one. The label in its classic concept of ‘clean labeling’ can no longer be the only instrument through which to convey product information and its evolution towards a concept of ‘clear label’ is necessary to embrace ethical and transparent concepts in progress the process of democratization of the Food System. The implementation of a voluntary traceability path, relying on the technological models of the Internet of Things or Industry 4.0, would enable the Agri-Food Supply Chain to collect data that, if properly treated, could satisfy the information need of consumers. A change of approach is therefore proposed towards Agri-Food traceability that is no longer intended as a tool to be used to respond to the legislator, but rather as a promotional tool useful to tell the company in a transparent manner and then reach the slice of the market of food citizens. The use of mobile technology can also facilitate this information transfer. However, in order to guarantee maximum efficiency, an appropriate communication model based on the ethical communication principles should be used, which aims to overcome the pipeline communication model, to offer the listener a new way of telling the food product, based on real data collected through processes traceability. The Citizen Consumer is therefore placed at the center of the new model of communication in which he has the opportunity to choose what to know and how. The new label creates a virtual access point capable of telling the product according to different point of views, following the personal interests and offering the possibility to give several content modalities to support different situations and usability.Keywords: agri food traceability, agri-food transparency, clear label, food system, internet of things
Procedia PDF Downloads 1584702 Semantic Analysis of the Change in Awareness of Korean College Admission Policy
Authors: Sujin Hwang, Hyerang Park, Hyunchul Kim
Abstract:
The purpose of this study is to find the effectiveness of the admission simplification policy. The number of online news articles about ‘high school record’ was collected and semantically analyzed to identify and analyze the social awareness during 2014 to 2015. The main results of the study are as follows: First, there was a difference in expectations that the burden of the examinees would decrease as announced by KCUE. Thus, there was still a strain on the university entrance exam after the enforcement of the policy. Second, private tutoring is expanding in different forms, rather than reducing the policy. It is different from the prediction that examinees can prepare for university admissions without the private tutoring. Thus, the college admission rules currently enforced needs to be improved. The reasonable college admission system changes are discussed.Keywords: education policy, private tutoring, shadow education, education admission policy
Procedia PDF Downloads 2274701 The Microstructural Evolution of X45CrNiW189 Valve Steel during Hot Deformation
Authors: A. H. Meysami
Abstract:
In this paper, the hot compression tests were carried on X45CrNiW189 valve steel (X45) in the temperature range of 1000–1200°C and the strain rate range of 0.004–0.5 s^(-1) in order to study the high temperature softening behavior of the steel. For the exact prediction of flow stress, the effective stress - effective strain curves were obtained from experiments under various conditions. On the basis of experimental results, the dynamic recrystallization fraction (DRX), AGS, hot deformation and activation energy behavior were investigated. It was found that the calculated results were in a good agreement with the experimental flow stress and microstructure of the steel for different conditions of hot deformation.Keywords: X45CrNiW189, valve steel, hot compression test, dynamic recrystallization, hot deformation
Procedia PDF Downloads 2784700 We Wonder If They Mind: An Empirical Inquiry into the Narratological Function of Mind Wandering in Readers of Literary Texts
Authors: Tina Ternes, Florian Kleinau
Abstract:
The study investigates the content and triggers of mind wandering (MW) in readers of fictional texts. It asks whether readers’ MW is productive (text-related) or unproductive (text-unrelated). Methodologically, it bridges the gap between narratological and data-driven approaches by utilizing a sentence-by-sentence self-paced reading paradigm combined with thought probes in the reading of an excerpt of A. L. Kennedy’s “Baby Blue”. Results show that the contents of MW can be linked to text properties. We validated the role of self-reference in MW and found prediction errors to be triggers of MW. Results also indicate that the content of MW often travels along the lines of the text at hand and can thus be viewed as productive and integral to interpretation.Keywords: narratology, mind wandering, reading fiction, meta cognition
Procedia PDF Downloads 824699 An Analysis of Younger Consumers’ Perceptions, Purchasing Decisions, and Pro-Environmental Behavior: A Market Experiment on Green Advertising
Authors: Mokhlisur Rahman
Abstract:
Consumers have developed a sense of responsibility in the past decade, reflecting on their purchasing behavior after viewing an advertisement. Consumers tend to buy ideal products that enable them to be judged by their close network in the opinion world. In such value considerations, any information that feeds consumers' desire for social status helps, which becomes capital for educating consumers on the importance of purchasing green products for manufacturing companies. Companies' effort in manufacturing green products to get high conversion demands a good deal of promotion with quality information and engaging representation. Additionally, converting people from traditional to eco-friendly products requires innovative alternatives to replace the existing product. Considering consumers' understanding of products and their purchasing behavior, it becomes essential for the brands to know the extent to which consumers' level of awareness of the ecosystem is to make them more responsive to green products. Another is brand image plays a vital role in consumers' perception regarding the credibility of the claim regarding the product. Brand image is a significant positive influence on the younger generation, and younger generations tend to engage more in pro-environmental behavior, including purchasing sustainable products. For example, Adidas senses the necessity of satisfying consumers with something that brings more profits and serves the planet. Several of their eco-friendly products are already in the market, and one is UltraBOOST DNA parley, made from 3D-printed recycled ocean waste. As a big brand image, Adidas has leveraged an interest among the younger generation by incorporating sustainability into its advertising. Therefore, influential brands' effort in the sustainable revolution through engaging advertisement makes it more prominent by educating consumers about the reason behind launching the product. This study investigates younger consumers' attitudes toward sustainability, brand recognition, exposure to green advertising, willingness to receive more green advertising, purchasing green products, and motivation. The study conducts a market experiment by creating two video advertisements: a sustainable product video advertisement and a non-sustainable product video advertisement. Both the videos have similar content design and the same length of 2 minutes, but the messages are different based on the identical product type college bags. The first video advertisement promotes eco-friendly college bags made from biodegradable raw materials, and the second promotes non-sustainable college bags made from plastics. After viewing the videos, consumers make purchasing decisions and complete an online survey to collect their attitudes toward sustainable products. The study finds the importance of a sense of responsibility to the consumers for climate change issues. Also, it empowers people to take a step, even small, and increases environmental awareness. This study provides companies with the knowledge to participate in sustainable product launches by collecting consumers' perceptions and attitudes toward green products. Also, it shows how important it is to build a brand's image for the younger generation.Keywords: brand-image, environment, green-advertising, sustainability, younger-consumer
Procedia PDF Downloads 684698 The Impact of the AEC to Influence the Direction of Politics in Thailand
Authors: Jiraporn Weenuttranon
Abstract:
The ASEAN Economic Community (AEC) shall be the goal of regional economic integration among ASEAN countries. The goal of establishing AEC is to transform the region into a single market and production base with a highly competitive advantage to make it a stable and prosperous region. However, with the wild range of economic conditions in each country, the implementation of its objectives under the limited resources available in the past showed the weakness of the region. For this reason, the group of countries in the region should allocate its rich potential of the region by collaborating effectively.Keywords: impact, AEC, influence, direction, politics, Thailand
Procedia PDF Downloads 3454697 Virtual Assessment of Measurement Error in the Fractional Flow Reserve
Authors: Keltoum Chahour, Mickael Binois
Abstract:
Due to a lack of standardization during the invasive fractional flow reserve (FFR) procedure, the index is subject to many sources of uncertainties. In this paper, we investigate -through simulation- the effect of the (FFR) device position and configuration on the obtained value of the (FFR) fraction. For this purpose, we use computational fluid dynamics (CFD) in a 3D domain corresponding to a diseased arterial portion. The (FFR) pressure captor is introduced inside it with a given length and coefficient of bending to capture the (FFR) value. To get over the computational limitations, basically, the time of the simulation is about 2h 15min for one (FFR) value; we generate a Gaussian Process (GP) model for (FFR) prediction. The (GP) model indicates good accuracy and demonstrates the effective error in the measurement created by the random configuration of the pressure captor.Keywords: fractional flow reserve, Gaussian processes, computational fluid dynamics, drift
Procedia PDF Downloads 1344696 Development of Methotrexate Nanostructured Lipid Carriers for Topical Treatment of Psoriasis: Optimization, Evaluation, and in vitro Studies
Authors: Yogeeta O. Agrawal, Hitendra S. Mahajan, Sanjay J. Surana
Abstract:
Methotrexate is effective in controlling recalcitrant psoriasis when administered by the oral or parenteral route long-term. However, the systematic use of this drug may provoke any of a number of side effects, notably hepatotoxic effects. To reduce these effects, clinical studies have been done with topical MTx. It is useful in treating a number of cutaneous conditions, including psoriasis. A major problem in topical administration of MTx currently available in market is that the drug is hydrosoluble and is mostly in the dissociated form at physiological pH. Its capacity for passive diffusion is thus limited. Localization of MTx in effected layers of skin is likely to improve the role of topical dosage form of the drug as a supplementary to oral therapy for treatment of psoriasis. One of the possibilities for increasing the penetration of drugs through the skin is the use of Nanostructured lipid Carriers. The objective of the present study was to formulate and characterize Methotrexate loaded Nanostructured Lipid Carriers (MtxNLCs), to understand in vitro drug release and evaluate the role of the developed gel in the topical treatment of psoriasis. MtxNLCs were prepared by solvent diffusion technique using 3(2) full factorial design.The mean diameter and surface morphology of MtxNLC was evaluated. MtxNLCs were lyophilized and crystallinity of NLC was characterized by Differential Scanning Calorimtery (DSC) and powder X-Ray Diffraction (XRD). The NLCs were incorporated in 1% w/w Carbopol 934 P gel base and in vitro skin deposition studies in Human Cadaver Skin were conducted. The optimized MtxNLCs were spherical in shape, with average particle size of 253(±9.92)nm, zeta potential of -30.4 (±0.86) mV and EE of 53.12(±1.54)%. DSC and XRD data confirmed the formation of NLCs. Significantly higher deposition of Methotrexate was found in human cadaver skin from MtxNLC gel (71.52 ±1.23%) as compared to Mtx plain gel (54.28±1.02%). Findings of the studies suggest that there is significant improvement in therapeutic index in treatment of psoriasis by MTx-NLCs incorporated gel base developed in this investigation over plain drug gel currently available in the market.Keywords: methotrexate, psoriasis, NLCs, hepatotoxic effects
Procedia PDF Downloads 4304695 Features Dimensionality Reduction and Multi-Dimensional Voice-Processing Program to Parkinson Disease Discrimination
Authors: Djamila Meghraoui, Bachir Boudraa, Thouraya Meksen, M.Boudraa
Abstract:
Parkinson's disease is a pathology that involves characteristic perturbations in patients’ voices. This paper describes a proposed method that aims to diagnose persons with Parkinson (PWP) by analyzing on line their voices signals. First, Thresholds signals alterations are determined by the Multi-Dimensional Voice Program (MDVP). Principal Analysis (PCA) is exploited to select the main voice principal componentsthat are significantly affected in a patient. The decision phase is realized by a Mul-tinomial Bayes (MNB) Classifier that categorizes an analyzed voice in one of the two resulting classes: healthy or PWP. The prediction accuracy achieved reaching 98.8% is very promising.Keywords: Parkinson’s disease recognition, PCA, MDVP, multinomial Naive Bayes
Procedia PDF Downloads 2784694 Contribution in Fatigue Life Prediction of Composite Material
Authors: Mostefa Bendouba, Djebli Abdelkader, Abdelkrim Aid, Mohamed Benguediab
Abstract:
The damage evolution mechanism is one of the important focuses of fatigue behaviour investigation of composite materials and also is the foundation to predict fatigue life of composite structures for engineering application. This paper is dedicated to a damage investigation under two block loading cycle fatigue conditions submitted to composite material. The loading sequence effect and the influence of the cycle ratio of the first stage on the cumulative fatigue life were studied herein. Two loading sequences, i.e., high-to-low and low-to-high cases are considered in this paper. The proposed damage indicator is connected cycle by cycle to the S-N curve and the experimental results are in agreement with model expectations. Some experimental researches are used to validate this proposition.Keywords: fatigue, damage acumulation, composite, evolution
Procedia PDF Downloads 5014693 Comparative Analysis between Thailand and the United States of a Wholesale Exemption for Vertical Restraint Regarding Intellectual Property Licensing
Authors: Sanpetchuda Krutkrua, Suphawatchara Malanond
Abstract:
Competition law is not a new thing in Thailand. Thailand first passed the first competition law during the Second World War in order to stop business operator monopolizing food and basic living supplies. The competition law in Thailand has been amended several times during the past eighty years in order to make it suitable for the current economic and social condition. In 2017, Thailand enacted the current Trade Competition Act of B.E. 2560, which contain several changes to the regime in order to enhance a prevention of collusive practices and monopolization through both vertical restraints and horizontal restraints. Section 56 of the Act provides exemptions for the vertical relationship; i.e., the arrangement in form of complementary relationship, between business operators, franchising agreements between franchisor and franchisee, and licensing agreement between licensor and licensee. The key is that such agreements must not be excessive, create monopolization or attempt to monopolize, or cause any impacts the consumers regarding price, quality, quantity of the goods. The goal of the paper is to explore the extent of the exemption under Section 56 and its sequential regulations regarding vertical trade restraints in the case intellectual property licensing. The research will be conducted in form of a comparative analysis on exemptions for collusive practices under the United States Antitrust law and the Thai Competition Act of B.E. 2560. The United Antitrust law, fairly similar to the Thai Competition Act of B.E. 2561, views the intellectual property licensing to have pro-competitive benefits to the market as long as the intellectual property licensing agreement does not harm the competition amongst the business operators that could have or would have been competitors. The United States Antitrust law identifies the relationship between the parties of the agreement whether such agreement is horizontal or vertical or both. Even though the nature of licensing agreements is primarily vertical, the relationship between licensor and licensees can also be horizontal if they could have been potential competitors in the market as well. The United States Antitrust law frowns upon, if not prohibits, the horizontal restraints regarding the intellectual property licensing but does not impose the same restrictions on the vertical trade restraints regarding intellectual property licensing.Keywords: antitrust, competition law, vertical restraint, intellectual property, intellectual property licensing, comparative law
Procedia PDF Downloads 1654692 Physico-Chemical Properties of Silurian Hot Shale in Ahnet Basin, Algeria: Case Study Well ASS-1
Authors: Mohamed Mehdi Kadri
Abstract:
The prediction of hot shale interval in Silurian formation in a well drilled vertically in Ahnet basin Is by logging Data (Resistivity, Gamma Ray, Sonic) with the calculation of total organic carbon (TOC) using ∆ log R Method. The aim of this paper is to present Physico-chemical Properties of Hot Shale using IR spectroscopy and gas chromatography-mass spectrometry analysis; this mixture of measurements, evaluation and characterization show that the hot shale interval located in the lower of Silurian, the molecules adsorbed at the surface of shale sheet are significantly different from petroleum hydrocarbons this result are also supported with gas-liquid chromatography showed that the study extract is a hydroxypropyl.Keywords: physic-chemical analysis, reservoirs characterization, sweet window evaluation, Silurian shale, Ahnet basin
Procedia PDF Downloads 99