Search results for: machine learning techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14202

Search results for: machine learning techniques

11202 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification

Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh

Abstract:

The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.

Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine

Procedia PDF Downloads 638
11201 Effect of Planting Techniques on Mangrove Seedling Establishment in Kuwait Bay

Authors: L. Al-Mulla, B. M. Thomas, N. R. Bhat, M. K. Suleiman, P. George

Abstract:

Mangroves are halophytic shrubs habituated in the intertidal zones in the tropics and subtropics, forming a complex and highly dynamic coastal ecosystem. Historical evidence indicating the existence followed by the extinction of mangrove in Kuwait; hence, continuous projects have been established to reintroduce this plant to the marine ecosystem. One of the major challenges in establishing large-scale mangrove plantations in Kuwait is the very high rate of seedling mortality, which should ideally be less than 20%. This study was conducted at three selected locations in the Kuwait bay during 2016-2017, to evaluate the effect of four planting techniques on mangrove seedling establishment. Coir-pillow planting technique, comp-mat planting technique, and anchored container planting technique were compared with the conventional planting method. The study revealed that the planting techniques significantly affected the establishment of mangrove seedlings in the initial stages of growth. Location-specific difference in seedling establishment was also observed during the course of the study. However, irrespective of the planting techniques employed, high seedling mortality was observed in all the planting locations towards the end of the study; which may be attributed to the physicochemical characteristics of the mudflats selected.

Keywords: Avicennia marina (Forsk.) Vierh, coastal pollution, heavy metal accumulation, marine ecosystem, sedimentation, tidal inundation

Procedia PDF Downloads 152
11200 Inducing Flow Experience in Mobile Learning: An Experiment Using a Spanish Learning Mobile Application

Authors: S. Jonsson, D. Millard, C. Bokhove

Abstract:

Smartphones are ubiquitous and frequently used as learning tools, which makes the design of educational apps an important area of research. A key issue is designing apps to encourage engagement while maintaining a focus on the educational aspects of the app. Flow experience is a promising method for addressing this issue, which refers to a mental state of cognitive absorption and positive emotion. Flow experience has been shown to be associated with positive emotion and increased learning performance. Studies have shown that immediate feedback is an antecedent to Flow. This experiment investigates the effect of immediate feedback on Flow experience. An app teaching Spanish phrases was developed, and 30 participants completed both a 10min session with immediate feedback and a 10min session with delayed feedback. The app contained a task where the user assembles Spanish phrases by pressing bricks with Spanish words. Immediate feedback was implemented by incorrect bricks recoiling, while correct brick moved to form part of the finished phrase. In the delayed feedback condition, the user did not know if the bricks they pressed were correct until the phrase was complete. The level of Flow experienced by the participants was measured after each session using the Flow Short Scale. The results showed that higher levels of Flow were experienced in the immediate feedback session. It was also found that 14 of the participants indicated that the demands of the task were ‘just right’ in the immediate feedback session, while only one did in the delayed feedback session. These results have implications for how to design educational technology and opens up questions for how Flow experience can be used to increase performance and engagement.

Keywords: feedback timing, flow experience, L2 language learning, mobile learning

Procedia PDF Downloads 133
11199 Road Accidents Bigdata Mining and Visualization Using Support Vector Machines

Authors: Usha Lokala, Srinivas Nowduri, Prabhakar K. Sharma

Abstract:

Useful information has been extracted from the road accident data in United Kingdom (UK), using data analytics method, for avoiding possible accidents in rural and urban areas. This analysis make use of several methodologies such as data integration, support vector machines (SVM), correlation machines and multinomial goodness. The entire datasets have been imported from the traffic department of UK with due permission. The information extracted from these huge datasets forms a basis for several predictions, which in turn avoid unnecessary memory lapses. Since data is expected to grow continuously over a period of time, this work primarily proposes a new framework model which can be trained and adapt itself to new data and make accurate predictions. This work also throws some light on use of SVM’s methodology for text classifiers from the obtained traffic data. Finally, it emphasizes the uniqueness and adaptability of SVMs methodology appropriate for this kind of research work.

Keywords: support vector mechanism (SVM), machine learning (ML), support vector machines (SVM), department of transportation (DFT)

Procedia PDF Downloads 274
11198 Early Talent Identification and Its Impact on Children’s Growth and Development: An Examination of “The Social Learning Theory, by Albert Bandura"

Authors: Michael Subbey, Kwame Takyi Danquah

Abstract:

Finding a child's exceptional skills and abilities at a young age and nurturing them is a challenging process. The Social Learning Theory (SLT) of Albert Bandura is used to analyze the effects of early talent identification on children's growth and development. The study examines both the advantages and disadvantages of early talent identification and stresses the significance of a moral strategy that puts the welfare of the child first. The paper emphasizes the value of a balanced approach to early talent identification that takes into account individual differences, cultural considerations, and the child's social environment.

Keywords: early talent development, social learning theory, child development, child welfare

Procedia PDF Downloads 108
11197 Using Mathematical Models to Predict the Academic Performance of Students from Initial Courses in Engineering School

Authors: Martín Pratto Burgos

Abstract:

The Engineering School of the University of the Republic in Uruguay offers an Introductory Mathematical Course from the second semester of 2019. This course has been designed to assist students in preparing themselves for math courses that are essential for Engineering Degrees, namely Math1, Math2, and Math3 in this research. The research proposes to build a model that can accurately predict the student's activity and academic progress based on their performance in the three essential Mathematical courses. Additionally, there is a need for a model that can forecast the incidence of the Introductory Mathematical Course in the three essential courses approval during the first academic year. The techniques used are Principal Component Analysis and predictive modelling using the Generalised Linear Model. The dataset includes information from 5135 engineering students and 12 different characteristics based on activity and course performance. Two models are created for a type of data that follows a binomial distribution using the R programming language. Model 1 is based on a variable's p-value being less than 0.05, and Model 2 uses the stepAIC function to remove variables and get the lowest AIC score. After using Principal Component Analysis, the main components represented in the y-axis are the approval of the Introductory Mathematical Course, and the x-axis is the approval of Math1 and Math2 courses as well as student activity three years after taking the Introductory Mathematical Course. Model 2, which considered student’s activity, performed the best with an AUC of 0.81 and an accuracy of 84%. According to Model 2, the student's engagement in school activities will continue for three years after the approval of the Introductory Mathematical Course. This is because they have successfully completed the Math1 and Math2 courses. Passing the Math3 course does not have any effect on the student’s activity. Concerning academic progress, the best fit is Model 1. It has an AUC of 0.56 and an accuracy rate of 91%. The model says that if the student passes the three first-year courses, they will progress according to the timeline set by the curriculum. Both models show that the Introductory Mathematical Course does not directly affect the student’s activity and academic progress. The best model to explain the impact of the Introductory Mathematical Course on the three first-year courses was Model 1. It has an AUC of 0.76 and 98% accuracy. The model shows that if students pass the Introductory Mathematical Course, it will help them to pass Math1 and Math2 courses without affecting their performance on the Math3 course. Matching the three predictive models, if students pass Math1 and Math2 courses, they will stay active for three years after taking the Introductory Mathematical Course, and also, they will continue following the recommended engineering curriculum. Additionally, the Introductory Mathematical Course helps students to pass Math1 and Math2 when they start Engineering School. Models obtained in the research don't consider the time students took to pass the three Math courses, but they can successfully assess courses in the university curriculum.

Keywords: machine-learning, engineering, university, education, computational models

Procedia PDF Downloads 94
11196 The Relationships between Autonomy-Based Insula Activity and Learning: A Functional Magnetic Resonance Imaging Study

Authors: Woogul Lee, Johnmarshall Reeve

Abstract:

Learners’ perceived autonomy predicts learners’ interest, engagement, and learning. To understand these processes, we conducted an fMRI experiment. In this experiment, participants saw the national flag and were asked to rate how much they freely wanted to learn about that particular national flag. The participants then learned the characteristics of the national flag. Results showed that (1) the degree of participants’ perceived autonomy was positively correlated with the degree of insula activity, (2) participants’ early-trial insula activity predicted corresponding late-trial dorsolateral prefrontal cortex activity, and (3) the degree of dorsolateral prefrontal cortex activity was positively correlated with the degree of participants’ learning about the characteristics of the national flag. Results suggest that learners’ perceived autonomy predicts learning through the mediation of insula activity associated with intrinsic satisfaction and 'pure self' processes.

Keywords: insular cortex, autonomy, self-determination, dorsolateral prefrontal cortex

Procedia PDF Downloads 204
11195 Teacher-Child Interactions within Learning Contexts in Prekindergarten

Authors: Angélique Laurent, Marie-Josée Letarte, Jean-Pascal Lemelin, Marie-France Morin

Abstract:

This study aims at exploring teacher-child interactions within learning contexts in public prekindergartens of the province of Québec (Canada). It is based on previous research showing that teacher-child interactions in preschools have direct and determining effects on the quality of early childhood education and could directly or indirectly influence child development. However, throughout a typical preschool day, children experience different learning contexts to promote their learning opportunities. Depending on these specific contexts, teacher-child interactions could vary, for example, between free play and shared book reading. Indeed, some studies have found that teacher-directed or child-directed contexts might lead to significant variations in teacher-child interactions. This study drew upon both the bioecological and the Teaching Through Interactions frameworks. It was conducted through a descriptive and correlational design. Fifteen teachers were recruited to participate in the study. At Time 1 in October, they completed a diary to report the learning contexts they proposed in their classroom during a typical week. At Time 2, seven months later (May), they were videotaped three times in the morning (two weeks’ time between each recording) during a typical morning class. The quality of teacher-child interactions was then coded with the Classroom Assessment Scoring System (CLASS) through the contexts identified. This tool measures three main domains of interactions: emotional support, classroom organization, and instruction support, and10 dimensions scored on a scale from 1 (low quality) to 7 (high quality). Based on the teachers’ reports, five learning contexts were identified: 1) shared book reading, 2) free play, 3) morning meeting, 4) teacher-directed activity (such as craft), and 5) snack. Based on preliminary statistical analyses, little variation was observed within the learning contexts for each domain of the CLASS. However, the instructional support domain showed lower scores during specific learning contexts, specifically free play and teacher-directed activity. Practical implications for how preschool teachers could foster specific domains of interactions depending on learning contexts to enhance children’s social and academic development will be discussed.

Keywords: teacher practices, teacher-child interactions, preschool education, learning contexts, child development

Procedia PDF Downloads 108
11194 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems

Authors: Belkacem Laimouche

Abstract:

With the field of artificial intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.

Keywords: artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, interlaboratory comparison, data analysis, data reliability, measurement of bias impact on predictions, improvement of model accuracy and reliability

Procedia PDF Downloads 105
11193 Experimental Investigation on Flexural Properties of Bamboo Fibres Polypropylene Composites

Authors: Tigist Girma Kidane, Yalew Dessalegn Asfaw

Abstract:

Abstract: The current investigation aims to measure the longitudinal and transversal three-point bending tests of bamboo fibres polypropylene composites (BFPPCs) for the application of the automobile industry. Research has not been done on the properties of Ethiopian bamboo fibres for the utilization of composite development. The samples of bamboo plants have been harvested in 3–groups of age, 2–harvesting seasons, and 3–regions of bamboo species. Roll milling machine used for the extraction of bamboo fibres which has been developed by the authors. Chemical constituents measured using gravimetric methods. Unidirectional bamboo fibres prepreg has been produced using PP and hot press machine, then BFPPCs were produced using 6 layers of prepregs at automatic hot press machine. Age, harvesting month, and bamboo species have a statistically significant effect on the longitudinal and transverse flexural strength (FS), modulus of elasticity (MOE), and failure strain at α = 0.05 as evaluated by one-way ANOVA. 2–yrs old of BFPPCs have the highest FS and MOE, whereas November has the highest value of flexural properties. The highest to the lowest FS and MOE of BFPPCs has measured in Injibara, Mekaneselam, and Kombolcha, respectively. The transverse 3-point bending test has a lower FS and MOE compared to the longitudinal direction. The chemical constituents of Injibara, Mekaneselam, and Kombolcha have the highest to the lowest, respectively. 2-years old of bamboo fibres has the highest chemical constituent. The chemical constituents improved the flexural properties. Bamboo fibres in Ethiopia can be relevant for composite development, which has been applied in the area of requiring higher flexural properties.

Keywords: age, bamboo species, flexural properties, harvesting season, polypropylene

Procedia PDF Downloads 52
11192 Reaching Students Who “Don’t Like Writing” through Scenario Based Learning

Authors: Shahira Mahmoud Yacout

Abstract:

Writing is an essential skill in many vocational, academic environments, and notably workplaces, yet many students perceive writing as being something tiring and boring or maybe a “waste of time”. Studies in the field of foreign languages related this fact might be due to the lack of connection between what is learned in the university and what students come to encounter in real life situations”. Arabic learners felt they needed more language exposure to the context of their future professions. With this idea in mind, Scenario based learning (SBL) is reported to be an educational approach to motivate, engage and stimulate students’ interest and to achieve the desired writing learning outcomes. In addition, researchers suggested Scenario based learning (SBL)as an instructional approach that develops and enhances students skills through developing higher order thinking skills and active learning. It is a subset of problem-based learning and case-based learning. The approach focuses on authentic rhetorical framing reflecting writing tasks in real life situations. It works successfully when used to simulate real-world practices, providing context that reflects the types of situations professionals respond to in writing. It was claimed that using realistic scenarios customized to the course’s learning objectives as it bridged the gap for students between theory and application. Within this context, it is thought that scenario-based learning is an important approach to enhance the learners’ writing skills and to reflect meaningful learning within authentic contexts. As an Arabicforeign language instructor, it was noticed that students find difficulties in adapting writing styles to authentic writing contexts and addressing different audiences and purposes. This idea is supported by studieswho claimed that AFL students faced difficulties with transferring writing skills to situations outside of the classroom context. In addition, it was observed that some of the Arabic textbooks for teaching Arabic as a foreign language lacked topics that initiated higher order thinking skills and stimulated the learners to understand the setting, and created messages appropriate to different audiences, context, and purposes. The goals of this study are to 1)provide a rational for using scenario-based learning approach to improveAFL learners in writing skills, 2) demonstrate how to design/ implement a scenario-based learning technique aligned with the writing course objectives,3) demonstrate samples of scenario-based approach implemented in AFL writing class, and 4)emphasis the role of peer-review along with the instructor’s feedback, in the process of developing the writing skill. Finally, this presentation highlighted and emphasized the importance of using the scenario-based learning approach in writing as a means to mirror students’ real-life situations and engage them in planning, monitoring, and problem solving. This approach helped in making writing an enjoyable experience and clearly useful to students’ future professional careers.

Keywords: meaningful learning, real life contexts, scenario based learning, writing skill

Procedia PDF Downloads 98
11191 Advanced Technologies and Algorithms for Efficient Portfolio Selection

Authors: Konstantinos Liagkouras, Konstantinos Metaxiotis

Abstract:

In this paper we present a classification of the various technologies applied for the solution of the portfolio selection problem according to the discipline and the methodological framework followed. We provide a concise presentation of the emerged categories and we are trying to identify which methods considered obsolete and which lie at the heart of the debate. On top of that, we provide a comparative study of the different technologies applied for efficient portfolio construction and we suggest potential paths for future work that lie at the intersection of the presented techniques.

Keywords: portfolio selection, optimization techniques, financial models, stochastic, heuristics

Procedia PDF Downloads 432
11190 The Impact of the Virtual Learning Environment on Teacher's Pedagogy and Student's Learning in Primary School Setting

Authors: Noor Ashikin Omar

Abstract:

The rapid growth and advancement in information and communication technology (ICT) at a global scene has greatly influenced and revolutionised interaction amongst society. The use of ICT has become second nature in managing everyday lives, particularly in the education environment. Traditional learning methods of using blackboards and chalks have been largely improved by the use of ICT devices such as interactive whiteboards and computers in school. This paper aims to explore the impacts of virtual learning environments (VLE) on teacher’s pedagogy and student’s learning in primary school settings. The research was conducted in two phases. Phase one of this study comprised a short interview with the school’s senior assistants to examine issues and challenges faced during planning and implementation of FrogVLE in their respective schools. Phase two involved a survey of a number of questionnaires directed to three major stakeholders; the teachers, students and parents. The survey intended to explore teacher’s and student’s perspective and attitude towards the use of VLE as a teaching and learning medium and as a learning experience as a whole. In addition, the survey from parents provided insights on how they feel towards the use of VLE for their child’s learning. Collectively, the two phases enable improved understanding and provided observations on factors that had affected the implementation of the VLE into primary schools. This study offers the voices of the students which were frequently omitted when addressing innovations as well as teachers who may not always be heard. It is also significant in addressing the importance of teacher’s pedagogy on students’ learning and its effects to enable more effective ICT integration with a student-centred approach. Finally, parental perceptions in the implementation of VLE in supporting their children’s learning have been implicated as having a bearing on educational achievement. The results indicate that the all three stakeholders were positive and highly supportive towards the use of VLE in schools. They were able to understand the benefits of moving towards the modern method of teaching using ICT and accept the change in the education system. However, factors such as condition of ICT facilities at schools and homes as well as inadequate professional development for the teachers in both ICT skills and management skills hindered exploitation of the VLE system in order to fully utilise its benefits. Social influences within different communities and cultures and costs of using the technology also has a significant impact. The findings of this study are important to the Malaysian Ministry of Education because it informs policy makers on the impact of the Virtual Learning Environment (VLE) on teacher’s pedagogy and learning of Malaysian primary school children. The information provided to policy makers allows them to make a sound judgement and enables an informed decision making.

Keywords: attitudes towards virtual learning environment (VLE), parental perception, student's learning, teacher's pedagogy

Procedia PDF Downloads 206
11189 Exponential Value and Learning Effects in VR-Cutting-Vegetable Training

Authors: Jon-Chao Hong, Tsai-Ru Fan, Shih-Min Hsu

Abstract:

Virtual reality (VR) can generate mirror neurons that facilitate learners to transfer virtual skills to a real environment in skill training, and most studies approved the positive effect of applying in many domains. However, rare studies have focused on the experiential values of participants from a gender perspective. To address this issue, the present study used a VR program named kitchen assistant training, focusing on cutting vegetables and invited 400 students to practice for 20 minutes. Useful data from 367 were subjected to statistical analysis. The results indicated that male participants. From the comparison of average, it seems that females perceived higher than males in learning effectiveness. Expectedly, the VR-Cutting vegetables can be used for pre-training of real vegetable cutting.

Keywords: exponential value, facilitate learning, gender difference, virtual reality

Procedia PDF Downloads 94
11188 Enabling Quantitative Urban Sustainability Assessment with Big Data

Authors: Changfeng Fu

Abstract:

Sustainable urban development has been widely accepted a common sense in the modern urban planning and design. However, the measurement and assessment of urban sustainability, especially the quantitative assessment have been always an issue obsessing planning and design professionals. This paper will present an on-going research on the principles and technologies to develop a quantitative urban sustainability assessment principles and techniques which aim to integrate indicators, geospatial and geo-reference data, and assessment techniques together into a mechanism. It is based on the principles and techniques of geospatial analysis with GIS and statistical analysis methods. The decision-making technologies and methods such as AHP and SMART are also adopted to address overall assessment conclusions. The possible interfaces and presentation of data and quantitative assessment results are also described. This research is based on the knowledge, situations and data sources of UK, but it is potentially adaptable to other countries or regions. The implementation potentials of the mechanism are also discussed.

Keywords: urban sustainability assessment, quantitative analysis, sustainability indicator, geospatial data, big data

Procedia PDF Downloads 359
11187 Tardiness and Self-Regulation: Degree and Reason for Tardiness in Undergraduate Students in Japan

Authors: Keiko Sakai

Abstract:

In Japan, all stages of public education aim to foster a zest for life. ‘Zest’ implies solving problems by oneself, using acquired knowledge and skills. It is related to the self-regulation of metacognition. To enhance this, establishing good learning habits is important. Tardiness in undergraduate students should be examined based on self-regulation. Accordingly, we focussed on self-monitoring and self-planning strategies among self-regulated learning factors to examine the causes of tardiness. This study examines the impact of self-monitoring and self-planning learning skills on the degree and reason for tardiness in undergraduate students. A questionnaire survey was conducted, targeted to undergraduate students in University X in the autumn semester of 2018. Participants were 247 (average age 19.7, SD 1.9; 144 males, 101 females, 2 no answers). The survey contained the following items and measures: school year, the number of classes in the semester, degree of tardiness in the semester (subjective degree and objective times), active participation in and action toward schoolwork, self-planning and self-monitoring learning skills, and reason for tardiness (open-ended question). First, the relation between strategies and tardiness was examined by multiple regressions. A statistically significant relationship between a self-monitoring learning strategy and the degree of subjective and objective tardiness was revealed, after statistically controlling the school year and the number of classes. There was no significant relationship between a self-planning learning strategy and the degree of tardiness. These results suggest that self-monitoring skills reduce tardiness. Secondly, the relation between a self-monitoring learning strategy and the reason of tardiness was analysed, after classifying the reason for tardiness into one of seven categories: ‘overslept’, ‘illness’, ‘poor time management’, ‘traffic delays’, ‘carelessness’, ‘low motivation’, and ‘stuff to do’. Chi-square tests and Fisher’s exact tests showed a statistically significant relationship between a self-monitoring learning strategy and the frequency of ‘traffic delays’. This result implies that self-monitoring skills prevent tardiness because of traffic delays. Furthermore, there was a weak relationship between a self-monitoring learning strategy score and the reason-for-tardiness categories. When self-monitoring skill is higher, a decrease in ‘overslept’ and ‘illness’, and an increase in ‘poor time management’, ‘carelessness’, and ‘low motivation’ are indicated. It is suggested that a self-monitoring learning strategy is related to an internal causal attribution of failure and self-management for how to prevent tardiness. From these findings, the effectiveness of a self-monitoring learning skill strategy for reducing tardiness in undergraduate students is indicated.

Keywords: higher-education, self-monitoring, self-regulation, tardiness

Procedia PDF Downloads 135
11186 Experiential Language Learning as a Tool for Effective Global Leadership

Authors: Christiane Dumont

Abstract:

This paper proposes to revisit foreign-language learning as a tool to increase motivation through advocacy and develop effective natural communication skills, which are critical leadership qualities. To this end, collaborative initiatives undertaken by advanced university students of French with local and international community partners will be reviewed. Close attention will be paid to the acquisition of intercultural skills, the reflective process, as well as the challenges and outcomes. Two international development projects conducted in Haiti will be highlighted, i.e., collaboration with a network of providers in the Haitian cultural heritage preservation and tourism sector (2014-15) and development of investigation and teacher training tools for a primary/secondary school in the Port-au-Prince area (current). The choice of community-service learning as a framework to teach French-as-a-second-language stemmed from the need to raise awareness against stereotypes and prejudice, which hinder the development of effective intercultural skills. This type of experiential education also proved very effective in identifying and preventing miscommunication caused by the lack of face-to-face interaction in our increasingly technology-mediated world. Learners experienced first-hand, the challenges and advantages of face-to-face communication, which, in turn, enhanced their motivation for developing effective intercultural skills. Vygotsky's and Kolb's theories, current research on service learning (Dwight, Eyler), action/project-based pedagogy (Beckett), and reflective learning (TSC Farrell), will provide useful background to analyze the benefits and challenges of community-service learning. The ultimate goal of this paper is to find out what makes experiential learning truly unique and transformative for both the learners and the community they wish to serve. It will demonstrate how enhanced motivation, community engagement, and clear, concise, and respectful communication impact and empower learners. The underlying hope is to help students in high-profile, and leading-edge industries become effective global leaders.

Keywords: experiential learning, intercultural communication, reflective learning, effective leadership, learner motivation

Procedia PDF Downloads 105
11185 An Amphibious House for Flood Prone Areas in Godavari River Basin

Authors: Gangadhara Rao K.

Abstract:

In Andhra Pradesh traditionally, the flood problem had been confined to the flooding of smaller rivers. But the drainage problem in the coastal delta zones has worsened, multiplying the destructive potential of cyclones and increasing flood hazards. As a result of floods, the people living around these areas are forced to move out of their traditions in search of higher altitude places. This paper will be discussing about suitability of techniques used in Bangladesh in context of Godavari river basin in Andhra Pradesh. The study considers social, physical and environmental conditions of the region. The methods for achieving this objective includes the study of both cases from Bangladesh and Andhra Pradesh. Comparison with the existing techniques and suit to our requirements and context. If successful, we can adopt those techniques and this might help the people living in riverfront areas to stay safe during the floods without losing their traditional lands.

Keywords: amphibious, bouyancy, floating, architecture, flood resistent

Procedia PDF Downloads 172
11184 Fine Grained Action Recognition of Skateboarding Tricks

Authors: Frederik Calsius, Mirela Popa, Alexia Briassouli

Abstract:

In the field of machine learning, it is common practice to use benchmark datasets to prove the working of a method. The domain of action recognition in videos often uses datasets like Kinet-ics, Something-Something, UCF-101 and HMDB-51 to report results. Considering the properties of the datasets, there are no datasets that focus solely on very short clips (2 to 3 seconds), and on highly-similar fine-grained actions within one specific domain. This paper researches how current state-of-the-art action recognition methods perform on a dataset that consists of highly similar, fine-grained actions. To do so, a dataset of skateboarding tricks was created. The performed analysis highlights both benefits and limitations of state-of-the-art methods, while proposing future research directions in the activity recognition domain. The conducted research shows that the best results are obtained by fusing RGB data with OpenPose data for the Temporal Shift Module.

Keywords: activity recognition, fused deep representations, fine-grained dataset, temporal modeling

Procedia PDF Downloads 231
11183 Teacher Training Course: Conflict Resolution through Mediation

Authors: Csilla Marianna Szabó

Abstract:

In Hungary, the society has changes a lot for the past 25 years, and these changes could be detected in educational situations as well. The number and the intensity of conflicts have been increased in most fields of life, as well as at schools. Teachers have difficulties to be able to handle school conflicts. What is more, the new net generation, generation Z has values and behavioural patterns different from those of the previous one, which might generate more serious conflicts at school, especially with teachers who were mainly socialising in a traditional teacher – student relationships. In Hungary, the bill CCIV, 2011 declared the foundation of Institutes of Teacher Training in higher education institutes. One of the tasks of the Institutes is to survey the competences and needs of teachers working in public education and to provide further trainings and services for them according to their needs and requirements. This job is supported by the Social Renewal Operative Programs 4.1.2.B. The Institute of Teacher Training at the College of Dunaújváros, Hungary carried out a questionnaire and surveyed the needs and the requirements of teachers working in the Central Transdanubian region. Based on the results, the professors of the Institute of Teacher Training decided to meet the requirements of teachers and launch short courses in spring 2015. One of the courses is going to focus on school conflict management through mediation. The aim of the pilot course is to provide conflict management techniques for teachers presenting different mediation techniques to them. The theoretical part of the course (5 hours) will enable participants to understand the main points and the advantages of mediation, while the practical part (10 hours) will involve teachers in role plays to learn how to cope with conflict situations applying mediation. We hope if conflicts could be reduced, it would influence school atmosphere in a positive way and the teaching – learning process could be more successful and effective.

Keywords: conflict resolution, generation Z, mediation, teacher training

Procedia PDF Downloads 410
11182 Application of Deep Learning and Ensemble Methods for Biomarker Discovery in Diabetic Nephropathy through Fibrosis and Propionate Metabolism Pathways

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Diabetic nephropathy (DN) is a major complication of diabetes, with fibrosis and propionate metabolism playing critical roles in its progression. Identifying biomarkers linked to these pathways may provide novel insights into DN diagnosis and treatment. This study aims to identify biomarkers associated with fibrosis and propionate metabolism in DN. Analyze the biological pathways and regulatory mechanisms of these biomarkers. Develop a machine learning model to predict DN-related biomarkers and validate their functional roles. Publicly available transcriptome datasets related to DN (GSE96804 and GSE104948) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds), and 924 propionate metabolism-related genes (PMRGs) and 656 fibrosis-related genes (FRGs) were identified. The analysis began with the extraction of DN-differentially expressed genes (DN-DEGs) and propionate metabolism-related DEGs (PM-DEGs), followed by the intersection of these with fibrosis-related genes to identify key intersected genes. Instead of relying on traditional models, we employed a combination of deep neural networks (DNNs) and ensemble methods such as Gradient Boosting Machines (GBM) and XGBoost to enhance feature selection and biomarker discovery. Recursive feature elimination (RFE) was coupled with these advanced algorithms to refine the selection of the most critical biomarkers. Functional validation was conducted using convolutional neural networks (CNN) for gene set enrichment and immunoinfiltration analysis, revealing seven significant biomarkers—SLC37A4, ACOX2, GPD1, ACE2, SLC9A3, AGT, and PLG. These biomarkers are involved in critical biological processes such as fatty acid metabolism and glomerular development, providing a mechanistic link to DN progression. Furthermore, a TF–miRNA–mRNA regulatory network was constructed using natural language processing models to identify 8 transcription factors and 60 miRNAs that regulate these biomarkers, while a drug–gene interaction network revealed potential therapeutic targets such as UROKINASE–PLG and ATENOLOL–AGT. This integrative approach, leveraging deep learning and ensemble models, not only enhances the accuracy of biomarker discovery but also offers new perspectives on DN diagnosis and treatment, specifically targeting fibrosis and propionate metabolism pathways.

Keywords: diabetic nephropathy, deep neural networks, gradient boosting machines (GBM), XGBoost

Procedia PDF Downloads 9
11181 Design and Simulation of a Double-Stator Linear Induction Machine with Short Squirrel-Cage Mover

Authors: David Rafetseder, Walter Bauer, Florian Poltschak, Wolfgang Amrhein

Abstract:

A flat double-stator linear induction machine (DSLIM) with a short squirrel-cage mover is designed for high thrust force at moderate speed < 5m/s. The performance and motor parameters are determined on the basis of a 2D time-transient simulation with the finite element (FE) software Maxwell 2015. Design guidelines and transformation rules for space vector theory of the LIM are presented. Resulting thrust calculated by flux and current vectors is compared with the FE results showing good coherence and reduced noise. The parameters of the equivalent circuit model are obtained.

Keywords: equivalent circuit model, finite element model, linear induction motor, space vector theory

Procedia PDF Downloads 566
11180 Outcome-Based Education as Mediator of the Effect of Blended Learning on the Student Performance in Statistics

Authors: Restituto I. Rodelas

Abstract:

The higher education has adopted the outcomes-based education from K-12. In this approach, the teacher uses any teaching and learning strategies that enable the students to achieve the learning outcomes. The students may be required to exert more effort and figure things out on their own. Hence, outcomes-based students are assumed to be more responsible and more capable of applying the knowledge learned. Another approach that the higher education in the Philippines is starting to adopt from other countries is blended learning. This combination of classroom and fully online instruction and learning is expected to be more effective. Participating in the online sessions, however, is entirely up to the students. Thus, the effect of blended learning on the performance of students in Statistics may be mediated by outcomes-based education. If there is a significant positive mediating effect, then blended learning can be optimized by integrating outcomes-based education. In this study, the sample will consist of four blended learning Statistics classes at Jose Rizal University in the second semester of AY 2015–2016. Two of these classes will be assigned randomly to the experimental group that will be handled using outcomes-based education. The two classes in the control group will be handled using the traditional lecture approach. Prior to the discussion of the first topic, a pre-test will be administered. The same test will be given as posttest after the last topic is covered. In order to establish equality of the groups’ initial knowledge, single factor ANOVA of the pretest scores will be performed. Single factor ANOVA of the posttest-pretest score differences will also be conducted to compare the performance of the experimental and control groups. When a significant difference is obtained in any of these ANOVAs, post hoc analysis will be done using Tukey's honestly significant difference test (HSD). Mediating effect will be evaluated using correlation and regression analyses. The groups’ initial knowledge are equal when the result of pretest scores ANOVA is not significant. If the result of score differences ANOVA is significant and the post hoc test indicates that the classes in the experimental group have significantly different scores from those in the control group, then outcomes-based education has a positive effect. Let blended learning be the independent variable (IV), outcomes-based education be the mediating variable (MV), and score difference be the dependent variable (DV). There is mediating effect when the following requirements are satisfied: significant correlation of IV to DV, significant correlation of IV to MV, significant relationship of MV to DV when both IV and MV are predictors in a regression model, and the absolute value of the coefficient of IV as sole predictor is larger than that when both IV and MV are predictors. With a positive mediating effect of outcomes-base education on the effect of blended learning on student performance, it will be recommended to integrate outcomes-based education into blended learning. This will yield the best learning results.

Keywords: outcome-based teaching, blended learning, face-to-face, student-centered

Procedia PDF Downloads 291
11179 Learning Management System Technologies for Teaching Computer Science at a Distance Education Institution

Authors: Leila Goosen, Dalize van Heerden

Abstract:

The performance outcomes of first year Computer Science and Information Technology students across the world are of great concern, whether they are being taught in a face-to-face environment or via distance education. In the face-to-face environment, it is, however, somewhat easier to teach and support students than it is in a distance education environment. The face-to-face academic can more easily gauge the level of understanding and participation of students and implement interventions to address issues, which may arise. With the inroads that Web 2.0 and Web 3.0 technologies are making, the world of online teaching and learning are rapidly expanding, bringing about technologies, which allows for similar interactions between online academics and their students as available to their face-to-face counter parts. At the University of South Africa (UNISA), the Learning Management System (LMS) is called myUNISA and it is deployed on a SAKAI platform. In this paper, we will take a look at some of the myUNISA technologies implemented in the teaching of a first year programming course, how they are implemented and, in some cases, we will indicate how this affects the performance outcomes of students.

Keywords: computer science, Distance Education Technologies, Learning Management System, face-to-face environment

Procedia PDF Downloads 495
11178 Analytical Derivative: Importance on Environment and Water Analysis/Cycle

Authors: Adesoji Sodeinde

Abstract:

Analytical derivatives has recently undergone an explosive growth in areas of separation techniques, likewise in detectability of certain compound/concentrated ions. The gloomy and depressing scenario which charaterized the application of analytical derivatives in areas of water analysis, water cycle and the environment should not be allowed to continue unabated. Due to technological advancement in various chemical/biochemical analysis separation techniques is widely used in areas of medical, forensic and to measure and assesses environment and social-economic impact of alternative control strategies. This technological improvement was dully established in the area of comparison between certain separation/detection techniques to bring about vital result in forensic[as Gas liquid chromatography reveals the evidence given in court of law during prosecution of drunk drivers]. The water quality analysis,pH and water temperature analysis can be performed in the field, the concentration of dissolved free amino-acid [DFAA] can also be detected through separation techniques. Some important derivatives/ions used in separation technique. Water analysis : Total water hardness [EDTA to determine ca and mg ions]. Gas liquid chromatography : innovative gas such as helium [He] or nitrogen [N] Water cycle : Animal bone charcoal,activated carbon and ultraviolet light [U.V light].

Keywords: analytical derivative, environment, water analysis, chemical/biochemical analysis

Procedia PDF Downloads 338
11177 On an Approach for Rule Generation in Association Rule Mining

Authors: B. Chandra

Abstract:

In Association Rule Mining, much attention has been paid for developing algorithms for large (frequent/closed/maximal) itemsets but very little attention has been paid to improve the performance of rule generation algorithms. Rule generation is an important part of Association Rule Mining. In this paper, a novel approach named NARG (Association Rule using Antecedent Support) has been proposed for rule generation that uses memory resident data structure named FCET (Frequent Closed Enumeration Tree) to find frequent/closed itemsets. In addition, the computational speed of NARG is enhanced by giving importance to the rules that have lower antecedent support. Comparative performance evaluation of NARG with fast association rule mining algorithm for rule generation has been done on synthetic datasets and real life datasets (taken from UCI Machine Learning Repository). Performance analysis shows that NARG is computationally faster in comparison to the existing algorithms for rule generation.

Keywords: knowledge discovery, association rule mining, antecedent support, rule generation

Procedia PDF Downloads 324
11176 Comparison of Two Home Sleep Monitors Designed for Self-Use

Authors: Emily Wood, James K. Westphal, Itamar Lerner

Abstract:

Background: Polysomnography (PSG) recordings are regularly used in research and clinical settings to study sleep and sleep-related disorders. Typical PSG studies are conducted in professional laboratories and performed by qualified researchers. However, the number of sleep labs worldwide is disproportionate to the increasing number of individuals with sleep disorders like sleep apnea and insomnia. Consequently, there is a growing need to supply cheaper yet reliable means to measure sleep, preferably autonomously by subjects in their own home. Over the last decade, a variety of devices for self-monitoring of sleep became available in the market; however, very few have been directly validated against PSG to demonstrate their ability to perform reliable automatic sleep scoring. Two popular mobile EEG-based systems that have published validation results, the DREEM 3 headband and the Z-Machine, have never been directly compared one to the other by independent researchers. The current study aimed to compare the performance of DREEM 3 and the Z-Machine to help investigators and clinicians decide which of these devices may be more suitable for their studies. Methods: 26 participants have completed the study for credit or monetary compensation. Exclusion criteria included any history of sleep, neurological or psychiatric disorders. Eligible participants arrived at the lab in the afternoon and received the two devices. They then spent two consecutive nights monitoring their sleep at home. Participants were also asked to keep a sleep log, indicating the time they fell asleep, woke up, and the number of awakenings occurring during the night. Data from both devices, including detailed sleep hypnograms in 30-second epochs (differentiating Wake, combined N1/N2, N3; and Rapid Eye Movement sleep), were extracted and aligned upon retrieval. For analysis, the number of awakenings each night was defined as four or more consecutive wake epochs between sleep onset and termination. Total sleep time (TST) and the number of awakenings were compared to subjects’ sleep logs to measure consistency with the subjective reports. In addition, the sleep scores from each device were compared epoch-by-epoch to calculate the agreement between the two devices using Cohen’s Kappa. All analysis was performed using Matlab 2021b and SPSS 27. Results/Conclusion: Subjects consistently reported longer times spent asleep than the time reported by each device (M= 448 minutes for sleep logs compared to M= 406 and M= 345 minutes for the DREEM and Z-Machine, respectively; both ps<0.05). Linear correlations between the sleep log and each device were higher for the DREEM than the Z-Machine for both TST and the number of awakenings, and, likewise, the mean absolute bias between the sleep logs and each device was higher for the Z-Machine for both TST (p<0.001) and awakenings (p<0.04). There was some indication that these effects were stronger for the second night compared to the first night. Epoch-by-epoch comparisons showed that the main discrepancies between the devices were for detecting N2 and REM sleep, while N3 had a high agreement. Overall, the DREEM headband seems superior for reliably scoring sleep at home.

Keywords: DREEM, EEG, seep monitoring, Z-machine

Procedia PDF Downloads 107
11175 The Influence of Leadership Styles on Organizational Performance and Innovation: Empirical Study in Information Technology Sector in Spain

Authors: Richard Mababu Mukiur

Abstract:

Leadership is an important drive that plays a key role in the success and development of organizations, particularly in the current context of digital transformation, highly competitivity and globalization. Leaders are persons that hold a dominant and privileged position within an organization, field, or sector of activities and are able to manage, motivate and exercise a high degree of influence over other in order to achieve the institutional goals. They achieve commitment and engagement of others to embrace change, and to make good decisions. Leadership studies in higher education institutions have examined how effective leaders hold their organizations, and also to find approaches which fit best in the organizations context for its better management, transformation and improvement. Moreover, recent studies have highlighted the impact of leadership styles on organizational performance and innovation capacities, since some styles give better results than others. Effective leadership is part of learning process that take place through day-to-day tasks, responsibilities, and experiences that influence the organizational performance, innovation and engagement of employees. The adoption of appropriate leadership styles can improve organization results and encourage learning process, team skills and performance, and employees' motivation and engagement. In the case of case of Information Technology sector, leadership styles are particularly crucial since this sector is leading relevant changes and transformations in the knowledge society. In this context, the main objective of this study is to analyze managers leadership styles with their relation to organizational performance and innovation that may be mediated by learning organization process and demographic variables. Therefore, it was hypothesized that the transformational and transactional leadership will be the main style adopted in Information Technology sector and will influence organizational performance and innovation capacity. A sample of 540 participants from Information technology sector has been determined in order to achieve the objective of this study. The Multifactor Leadership Questionnaire was administered as the principal instrument, Scale of innovation and Learning Organization Questionnaire. Correlations and multiple regression analysis have been used as the main techniques of data analysis. The findings indicate that leadership styles have a relevant impact on organizational performance and innovation capacity. The transformational and transactional leadership are predominant styles in Information technology sector. The effective leadership style tend to be characterized by the capacity of generating and sharing knowledge that improve organization performance and innovation capacity. Managers are adopting and adapting their leadership styles that respond to the new organizational, social and cultural challenges and realities of contemporary society. Managers who encourage innovation, foster learning process, share experience are useful to the organization since they contribute to its development and transformation. Learning process capacity and demographic variables (age, gender, and job tenure) mediate the relationship between leadership styles, innovation capacity and organizational performance. The transformational and transactional leadership tend to enhance the organizational performance due to their significant impact on team-building, employees' engagement and satisfaction. Some practical implications and future lines of research have been proposed.

Keywords: leadership styles, tranformational leadership, organisational performance, organisational innovation

Procedia PDF Downloads 218
11174 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: deep learning, convolutional neural network, LSTM, housing prediction

Procedia PDF Downloads 306
11173 Developing Problem Solving Skills through a Project-Based Course as Part of a Lifelong Learning for Engineering Students

Authors: Robin Lok Wang Ma

Abstract:

The purpose of this paper is to investigate how engineering students’ motivation and interests are maintained in their journeys. In recent years, different pedagogies of teaching, including entrepreneurship, experiential and lifelong learning, as well as dream builder, etc., have been widely used for education purposes. University advocates hands-on practice, learning by experiencing and experimenting throughout different courses. Students are not limited to gaining knowledge via traditional lectures, laboratory demonstrations, tutorials, and so on. The capability to identify both complex problems and their corresponding solutions in daily life are one of the criteria/skill sets required for graduates to obtain their careers at professional organizations and companies. A project-based course, namely Mechatronic Design and Prototyping, was developed for students to design and build a physical prototype for solving existing problems in their daily lives, thereby encouraging them as an entrepreneur to explore further possibilities to commercialize their designed prototypes and launch them to the market. Feedbacks from students show that they are keen to propose their own ideas freely with guidance from the instructor instead of using either suggested or assigned topics. Proposed ideas of the prototypes reflect that if students’ interests are maintained, they acquire the knowledge and skills they need, including essential communication, logical thinking, and, more importantly, problem solving for their lifelong learning journey.

Keywords: problem solving, lifelong learning, entrepreneurship, engineering

Procedia PDF Downloads 93